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Analysis of association of categorial variables by numerical scores and 

graphical rep~esentation *) 

by 

**) . Nancy K. Kester & Bert Schriever 

ABSTRACT 

This paper is an expository treatment of correspondence analysis (CA) 

and homogeneity analysis (HA), two data analytic techniques which describe 

association among categorical variables in terms of numerical scores assign­

ed to the categories. These scores are analogous to loadings of numerical 

variables on principal components. Thus CA and HA allow graphical represen­

tations of the data. We give rules for interpretation of such representa­

tions and apply them to a real data set. 

KEY WORDS & PHRASES: Peaiproaai averaging; prinaipai aomponent anaiysis; 
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1 • INTRODUCTION 

Correspondence Analysis (CA) and Homogeneity Analysis (HA) are two re­

latives of Principal Component Analysis (PCA) which are especially suited 

to the analysis of nominal data. CA and HA describe the association among 

two or more nominal variables by constructing one or more sets of scores 

for the categories of the variables. These sets of scores are analogous to 

loadings on components of PCA. As in PCA, these scores may be used to pro­

duce graphical representations of the data. Moreover, in HA and CA, each 

set of scores for the categories defines derived numerical variables which 

imply an ordering of the nominal categories. Also, as in PCA, the derived 

numerical variables may be used in further analysis. 

Early references to CA, for example, HIRSCHFELD (1935), are not well 

known; the major recent developments of CA and HA began with the work of 

Benzecri and his associates and is discussed in books by BENZECRI et. al. 

(1973) and by LEBART et. al. (1977). Further discussions on CA and HA appear 

in lecture notes, GIFI (1981), an article by HILL (1974), a book by 

NISHISATO (1980) and papers by SCHRIEVER ( l 982~, b), 

This paper describes the three techniques as special cases of a general 

framework based on reciprocal averaging. General guidelines for interpreta­

tion of graphical representations are applied to each of these techniques. 

Also, alternate formulations are described. 

Our discussion of these techniques is in the context of exploratory 

rather than confirmatory data analysis. This does not preclude the possibil­

ity of confirmatory analysis on a second sample; in fact, an example of 

such an analysis is described in a case study by MAAS-DE WAAL et. al. (1982). 

Section 2 presents our general framework for these techniques; PCA, 

CA and HA are described as special cases in the subsequent three sections. 

Section 6 provides references on some available computer programs. An exam­

ple of HA is given in section 7. 

2. RECIPROCAL AVERAGING 

2.1. Preliminaries 

Matrices will be denoted by upper case letters. Usually the elements 
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of such a matrix will be denoted by the corresponding lower case letter, 

doubly subscripted to indicate rows and columns. Diagonal elements of diag­

onal matrices, however, will be singly subscripted, All vectors, denoted by 

lower case letters, are column vectors. The transpose of a vector or matrix 

is indicated by th~ superscript T. The identity matrix of size qxq will be 

denoted I ; a vector of unities will be denoted e. The notation dist 2(a,b) q 
stands for the squared Euclidian distance between two column vectors a and 

b, i.e., 

= l (a.-b.) 2• 
1 1 

1 

The singular value decomposition (svd) of real nxm matrix A of rank q 

is defined as 

(2. 1) 

where U is a real nxq matrix such that UTU = I , Wis a real mxq matrix such 
q 

that WTW = I , and~ is a qxq diagonal matrix with elements 
q 

Columns u of U (w of W) are called left (right) singular vectors of A. 
a a 

Left (right) singular vectors of A are exactly the eigenvectors of AAT 

(ATA) which correspond to non-zero eigenvalues. Furthermore, each non-zero 

eigenvalue is the square of a singular value of A. Thus from existence of 

the eigen decomposition of real, synnnetric matrices AAT and ATA the svd can 

be shown to exist (cf. RAO (1973), p.42). Moreover, if the singular values 

are distinct, then the singular vectors are unique up to a change of sign. 

(cf. WILKINSON (1965), p.S). 

The svd of a matrix A was shown by HOUSEHOLDER & YOUNG (1938) to pro-

vide lower rank approximations to A that are best in the sense of least 

squares. For any integer q such that 1 :;; q:;; q, 

n m 
(a .. -a .. / (2.2) min I I - i=l j=l 1J 1J 

A: rank (A) = q 
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is achieved by 

q 

A* I 1/Ja. 
T = u w 

a.= 1 
a. a. 

where 

q 

A I 1/Ja. ua. 
T = w 

a.= 1 
a. 

has svd (2. I) . The minimal value of (2.2) l.S 

q 

I 1/!2 . 
a. 

a.=q+l 

This suggests the following measure of goodness of fit of the rank q approx-
. . * 1.mat1.on A to A 

(2.3) 

q 

gof <<1) = I 
a.= 1 

Since the 1/Ja. 's are ordered by magnitude, it 1.s easy to see that 

q/q ~ gof(q) ~ 1. 

In practice it is not 

could use the identity 

necessary to calculate all 1/J to evaluate (2.3); we a. 

q 

I 
a.= 1 

T 
trace (AA). 

2.2. Reciprocal averaging 

Our general approach to the analysis of association between rows and 

columns of a real matrix A of size nxm and of rank q will be via reciprocal 

averaging. Reciprocal averaging constructs q sets of row scores, column 

scores and proportionality constants, denoted 

X a. 

Ya. 

" a., 

= 

= 

T 
(x 1 , x2 - , ••. , x ) , a. a. na. 

T 
(yl ,Y2 , ••.• ,y ) a. a. ma. 
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for a= 1, ••. ,q. 

