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The asymptotic variance of estimators for posterior probabilities*) 

by 

**) A.W. Ambergen & W. Schaafsma 

ABSTRACT 

In this paper asymptotic variances of estimators for the posterior 

probability that an individual belongs to one of k ~ 2 populations are pre­

sented. It is assumed that a set of k prior probabilities and a p ~ 1 di­

mensional vector of scores of the individual are given. In the model the 

populations are represented by multivariate normal distributions. The case 

with the assumption of homogeneity of dispersion matrices as well as the 

case without this assumption are treated. Further we give some crude pre­

liminary proposals to deal with the general case 'k ~ 2, p ~ I' where no 

normality assumptions are made. The last part of this paper deals with a 

case from physical anthropology. 

KEY WORDS & PHRASES: estimating posterior probabilities, confidence inter­

vals for posterior probabilities 

*) This report will be submitted for publication elsewhere. 
**) Rijksuniversiteit te Groningen, Postbus 800, 9700 AV Groningen 





O. SUMMARY 

During long discussions with research workers it became clear to the 

authors that there are many diagnostic situations where the involvement of 

statistician and computer should be restricted to the computation of point 

and interval estimates for posterior probabilities. Specification of prior 

probabilities should be left to the genuine decision maker who will also 

have to bear full responsibility for the interpretation, in terms of future 

actions and decisions, of the generated confidence intervals for the pos­

terior probabilities. 

Let x E lR.p denote the vector of scores of the individual under in­

vestigation and let p1, ••• ,pk denote the corresponding prior probabilities. 

The posterior probabilities pll x'··•,Pklx have to be estimated on the basis 

of training samples from the k populations (or subpopulations) involved. In 

the first part (Section 2,3,4) we assume that x has a multivariate normal 

distribution for each of the k populations. In addition to this we shall 

sometimes postulate that homogeneity of dispersions holds. In any case it 

is easy to derive maximum likelihood estimators Rllx'···,~lx for the pos­

terior probabilities (or other asymptotically equivalent and asymptotically 
! 

efficient estimators). The limit distribution (as n + 00) of n 2 (Rtlx-ptlx) 

is used to characterize the accuracy of the estimator for the t-th pos­

terior probability (n denotes the total sample size). 

Section 2 is devoted to the case "k :?!: 2, p :?!:. I, normality and homoge­

neity of dispersions", Section 3 to "k :?!: 2, p :?!: I, normality" and Section 4 

to a comparison of the results in the sections 2 and 3. 

In the second part (Sections 5 and 6) attention is paid to some crude 

preliminary proposals to deal with the general case "k :?!: 2, p :?!: I" where 

no normality assumptions are made. The results of sections 3 and 5 are com­

pared in Section 6 in order to suggest how many observations it costs to 

drop the assumption of normality. 

The third part (Section 7) is devoted to a case from physical antro­

pology. 
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l • INTRODUCTION 

The intuitive background of our subject becomes clear if its historical 

perspective is described. Discriminant analysis originated from practical 

needs of research workers. This is obvious for Hotelling's generalized T2 

and very obvious for Fisher's contributions. Its history, like that of math­

ematical statistics at large, has been influenced by controversies concer­

ning the probability concept. Note that in broad outline three competing 

definitions exist: (1) the classical definition which is very convenient if 

games of chance are studied, (2) the frequentistic definition where proba­

bilities of events are mathematical idealizations of relative frequencies, 

(3) the subjectivistic definition where probabilities of events and also 

of statements are largely intended to describe personal degrees of belief. 

Fisher, Neyman-Pearson, Wald and many others created the classical objec­

tivistic approach to statistics by working within the framework of definition 

2. The attention was focussed on the construction of procedures and their 

comparison by means of performance characteristics which usually are func­

tions of the underlying unknown parameter 8. Examples of such functions 

are the power function in the Neyman-Pearson theory of testing statistical 

hypotheses and the risk function in Wald's theory of statistical decision 

functions. Within this objectivistic approach one may consider "weight 

functions" p(S) and construct "Bayes procedures" which minimize the corre­

sponding weighted average of e.g. the risk function. However, one usually 

refuses to regard 8 as the outcome of a random variable with known prior 

distribution, simply because this makes no sense if 8 has the character of 

a universal constant whose true value is unknown. 