The matrix A has elements a .. which reflect the association of rows 
l.J 

and columns. Associated with A are two diagonal matrices, R of size nxn 

and C of size mxm, where the diagonal elements r. and c. are positive row 
l. J 

and column weights. Thus Rand Care non-singular. 

DEFINITION 2.1. A solution of reciprocaZ averaging applied to A with re­

spect to Rand C consists of q sets of row scores x, column scores y, and 
a a 

proportionality constants A which satisfy for a= 1, .•. ,q 
a 

(2.4) 
A 

-1 
Aya X = R a a 

A 
-1 AT 

Ya = C X a a 

where A is maximal subject to 
a 

T T 
X Rx = 1 ' Ya Cy = 

(2.5) a a a 
T T 

X Rxs = O, Ya CyS = 0, 8 = 1,2, ... ,a-1. 
a 

For a better understanding of equations (2.5), consider the following. 

Given a vector y of column scores y. and a proportionality constant A , 
a Ja a 

we compute a vector x of row scores as 
a 

X 
a 

That is, row scores x. 
I.a 

are proportional to (R-l Ay )., a weighted sum of 
a l. 

column scores y. with weights a .. /r .. Similarly, 
Ja l.J l. . 

weighted sums of the x 's. Side conditions (2.5) 
a 

column scores Ya are 

simply require the q sets 

of scores to be mutually orthonormal with respect to the weights matrices. 

The method of reciprocal averages was first named in HORST (1935); 

however, he and other authors (eg. HILL (1974) and NISHISATO (1980)) chose 

the weights matrices Rand C as the row and column sums of A, respectively. 

The existence of scores satisfying definition 2.1 is demonstrated by 

the following proposition. 



-1 -1 
PROPOSITION 2.1. Suppose that the matrix R 2 AC 2 has svd 

(2. 6) 
-1 _1 T 

R 2 AC 2 = U 1 w·. 

Then a solution of reciprocal averaging applied to A with respect to Rand 

C is given by 

_1 

X = R :z u 
a. a 

-1 
ya = C 2 w a 

>.. = 1/Ja a 

for a = I., ••• ., q. 

-1 

5 

PROOF. Multiply (2.6) on the right by w and on the left by R 2 to show that 
a 

>.. 
-1 

Ay. X = R a. a a 

_1 
Multiply (2.6) on the right by C 2 and on the left by u to show that a 

A YT = T AC-I. X 
a a a 

Side conditions (2.5) are easily verified. Since the singular values 1/Ja in 

(2.6) are ordered by magnitude, it follows that A is maximal. 0 
a 

COROLLARY 2.2. Reciprocal averaging scores x and y are right eigenvectors 
a a 

of the matries R- 1Ac-lAT and c-IATR-1A, respectively., corresponding to ei-
2 genvalue >.. , for a= 1,2, ••• ,q = rank (A). 
a 

Furthermore, the solution of reciprocal averaging is unique whenever 

the svd of R-½AC-½ is. 

2.3. Interpretation of graphical representation 

A graphical representation of the row scores and column scores pro­

duced by reciprocal averaging should provide insight into the structure of 

the matrix A. The graphical representation consists of n+m vectors in a 
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q-dimensional space, where the i-th row's vector is 

(2. 7) 
s s s T 

I; • = ( A I x . I , A 2x . 2 , ••• , A x . ) i i i q iq 

and the j-th column's vector is 

(2, 7 I) t t t T 
n. = (AI y. I '"2Y. 2' ••• 'A y. ) ' J J J . q Jq 

wheres and tare fixed constants. 

The facts about geometrical interpretation listed below depend to a 

certain extent on the choices of sand t; these facts allow general guide­

lines for interpretation of l;.'s and n.'s to be drawn. More specific appli-
i J 

cations of these facts to the special cases of PCA, CA and HA are discuss-

ed in sections 3.2, 4.3 and 5.3. 

It follows from proposition 2.1 and corollary 2.2 that 

R-IAC-IATR-I 

C-l ATR-l AC-I 

These equations lead to the following facts. 

FACT 1. If s+t = I, then 

s: n. = a .. /r.c. for i = I, •.• ,n; J i J iJ i J 

FACT 2. Ifs = I • then 

m a .. al. 
~T s,e = I iJ . J for i,l = I, .•. ,n. 
i j=I r.r_l· i . J 

FACT 2 I• If t = I , then 

t n a .. a.h 
n; nh = I iJ i for h,j = I , ••• ,m. 

J r.c.ch i=l i J 

= I , •.. ,m. 



FACT 3. If s = I , then 

FACT 3' • -If t = I , then 

m 

I 
j=I 

n 

I 
i=l 

2 

_I_ {aij 
c. 2 

J r. 
l. 

2 

2 
a.tJ· . 2 aiJ.a.tJ·}· ~ . o 

+ -- - -~~ J or 1. ~ = 
2 r.r 0 ' 

rl l. ~ 

I {aij - --+ 
r. 2 

h,j = 
l. C • 

J 

From the side conditions (2.5) we formulate the following fact. 

FACT 4. The quantity 

2 r. x. 
l. I.a 

can be interpreted as the contribution of row 1. to component a, for 

i = l, ... ,n; a= I, ... ,q. 

FACT 4'. The quantity 

2 c.y. 
J JU 

7 

I, ... ,n. 

I , ••• ,m. 

can be interpreted as the contribution of column J to component a, for 

J = I, ... ,m; a= l, ... ,q. 

2.4. Lower dimensional approximation 

In most applications of reciprocal averaging, only the first q out of 

a possible q components are calculated. Instead of an exact q-dimensional 

representation, we will consider an approximate q-dimensional representation 

in which the i-th row's vector is 

~ S S S T 
~ . = ( A I x . 1 , A 2x. 2 , ••• , :\ ~ x. _) 

l. l. l. q 1.q 

and 1.n which the j-th column's vector is 

t t t T 
n, = (A1Y·1•"2Y·2•·•·•"~Y·~) J J J q Jq 

~ 
Facts through 3' of section 2.3 with~- replacing~- and with n. replacing 

l. l. J 
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n, are approximations. The quality of these approximations may be assessed 
J 

by the overall·goodness of fit measure (2.3) and by the following measures 

for the i-th row 

(2.8) gof(i.) 
]_ 

and for the j-th column 

(2. 8') gof (n.) 
J 

~T ~ T 
= n. n./n: n .. 

J J J J 

Clearly these measures range between O and 1; unlike the overall measure, 

for these measures no sharper lower bound ~an be given. 

The application of facts 1 through 3' with i. or n. may be misleading 
]_ J 

for rows i or columns j for which the goodness of fit (2.8) or (2.8') is 

low. 

3. PRINCIPAL COMPONENT ANALYSIS 

3.1. ~Reciprocal averaging formulations of PCA 

Association among m numerical variables is often expressed in an mxm 

covariance matrix, S, say of rank q. Reciprocal averaging applied to 

(3. 1) 

A = S 

with respect to 

R = C = I 
m 

yields column scores y and proportionality constants A for a= 1, .•. ,q 
a a 

which are exactly the normalized eigenvectors (principal components) and 

the corresponding eigenvalues of S (by proposition 2.1). Since A is sym­

metric and since R = C, row scores xa are identical to column scores Ya• 

If the covariance matrix is based on n observations on m variables, 

these observations may be arranged in an nxm matrix B. Reciprocal averaging 

applied to 
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A (I -
} T 

= - ee) B n n 

(3. 2) with respect to 

R = n I n' C = I m 

produces column scores y and proportionality constants A which are eigen-
a a 

vectors and square roots of eigenvalues of 

as above. Reciprocal averaging on (3.2) also produces, scores x for the 
a 

individuals (observations). 

Alternatively, association among them numerical variables can be ex-

pressed in a correlation matrix. We denote the average of the 
2 by b ., and the variance of the j-th variable bys., where 

•J J 

2 n 
s. = - I 

J n i=l 

2 
(b .. -b . ) . 

1.J • J 

Reciprocal averaging applied to 

A= (I - ..!_ eeT) B diag(-1 ) 
n n s. 

J 

(3. 3) with respect to 

R = n I , C = I 
11 m 

b .. 's over i 
1.J 

produces column scores y and proportionality constants A that are re-
a a 

spectively eigenvectors and square roots of eigenvalues of the mxm corre-

lation matrix of the columns of B. 

3. 2. Graphical interpre-tation 

For PCA in terms of reciprocal averaging on (3.2), the choices s = 0 

and t = 1 in (2.7) and (2.7') allow especially convenient interpretation of 
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the graphical representation. Our discussion will focus on formulation (3.2); 

the interpretation rules concerning variables are valid in the contex of 

formulation (3.1) ifs= t = ½. 
Thus we interpret the q-dimensional graphical representation consisting 

of n vectors for the rows 

T 
~- = (x. 1,x. 2 , ••• ,x.~) l l l 1q 

and m vectors for the columns 

for 1 = 1, •.• ,n 

n, = 0.. 1y. 1,A 2y. 2 , ••• ,A_y._)' for J = 1, ••• ,m. 
J J J q Jq 

The plot oft. and n. for q = 2 is precisely the principal component biplot 
l J 

described by GABRIEL (1971, section 3). We describe the interpretation rules 

as special cases of the facts of section 2.3. Many interpretation rules we 

give below are well known in the context of PCA and biplot. 

One should take into account the goodness of fit measures when applying 

these rules. The goodness of fit measure (2.8') for the j-th variable is 

gof(n.) = 
J 

q 

I 
a=l 

2 2 / 2 A y. s .• 
a Jct J 

The uverall goodness of fit measure (2.3) is 

gof (q) = I s. gof(TI.) I s .. m 2 1m 2 

j=l J J j=l J 

PCA-i.r. 1. The inner product of n, with€. approximates.!_ (b .. -b .). In 
J l n lJ • J 

particular, vectors t. which are in the same direction as TI• correspond to 
l J 

individuals who are above average on the j-th variable. (fact 1}. 

PCA-i.r. 2. The squared length of TI• approximates the variance of the j-th 
J 

variable. (tact 2'). 

PCA-i.r. 3. The cos&ne of the angle between nj and Tih approximates the cor­

relation of the h-th and j-th variable. Thus variable vectors which are in 

nearly the same direction (or nearly opposite directions, or nearly orthog­

onal) indicate variables with high positive (high negative, very weak) car-



Pelation. (fact 2'). 

PCA-i.r. 4. The sqUaPed distance between nj and nh a:ppPoximates the vaPiance 

of the diffePence between the j-th and h-th vaPiable .. (fact 3). 

PCA-i.r. 5. The contPibution of the j-th VaPiable to the a-th component is 
2 

y., the squaPed loading of the j-th vaPiable on the a-th. pPincipal compo­
Ja 

nent.. (fact 4'), 

Direct application of corollary 2.2 yields 

SY= Y A2 

which leads to an additional interpretation rule. 