Jeffreys, Savage and many others preferred the subjectivistic approach 

because there are many problem areas where the other definitions are too 

restrictive. One might think of situations where (almost) no data is avail­

able and where "opinions" have to be characterized, confronted and possibly 

reconciled. Within the subjectivistic framework there has been a tendency 

to rediscover the results of classical statistics by working with convenient 

"diffuse", "non-informative", "improper" priors. This provided new and 

deeper insight in the objectivistic approach (see Stein's work on the (in) 

admissibility of various classical procedures). 



3 

The consequences of the objectivistic approach for discriminant analysis 

were that the attention was focussed on the classification aspect. Fisher's 

discriminant functions were regarded as useful tools whose relevancy follows 

from their occurence in optimal classification procedures. WALD (1944) is 

an early attempt to deal with the obvious fact that the true densities 

f 1, •.• ,fk for the vector of scores X in the k involved populations will be 

unknown in practice. On the basis of the observation vector x0 for the in­

dividual under classification and the independent random samples 

~ 1, ••. ,Xhn from fh(h = 1, ••• ,k), the individual has to be assigned to one 
h 

of the k populations. Restricting the attention to [k = 2, fh the p.d.f. of 

Np(µh,E)], Wald, Anderson, Okamoto, Sitgreaves a.a. constructed classifica­

tion procedures and studied the corresponding misclassification probabili­

ties as function of the underlying unknown parameters (µ 1,µ 2,r), usually 

by giving asymptotic expansions. The second author has thought for a very 

long time that this work should be regarded as the core of discriminant 

analysis. He tried to contribute by deriving exact results for the univari­

ate case (see SCHAAFSMA-VAN VARK(1977) for further references). Note that 

any specification of prior probabilities and prior distributions is avoided 

in this objectivistic approach. One works with "plug-in", "maximum likeli­

hood", "minimax risk" and "invariance" considerations. 

The consequences of the subjectivistic approach for discriminant ana­

lysis were that an elegant "fully Bayesian" approach came into being, based 

on diffuse improper prior distributions for the underlying unknown parameter 

(µ 1, .•• ,µk,[) (see GEISSER (1964)). PRESS (1972) seems to prefer this ap­

proach over the objectivistic one on the basis of the simplicity of the 

results. 

Long discussions with research workers, in particular the physical­

anthropologist Van Vark, have convinced the second author that he should 

abandon his attitude to avoid the specification of the prior probabilities 

p = P(T=t) (t=l, .•• ,k) where Tis the random variable labeling the popula-
t 

tion to which the individual under investigation belongs. Note that "objec-

vistic" results, based on "plugging in", maximum likelihood", "minimax risk" 

or "invariance", lose much of their appeal if it is clear that (p 1, .•• ,pk) 
-1 -1 

is not in the neighbourhood of (k , ... ,k ). In such situations one will 

either have to study the consequences of such specifications of (p 1 •.. ,pk) 
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or one will have to adopt a Neyman-Pearson type formulation where certain 

error probabilities are controlled. Note that the prior probabilities 

p 1, ••• ,pk have a clear frequentistic interpretation if the individual under 

classification can be regarded as one from many potential individuals, pt 

denoting the relative frequency of membership of population t. The basic 

difficulty lies in the specification of these prior probabilities. In Van 

Vark's problems of diagnosing the sex of prehistoric human skeletal remains 

nobody will object if pl= Pz = ½ is taken. In other anthropological inves­

tigations one would like to take into account where and when the investigated 

individual lived. This will usually not lead to a unique choice of p 1, ... ,pk. 

One will have to study the consequences of various different specifications 

in the hope that different opinions can be reconciled in the light of the 

data. It is interesting to remark that reasonable specifications of prior 

probabilities can often be obtained on the basis of past experiences if me­

dical diagnosis problems are considered. GANESALINGAM and MCLACHLAN (1979) 

refer to a case study on haemophilia by Van der Broek, Habbema and Hermans 

where prior probabilities can be computed on the basis of family trees. This 

leads to different prior probabilities for different individuals. If the 

specification of p 1, ... ,pk causes difficulties then all conclusions should 

be formulated with respect to the introduced prior probabilities. 