PCA-i.r. 6. The covaPiance between the j-th vaPiable and the a-th pPincipal 
. 2 component ~s A y .. 

a Ja 

Furthermore, we have 

PCA-i.r. 7. The squaPed distance between two individual vectoPs ~i and ~l 
a:ppPoximates a standaPdizea distance 

whePe b. denotes the i-tg POW of B. 
1. 

4. CORRESPONDENCE ANALYSIS 

4.1. Reciprocal averaging formulation of CA 

Correspondence analysis describes the association among categories of 

two nominal variables, v1 with m1 categories and v2 with m2 categories. In­

formation relevant to the association is sunnnarized in an m1xm2 contingency 

table F of frequencies. We define diagonal matrices containing the margin­

als of Fas 
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N1 = diag (n 1 (h)) 

where 

for h = I, ••• ,m1 , 

and 

where 

for j = I, ... ,m2 . 

DEFINITION 4.1. Correspondence analysis applied to Fis defined to be recip­

rocal averaging applied to 

A=__!_F 
n 

( 4. I) with respect to 

where 

From (4.1) it can be seen that CA constructs a score for the h-th row 

which is proportional to a weighted average of column scores, with weights 

the conditional probability of column j given rowh. The matrix Fis of 

rank q ~ min(m,n); the following proposition shows that CA on F yields at 

roost q-1 components relevant to the association structure of F. 



PROPOSITION 4.1. The reciprocal averaging row scores xa, column scores ya 

and proportionality constants A from CA satisfy 
a 

for a= l, ... ,q, 

and can be chosen to satisfy 

(4. 2) 

13 

PROOF. The row sums of N~ 1FN; 1F'. (R- 1AC-IAT of corollary 2.2) are identi­

cally I. An upper bound for eigenvalues of a non-negative matrix is the max­

imal row sum (cf. WILKINSON (1965), p. 58). The eigenvalues are all real so the 

singular values must satisfy O ~ A ~I.Furthermore, (4.2) satisfies (2.4) 
a 

and (2.5) in the case of (4.1). D 

In CA the first trivial component will be discarded; the second and 

higher components will be inspected to gain insight into the structure of F. 

Furthermore, we note that 

q 

_!_ z(F) = I A 2 
n·x 

a=2 a 

where 

/(F) 
ml 

= n { I 
h=l 

2 
fhj } 

-n-1 (-h-) n-2-(_j_) - I ' 

the square contingency of F (cf. KENDALL & STUART (1979), p.587). 

It can be shown (cf. HILL (1974)) that CA is algebraically equivalent 

to Fisher's contingency table analysis (cf. FISHER (1940)). Fisher's method, 

equivalently formulated by HIRSCHFELD (1935), was to assign scores to the 

categories of the nominal variables v1 and v2 such that the correlation be­

tween the derived numerical variables should be maximal. This approach was 

revived in the late 1960's by Benzecri and his associates. Thus the first 

non-trivial component from CA gives scores that yield maximal correlation, 

and further components give scores that yield maximal correlations subject 
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to orthogonality to previous sets of scores. 

4.2. Alternate formulations of CA 

We now consider two alternate formulations of CA which yield the same 

scores for categories of v1 and v2 and closely related proportionality con­

stants. 

PROPOSITION 4.2. The concatenated vectors (xT,yT)T, where x and y are the 
a a a a 

row and column scores of CA on F, for a= l, .•. ,q are identical to the first 

q sets of scores from reciprocal averaging applied to 

(4. 3) with respect to 

R = C = 21n (:I :} 

Furthermore, proportionality constants >. from CA are related to the first 
a 

q proportionality constants of reciprocal averaging on (4.3); the latter 

are given by (l+:\ )/2. 
a 

PROOF. Suppose that m1 ? m2 ; otherwise apply CA to FT. Define x0 for 
. -1 -1 i . 

a= l, ••. ,q,q+l, •. ,m2 ,m2+1, •• ,m1 to be eigenvectors of N1 FN2 F; define ya 
. -1 T -1 . 2 

for a= 1, •. ,q,q+l, •• ,m2 to be eigenvectors of N2 F N1 F; define Aa for 

a= l,2, •• ,m1 to be the corresponding eigenvalues (in decreasing order by 

magnitude). Clearly "a= 0 for a= q+l, .• ,m1• 

Corollary 2.2 shows x ,y ,A for a= 1, .• ,q to be a solution of CA a a a 
(i.e. reciprocal averaging on (4.1)). The corollary also shows that scores 

from reciprocal averaging on (4.3) are given by eigenvectors of 

(4. 4) 

It is easily checked that the following are eigenvectors of (4.4): 



T T T (x ,y) for a= l, .•• ,q, 
a a 
T T T 0 

(x ,-y) for a= l, ... ,q, a a 
T T T T T T (x ,y) and (x ,-y) for a a a a 

correspondiµg to eigenvalues 

corresponding to eigenvalues 

a = q+ l , ••• ,m2 , 

(I+).. / /4 
.a 

(1-).. ) 2 /4 
a 

corresponding to eigenvalue 1/4 
T T T (xa,O ) for a = m2+1, .•• ,m1, 

corresponding to eigenvalue 1/4. 

Therefore the first q sets of scores, corresponding to eigenvalues 

(l+)..·) 2/4, or to singular values (l+A )/2, are exactly the scores from CA 
a a 

(4.1). • 
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The contingency table F represents n observations on the variables v 1 

and v2 ; an alternate expression is by two indicator matrices, G1 of size 

nxm1 and G2 of size n~m2 • A I in the i-th row and j-th column of indicator 

matrix Gk represents the selection of the j-th category of variable Vk by 

the i-th individual. All the other elements of the i-th row of Gk are O. We 

may construct the contingency table F from the indicator matrices by 

Reciprocal averaging on these indicator matrices is equivalent to CA on F, 

as shown below. 

PROPOSITION 4.3. The concatenated vectors (xT,yT)T, where x and y are row 
a a a a 

and column scores of CA on F, i.e. (4.1), for a= l, •.. ,q are identical to 

the first q sets of column scores from reciprocal avera,ging applied to 

A = _I G 
2n 

(4.5) . wi-th respect-to 

R=.!.r C=-1 C n n' 2n 0 :} 
where G 'Z,S the nx (m1+m2) matrix 

G = (GI ,G2). 
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Furthermore the proportionality constants are deiY'ived from A of CA by 
a 

l(l+A )/2. 0 

a 

PROOF. Analogous to the proof of proposition 4.2. D 

Although the scores for the categories are the same in the CA formula­

tions (4.1), (4.3) and (4.5), their graphical representations differ in a 

stretching or contracting of the axes. Moreover the goodness of fit measures 

derived from the CA formulations (4.3) and (4.5) will be lower than those 

of the formulation (4.1). 

Another difference between formulations (4.1) and (4.5) is the creation 

of individual scores in (4.5). HILL (1974) calls (4.1) zero-order CA and 

(4.5) first-order CA. LEBART et.al. (1977) speak of CA in (4.1) as analy­

sis of a "tableau de contingence", (4.3) as analysis of a "tableau de 

Burt", and (4.5) as analysis of a "tableau disjonctif". 

4.3. Graphicalinterpretation 

We consider graphical representation based on scores from (4.1), the 

traditional formulation of CA. Constants sand tin formulas (2.7) and 

(2.7') are both equal to I. In a q-dimensional approximation, the h-th row 

of Fis repre~ented by 

and the j-th column of F by 

since the first component is trivial. The interpretation rules listed below 

are valid for these vectors, provided that their goodness of fit measures 

are high. These goodness of fit measures should be adjusted for the deletion 

of the first (trivial) component. Thus the overall measure (2.3) becomes 



Similarly the row and column measures (2.8) and (2.8') become 

and 

q+l /m2 
= l A2 2 l 

a=2 a ~a j=l 

gof(n .) = 
J 

q+l 

I 
a"'2 

(cf. CA-i,r. 2, below). 

CA-i.r. 1. The squared length of n. is approximately 
J 

mll n ( fhj - nl (~~2 

h=l nl(h) \:2(j) n). 
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Thus when the conditional distribution of variable v1 jv2 = j is similar to 

the marginal distribution of V 1 , then nj is near the origin. In this case, 

in terms of the conditional distribution of v1 jv2 = j, category j of v2 is 

average. (fact 2'). 

Analogously, the squared length of th indicates the extent to which 

the conditional distribution of v2 jv1 =his similar to the marginal distri­

bution of v2 . (fact 2). 

CA-i.r. 2. The squared distance between nj and nk approximates 

ml! n ( fhj fhk J 2 

h=I nl(h) ~2(j) n2(kJ •· 

Thus whenever the conditional distributions of v1 lv2 = j and v1 jv2 = k are 

similar, nj and nk will be close to each other. (fact 3'). 

Analogously, the squared distance between [hand tl indicates the sim­

ilarity of the conditional distributions of V 2 IV 1 = h and V 2 IV 1 = .t. (fact 3). 

Th d . 11 d 2 d" . h 1· ese 1stances are ca e x - 1stances 1n t e 1terature. 

CA-i.r. 3. The contribution of the h-th row (j-th column) of F to the a-th 
n I (h) 2 nz (j) 2 , 

component is given by-----'- xh (by ------ y. ). (fact 4.4 ). 
n a n Ja 

The interpretation of the graphical representation of CA formulation 
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(4.5) (and of (4.3)) is described in section 5.3 in the context of HA; how­

ever there are·some differences (compare CA-i.r. 1 with HA-i.r. 2, and· 

CA-i.r. 2 with HA-i.r. 4). 

5. HOMOGENEITY ANALYSIS 

5.1. Reciprocal averaging formulation of HA 

Homogeneity analysis describes the association among categories of p 

nominal variables, say v1 ,v2 , .•• ~VP, where variable Vk has~ categories. 

The p-dimensional contingency table F of size m1xm2x •.. xmp is constructed 

from n observations on variables v1, •• ,V. We denote by F.k the m.xm. table 
p - J J K 

of bivariate marginals of variables Vj and Vk. Notice that Fjk = F~j. Also, 

we denote v .. , the m.xm. diagonal matrix with univariate marginals for the 
JJ J J 

variable Vj' by Nj. We define m = lj=I mj; the mxm super-diagonal matrix 

of N. 'swill be denoted by N. 
J 

DEFINITION 5.1. Homogeneity analysis applied to Fis defined to be recipro­

cal averaging applied to 

(5. 1) 

NI 

A 1 F 2 I 
= 2 

np 

Fpl 

with respect to 

R=C=-1-N. np 

Fl2 

N2 

Fp2 N 
p 

Clearly HA is a generalization of CA formulation (4.3) to the case of 

more than two variables. HA considers only bivariate associations; higher 

order associations may be studied by combining variables: replace V. and 
J 

Vk by one variable with mjx~ categories. Scores for the categories of the 

variables v1, ••. ,Vp are given by column scores from HA. As in CA, the first 

component is trivial. 
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PROPOSITION 5.1. The column scores y and proportionality constant A from 
a a 

HA satisfy 

for a= l, •. ,q = rank(A) 

and can be chosen to satisfy 

PROOF. Analogous to the proof of proposition 4.1. D 

Scores for the k-th category of variable V. on the a-th component are 
J 

the m.xl vector of scores for the categories of V. is 
J J 

denoted by yj (k) ,a; 

denoted by y. ; the 
J,a 

marginal frequency of the k-th category of variable V. 
J 

is denoted nj(k)" 

Reciprocal averaging scores y, a~ 2, must have weighted average zero. 
a 

In fact, these scores satisfy a stronger requirement. 