Practical research workers understand very well that possible conclu­

sions may depend on the specification of p1, ... ,pk and that they, and not 

the statistician or computer, should make this specification. They usually 

are very much interested in the corresponding posterior probabilities. 

k 
(I.I) ptjx = P(T = t lxo = X) = pt ft (x) / ht phfh(x) 

(t =I, •.. ,k). Note that these probabilities are unknown parameters because 

they depend on f 1, ... ,fk. It has become connnon practice in certain circles 

to supplement the application of a crude classification procedure by com­

puting an estimate for the posterior probability of the population to which 

the individual is assigned. This estimate is regarded as the probability 

that the individual has been classified correctly. There are some difficul­

ties in this interpretation, especially because an estimate is taken for 

the true value. Other complications are that p 1, ... ,pk need not be correct 
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assumptions are made. This will lead to larger asymptotic variances (see 

Section 4). Section 5 contains some specific proposals to deal with the 

case that no normality assumptions are made. This will lead to larger asymp­

totic m.s.e. 's than in Section 3 (see Section 6). 

Physical anthropologists interested in basic concepts and applications 

are invited to continue with Section 7 before venturing into the techni­

calities of.Sections 2, ••. ,6. 

2. THE CLASSICAL CASE OF NORMALITY AND HOMOGENEITY OF DISPERSION MATRICES 

Regarding x E m.P and p1, ... ,pk as given prescribed constants, we are 

interested in estimating the posterior probabilities pl lx•··•,Pklx on the 

basis of training samples, if fh is the p.d.f. of the p-variate normal dis­

tribution Np(µh,I). Hence 8 = (µ 1, •.. ,µk,I) plays the part of the unknown 

parameter in this section. Note that 

(2. I) 

where 

(2. 2) 

Let ¾i ,···,¾n denote the h-th training sample which means that these 

random vectors a¥e independent, and with Np(µh,I) distributions. Let 

n = n 1 + ..• +~denote the total sample size. Note that ptjx is a function 

of 8 = (µ 1, ... ,µk,I) which can be estimated, e.g. by means of the maximum 

likelihood method. (Various other methods were considered in AMBERGEN­

SCHAAFSMA (1981); these methods will not be repeated here because they did 

not lead to a significant improvement over the maximum likelihood method.) 

Using the notations 

k 

and S = l 
h=I 

~ T l (x_ . - xh ) (x.. . - x_ ) 
. I -in . -ln -h. 
i= 

for the h-th sample mean and the pooled matrix of cross-products, we see 

that 
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A -1 
El= (X1., ••• ,¾_.,n S) 

is the maximum likelihood estimator for G, while 

is the maximum likelihood estimator for ptlx' where 

-2 T -1 ti = n(x-X. ) S (x-X ) x;h, t -11. t. 

The exact distribution of the estimator Rtlx around the true value ptlx can 

be studied by means of simulation experiments. Approximations based on the 

following limit theorem are reliable if the sample sizes are not smaller 

than, say 30 and if they are based on the idea that Rtlx is approximately 

normally distributed with expectation ptl and variance n- 1(~ r~) • The 
X tt 

reliability of the approximations follows from Ambergen's simulation ex-

periments, see AMBERGEN-SCHAAFSMA (1982). 

-1 
THEOREM 2.1. If n + 00 and °b n + bh > 0 (h=l, ••• ,k), then 

(2.3) L n ½ (R. I x - p • Ix) + Nk ( o, ~ r ~) 

I T T 
where R_ Ix= (R1 Ix' ••• ,~ x) , p. Ix= (p 1 Ix, ••• , pklx) and r is determined 
by 

-1 2 4 
rh,h = 4 bh tix; h,h + 2 ti ·h h x, , 

(2.4) 
4 

r = 2 ti (h=rt) h, t x; h, t 

while~ is determined by 

~h,h = ½ 01 h I x (1-ph Ix) 

(2.5) 
~ht = I 

- 2 Phlx Ptlx (h;'t) , 
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PROOF. See AMBERGEN-SCHAAFSMA (1982) which generalized previous results in 
2 2 SCHAAFSMA-VAN VARK (1977) for "k = 2, p =I, a 1 = a2 11 and SCHAAFSMA-

VAN VAR.K (1979) for "k = 2, p ;:: I, r 1 = r2 to the case k > 2. 