PROPOSITION 5.2. Column scores y from, HA satisfy 
a 

T 
e N.y. = 0 for J = l, .. ,p; a= 2, •• ,q. 

J J,a 

T 1 1 T -1 1 T 
PROOF. e·N.:y .. _ = z- - e N.N. (F. 1, ... ,F. )y = z- - e Ny = 0. • 

J J,a Aa p J J J JP a Aa p a 

Since the weighted average of scores for each variable is zero, the 

scores for the two categories of a dichotomous variable must be of opposite 

sign. 

The first non-trivial set of column scores ya from HA are scores for 

nominal variables v1,v2 , .•. ,VP such that the first principal component of 

the correlation matrix has maximal variance (see HILL(l974)). Further sets 

of reciprocal averaging scores are more difficult to interpret in this con­

text. 

5.2. An alternate formulation 

An alternate representation of then observations in the p-dimensional 

contingency table Fis by p indicator matrices G. of size nxm. for 
,. J J 
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j = l, ... ,p, or Qy.G 

PROPOSITION 5.3. The q sets of column scores from reciprocal averaging ap­

plied to 

A = _l G 
np 

(5. 2) with respect to 

R = _!_ I 
n' C = _l_ N 

n np 

are identical to scores from HA, ~.e. (5.1). Proportionality constants for 

(5.2) are the square roots of those derived from (5.1). 

PROOF. Straightforward. · 0 

Proposition 5.3. shows that HA, formulated as (5.2), considers only bi­

variate marginals. Formulation (5.2) produces scores for each individual in 

addition to category scores and proportionality constants produced by formu­

lation (5.1). Another difference between these two formulations is that 

(5.2) can be easily extended to handle missing observations (cf. GIFI (1981), 

p.116). This extension can be problematic, however, since the first component 

will no longer be trivial. This would affect the geometric interpretation 

rules as well as measures of goodness of fit. Other ways to handle missing 

observations, such that the first component remains trivial, are given in 

GIFI (1981), p.70. We restrict attention to the case of no missing data. 

5.3. Graphical interpretation 

HA is usually formulated as (5.2) and the graphical representation is 

constructed withs= 0 and t = l. We discard the trivial solution from (5.2) 

with Al= l, x 1 = e, y 1 = e and represent the i-th row of Gin q dimensions 

by 

T 

~i = (xi2'xi3' 000 'xiq+l) ; 

similarly, the k-th category of the j-th variable is represented in q dimen-



sions by 

T 

nj(k) = (\2yj(k),2' 0 ···,\q+lYj(k),q+l) 

21 

The interpretation rules below apply to vectors ;i and nj(k) provided that 

goodness of fit measures are high. The overall goodness of fit of the q-di-

mensional representation l.S 

q+l 

g0f (q) = I ,2 I(""!. - 1 ) • 
a.=2 a. p 

~ The goodness of fit measure for nj(k) 1.s 

q+l 

gof ("j (k)) - oL >-! nj (k)yf (k) ,o / (n-n j (k)) 

(cf. HA-i. r. 2, below); the goodness of fit of variable V. may be define_d a,s 
J 

the weighted average 

gof (V.) = 
J 

m· 
J 

L 
k=l 

Im• 
~ J n-nj (k) 

go f ( n. (k)) I 
J k=l nj(k) 

HA-i.r. ]. The inner product of li and nj(k) approximates n/nj(k) if indi­

vidual i selected category k on variable V., and zero otherwise. Thus indi-
J 

vidual points are generally in the scune direction as points representing 

the categories selected by the individual. (fact 1 ). 

HA-i.r. 2. The squared length of nj(k) approximates 

(n-nj(k))/nj(k). 

Thus categories with large marginals frequently appear near the origin, 

while those with small marginal frequency are far from the origin. (fact 2'). 

HA-i.r. 3. The inner product of nj(k) and nh(l) approximates 

n f j (k) ,h(l) _ __,:.______ - I • 

nj(k) nh(l) 

Thus if j=h, then the cosine of the angle between nj (k) and fjh(l)approximates 
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:he correlation between two cells of a nrultinominal. For j/h, if nj(k) and 

nh(l) are nearZy orthogonal (or in the same direction, oP in opposite direc­

tions), then categoty k of Vj and category l of Vh are weakly associated 
(or positively associated, or negatively associated). (fact 2). 

HA-i.r. 4. The squared distance between nj(k) and nj(l) approximates 

nj (k) + nj (.f_) 
n~--~~-

nj (k) nj ({) 

HA-i.r. 5. The squared distance between nj(k) and nh(l) approximates 

nj(k)+ nh(l)-2 fj(k),h(t) 
n --=--'--"------'---'------='--~-'----

n j (k) nh(l) 

Thus categories with high joint frequency (indicative of strong positive 

association) are plotted near each other. (fact 3'). 

HA-i.r. 6. The contribution of the k-th category of V. to the a-th component 
J 

is 

nj (k) I 2 
n p Yj(k),a 0 

Furthermore we compute the total contribution for categories of one vari­

able. This total contribution, often called the discrimination of V. on com­
J 

ponent a, is defined as 

discr (Vj,a) 

(fact4'). 

The reciprocal averaging formulas (2.4) in HA lead to 

and 

I I p 
= -- I 

:>.. 2 p j=I 
a 

mj 

l gi,j(k) nj(k),a 
k=I 

n I 
nJ.(k),N = l -- g. '(k) t. · 

~ i=I nj(k) i,J ia 
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This suggests another interpretation rule. 

HA-i.r. 7. A category poi~t nj(k) is always exactly the center of gravity 

of the individual points~. for individuals i who selected the k-th category 
1 . 

on V •• 
J 

Furthermore, we have 

m• 
I J 

I - - I 
n k=l 
m, 

J n 

n 2 
I g • • (k) ( C - nJ. (k) , a.) i=l i,J ia. 

m. 
J 

I 
n k=l 

2 
l gi,j(k) ~ia. nj(k),a. 

i=l 
I 

n k=l 

= 

n 2 

l gi,j(k) nJ.(k),a.= 
i=l 

mj 

= I 
n k=l 

2 
nj (k) nj (k) ,a. = p \ 2 .discr(V.,a.). 

a. J 

This leads to the following interpretation rule. 

HA-i.r. 8. fv'hen the discrimination of V. on the a.-th component is high, then 
J 

on component a., for each k, scores~. for individuals who selected category ia. 
k of variable V. are near n.(k) • 

J J 'a. 

6. AVAILABLE COMPUTER PROGRAMS 

As shown in section 2.2, calculation for PCA, CA and HA require a sin­
gular value decomposition of R-!Ac-! and scaling of the resulting singular vec-

tors by dia~onal matrices. Thus these techniques can be performed with com­

puter subroutines that are widely available. Further, various authors have 

developed special purpose programs for one or more of these techniques. 

These programs may offer various advantages, such as efficiency (for exam­

ple, for HA, the required core storage is reduced by making use of the 

0 - I nature of the indicator matrices) and convenience (output may include 

a line printer plot of pairs of components and additional information like 

goodness of fit and discrimination measures). However, various normaliza­

tions of the scores exist. We are aware of the following programs: 

- biplot program of GABRIEL; PCA 
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- programs in LEBART et.al. (1977); also scheduled to appear as part of a 

package in Compstat '82; PCA, CA, HA 

- programs in BENZECRI (1973), CA 

- cana,ls package of dept. of data theory, University of Leiden, contains 

PCA, CA,_ HA (c.f. DE LEEUW & VAN RIJCKEVORSEL (1980)) 

- prinqual program of TENENHAUS (1977) 

- programs in NISHISATO (1980). 

7. EXAMPLE OF HA 

FIENBERG (1977, p. 91) reproduces a four-dimensional contingency tahk, 

sutmnarizing 4831 automobile accidents, taken from KIHLBERG et.al. (1964). 

The four variables are as follows: v 1 = accident type (eollision with vehi­

cle, collision with object, rollover without collision, other rollover); 

v2 = accident severity (not severe, moderately severe, severe); v3 = driver 

ejected (not ejected, ejected) and v4 = car type (small, compact, standard). 

The main diagonal of table 7.1 gives the univariate marginals.n•(k)•for 
J ' 

the variables v1, .. ,v4 . The triangular portion of table 7.1 gives bivariate 

marginals fj(k),h(l)" After division by np 2 = 77296, table 7.1 gives the 

upper portion of the sytmnetric matrix A of (5.1). Table 7.2 sunnnarizes the 

results of HA formulation (5.2) with q = 2. 

vi v2 v3 v4 

2526 0 0 0 1620 629 277 2325 201 151 234 2141 Collision with vehicle 

1195 0 0 745 315 135 1075 120 54 I 10 1031 Collision with object 

454 0 128 252 74 293 161 79 57 318 Rollover without collision vi 

656 121 333 202 431 225 66 69 521 Other rollover 

2614 0 0 2436 178 186 269 2159 Not severe 
'---

11529 0 1237 292 I I 9 145 1265 Moderately severe v2 
688 451 237 45 56 587 Severe 

4124 0 274 398 3452 Not ejected 

vi: Accident type 707 76 72 559 Ejected v3 

V2: Accident severity 350 0 0 Small 

V3: Driver ejected 470 0 Compact I v4 
V4: Car type 401 I Standard 

Table 7.1. Bivariate and univariate marginal frequencies. 



>.. 2 = 0.639 

gof(2) = 0.346 
Category scores 

>.. 3 = 0.533 first second 

non-trivial non-trivial 

component component 

CoUis-Z:on with vehicle 0.700 -0.001 

V 1: Accident Collision with object 0.569 -0.456 

type Rollover without collision -2.042 3.646 

Other ro Uover -2.318 -1.691 

Not severe 0.998 0.078 
v2: Accident Moderately severe -0.918 0.994 

severity Severe -1.751 -2.505 

v3: Driver Not ejected 0.452 0.070 

ejected Ejected -2.637 -0.408 

SmaU -1. 161 3.386 
V 4 : Car Compact -0.076 1 . 01 1 

type Standard 0. 1 10 -0.414 

y j (k), 2 Yj(k),3 

Table 7.2 Results of HA with q = 2. 