3. NORMALITY BUT NOT NECESSARILY HOMOGENEITY OF DISPERSION MATRICES 

Regarding x E :m.P and p1, ... ,pk as given prescribed constants, we are now 

interested in estimating pl Ix, •.• ,Pklx if fh is the p.d.f. of Np(µh,Eh). 

Hence 0 = (µ 1, ••• ,µk ,[I, ... ,Ek) will now play the part of the unknown para­

meter and p I is determined by (I.I) where 
t X 

(3. I) 

with 

(3. 2) 

Again using the maximum likelihood method, we obtain 

where 

Hence the maximum likelihood estimators 

~2 -1 
11 = n. (x-X. ) S (x-X. ) x;h h --h. h -n. 

and 

(3. 3) 

are immediately obtained. 



LEMMA 3. I. If 1,i + 00 , then 

(3.4) L 

PROOF. See AMBERGEN-SCHAAFSMA (1982). 

-1 
THEOREM 3. 2. If n + 00 and 1,i n + bh > O(h=I, ••• ,k), then 

(3.5) 
1 

L n 2 (R I -p I)+ Nk(O,'¥0'!') 
• X • X 

where R.lx'P.lx 2 

-1 
(!:,4 (3. 6) 9h h = 2 bh + p) , x;h 

9h t = 0 (hft) , 
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PROOF. This is an innnediate consequence of the lennna and (3.3). It is of 

some interest to remark that we had expected that the case of this section 

would be more difficult than that of Section 2. In fact it is easier be­

cause of the independence of the density estimators £1, ••• ,fk. 

4. WHAT DOES IT COST TO DROP THE HOMOGENEITY ASSUMPTION? 

It follows from general arguments that the estimators of Section 2 are bet­

ter than those of Section 3 if the homogeneity assumptions of Section 2 

are satisfied. Hence E1 = ••• =Ek= E implies that '!'(0-f)'l' is nonnegative 

definite. Mathematical verification of this result would provide a check 

on the validity of (2.3) and (3.5). This verification is not very easy 

because 0 - r is not always nonnegative definite. Up to now we succeeded 

only in verifying '!'(0 - r) 'l' ~ 0 for k = 2 (Case I provides an example where 

equality holds, this is an indication of the complications which appear if 

one tries to give a general proof). 

Practical research workers will wonder how large the approximate stan-
-1 ! _! ½ 

dard deviations n z{('l' r 'l') t, t}2 and n 2 { ('l' 0 'l') t, t} of Rt Ix will be. Is 

the second approximate standard deviation much larger than the first one? 
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How many observations does "not knowing I: 1 = ••• = I:k" cost? What happens 

if the sample sizes are modified? What if the dimensionality pis increased, 

xis changed, or p1, •.• pk are modified? In practice one will not know what 

the true values of the underlying unknown parameters are. One will have to 

estimate the approximate standard deviations. However, if one needs an in­

tuitive feeling for the magnitude of the standard deviations, then it suf­

fices to elaborate on a number of theoretical cases. The following cases 

were selected in order to suggest possible answers to the above-mentioned 

questions. 
T T 

Case I. Suppose p = 2, k = 2,n1 = n2 = ½n,µ 1 == (1,0), µ2 = (-1,0), 
T I:= r 2, x = (0,1) (the reader should draw a picture and notice that x-µ 1 

is perpendicular to x - µ2), pl= p2 =½.Note that the consequences of 

drawing training samples are studied without actually drawing them. The 

above-mentioned specffications imply P1 Ix= P2 lx = ½, b 1 = b 2 ; ½, 

t,.. 2 = t,.. 2 = 2, t,.. ·h = o (h + t), rhh = 4 x 2 x 2 + 2 x 2 = 24 = x;h x;h,h x, ,t 
2 x 2 x (22 +2) = eh h' rh t = eh t = O(h=j=t). Hence r = e and for this 

' ' ' very special situation both estimators are asymptotically equivalent. It 

follows from 

r 24 a ,J r 1 -1 ] 
L O 24 L -1 I 

that the approximate standard deviations· 
_! -1 ! _! 