Goodness 

of fit 

first two 

non-trivial 

components 

0.219 

0.063 

0.564 

0.472 

0.481 

0.289 

0.503 

0.495 

0.495 

0.297 

0.025 

0.259 

gof(nj(k)) 

Discrimination 

first second 

non-trivial non-trivial 

component component 

0.364 0.420 

0.310 0.302 

0.298 0.007 

0.027 0.263 

discr (V. , .2) 
J 

discr(v.,:n 
J 

N 
V, 
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In many examples involving one or more ordinal variables, the natural 

ordening of the categories is reflected by HA scores on the first non-trivi­

al component. Theoretical discussions on the retrieval of order relations and 

dependence structure appear in SCHRIEVER (1982 a,b). We first inspect the 

ordering of categories of v1, .•. ,v4 implied by the scores yj(k), 2 . For acci­

dent type (V 1), the two collision categories receive nearly equal positive 

scores whereas the two rollover categories receive similar negative scores. 

The sca_le for V 2 reproduces the expected ordering of the three categories, 

with not severe scoring near the collision categories of v1, and with severe 

near the rollover categories, and with moderately severe intermediate. Simi­

larly, the category not ejected of v3 scores near collisions while ejected 

scores near rollovers. The scale for v4 , car type, also reproduces the ex­

pected ordering, although the spread of these scores is relatively small. 

The discrimination measures for the first non-trivial component show that 

the first dimension involves v1,v2 and v3 but not v4. Thus the first dimen­

sion suggests that v2,v3 and v1 (at least contrasting collisions with roll­

overs) are more strongly associated with each other than with v4 . For fur­

ther detail, we investigate higher dimensions. 

Figure 7. I, a plot of the points f\j (k). for the first two non-trivial 

components, is constructed with t = 1. Inspection of this two dimensional 

representation provides additional insight. For example, a line through the 

three points for V 4 , car type, is roughly orthogonal to a line through two 

points for v3 , ejected or not. Thus v3 and v4 are nearly independent. Fur­

thermore, if v1 was reduced· to two categories, collisions and rollovers, 

this variable would be nearly independent of v4 , but strongly associated 

with V 3 . The points for roUover without coUision (V 1) · and smaU 

(V4) are both rather extreme in the upper left quadrant, indicating strong 

association between these categories. Upon inspection of the contingency 

table or bivariate marginals, this association is also evident; however, its 

detection is simplified by figure 7 .1. Analogously, there is evidence of 

positive association among ejected (V3), other rollover (V 1) and severe 

(V2), all in the lower left quadrant. Five points to the right of the origin 

in figure 7.1, not ejected, not severe, standard and the two collision cat­

egories also seem to show positive association. But goodness of fit measures· 

must be inspected to help validate this interpretation, since these points 



27 

are all close to the origin. Two of the twelve categories are poorly repre­

sented in the plane, collision with object (Vt) and compact (V4). The prox­

imity to the origin of four of the five category points mentioned above is 

primarily due to large marginal frequencies rather than to poor fit. Thus 

very strong positive association among not ejected (V3), not severe (V2) 

and collision with vehicle (Vt) is indicated. These categories are positive­

ly but less strongly related to standard (V4). The three categories of Vt 

with reasonable goodness of fit in the plane are each strongly posively as­

sociated with one of the categories of v2• 

With gof(2) = 0.346 it is reasonable to inspect the third and higher 

dimensions for additional features of interest. The next two proportionality 

constants, A4 = 0.504 and AS= 0.500, are similar to A3 . Table 7.3 gives 

discrimination measures for these dimensions. 

discr(V.,2) 
J . ~ 

discr(V. ,3) 
J .. 

discr(V.,4) 
J .. 

discr(V. ,5) 
J , 

Vt 0.364 0.420 0.573 0.004 

v2 0.310 0.302 0.231 0.056 

v3 0.298 0.007 0.004 0.005 

v4 0.027 0.263 0. 189 0.756 

Table 7.3. Discrimination measures 

The third dimension (i.e. a=4) involves v 1 , and to a lesser extent, v2 ~nd 

v4 • The main effect of this dimension is to fit the category of v 1 which was 

poorly fitted in the plane. The next dimension (a=5) involves almost exclu­

sively v4 ; this dimension only provides a better fit for the category com­

pact. Thus these dimensions give us no further insight into the associations 

among the variables. 

Figure 7.2 is a plot of the points t. for the first·two non-trivial 
1 

components. The 71 points represent the profiles of the 4831 observed acci-

dents; one possible profile (collision with object-severe-ejected-small) was 

not observed. It is important for correct interpretation of figure 7.2 to 

keep in mind thJ.t each plotted point represents a number of identical obser­

vations; thus in application of HA-i.r. 7, each t. must be weighted by the 
1 

frequency of the profile (a cell frequency in the original four dimensional 
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contingency table). Figure 7.2 shows seven nearly vertical bands of points, 

with the number of points in each band a multiple of three (exept where the 

profile which was not observed should be). Each band is characterized by one 

or more combinations of the categories of v1,v2 and v3 with all levels of 

v4 • For example, the left band corresponds to profiles otheP PolloveP - se­

vePe - ejected. The next band corresponds to profiles otheP PolloveP - mod­

ePately sevePe - ejected and PolloveP without collision - sevePe - ejected. 

At the other extreme, the band furthest toward the right corresponds to pro­

files with collision with vehicle OP object - not sevePe - not ejected. Fig­

ure 7.3 is a copy of figure 7.2 with lines indicating the bands. The pro­

files of accidents may be ordered by a partial ordering into seven groups 

from otheP PolloveP - sevepe - ejected at one extreme to collision - not se­

vePe - not ejected at the other. 
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