n 2 ( 64 48) 2 = . 8 7 N 2 • If n I is n2 = 25, 

of all RI 's are 
t X I 

then we obtain .87(50)- 2 = .12 for 

the approximate standard deviation. This considerable in comparison with the 

estimated true values P1 Ix= P2 1x = .50. 
-1 T 

Case 2. Suppose p = 2, k = 4, n 1 = n2 = n3 = n4 = 4 n, µl = (1,0) , 
T T T T µ2 = (O, I) , µ3 = (-1,0) , µ 4 = (0,-1) , I: = r2 and x = (O,O) (the reader 

should draw a picture and notice that everything has been arranged nicely 

around the origin to facilitate computations). With p1 = •.• =pk= .25 we 

obtain ptlx = .25 for the posterior probabilities (t=l, ..• ,4) because 
,2 2 2 = 2 ·1 2 = u = t,.. , 2 3 = 1. Note that t,.. , 1 3 t,.. • 2 4 = -1 whi et,.. . 1 2 x;h,h x, , 2 x, , x, , x, , 
t,..2 = t,..2 2 3 = t,.. ·3 4 = 0. Hence x;l,4 x; , x, , 
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3 -I -I -I 18 0 2 0 24 0 0 0 

32-I -I 3 -I -I 
,1 0 18 0 2 

0 
0 24 0 0 

'l' = = = , 

-I -I 3 -1 2 0 18 0 0 0 24 0 

-I -I -I -3 0 2 0 18 0 0 0 24 

Notice that 0 - 1 ~ 0 and hence 'l' (0 -1) 'l' ~ 0 in this case. If 'l' 1 'l' and 

'l' 0 'l' are computed, then the approximate standard deviations 

-1 I -1 _1 l -1 
n 2{('1'1'1') }2 = .45 n 2 , n 2 { 'l' 0 'l' )t t}2 = .53 n 2 

t,t , 

are obtained for the estimators RI . Note that the second standard deviation 
t X 

is a bit less than 1.2 times as large as the first one: it costs about 40% of 

the observations if the homogeneity assumption r 1 = ... = r 4 is removed (the 

sample sizes should be about 1.4 times as large if the same standard deviation 

is required). If n 1 = ... = n4 = 25, then n = 100 and the respective approx­

imate standard deviations .045 and .053 are considerable in comparison with 

the true values .25 of the posterior probabilities (a comparison with Case I 

requires that the same observation vector x = (O,O)T is considered). 

Case 3. We modify Case 2 by taking n 1 :n2 : n3 : n4 = I : 2 : 3 : 4 

(b 1 = .10, b2 = .20, b3 = .30, b4 = .40) and we leave the other specifications 
T T T unchanged. Hence 

T 
p = 2, k = 4, µ 1 = (1,0) , µ 2 = (O,I) , µ 3 = (-1,0) , µ 4 = 

T (0,-1) , E = 12 , 

we obtain 

i = 

X = (0,0) , pl = 

0 

2 

0 

0 2 

22 0 

0 

2 

0 15.33 0 

2 0 12 

= 

0 

p4 = .25, 'l' as in Case 2. For I and 

60 0 0 ~1 0 30 0 
= 

0 0 20 0 I 

I 
I 

0 0 0 15 j 

Notice that 0 - 1 ~ 0 and hence '1'(0 -1) 'l' 2: 0 1.n this case. Elaborating on 

'l' 1 'l' we obtained the approximate standard deviations 

fort 

_1 l -1 
n 2{'1'1'1') }2 = .64n 2 

tt 

-1 -1 -1 
. 51 n 2 • 45 n 2 • 42 n 2 

I, 2, 3, 4 respectively. The average of these values 1.s larger than 

0 
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-1 -1 
the value .45 n 2 1.n Case 2. The smallest value .42 n 2 1.s smaller than in 

Case 2 and this is caused by the large value of b4 . Elaborating on 1 0 1 we 

obtained approximate standard deviations for the RI 's which are again about 
t X 

1.2 times as large as for the estimators based on the homogeneity assumptions. 

Case 4. We modify Case 2 by increasing the dimensionality p. It is interest­

ing from a theoretical point of view to do this by introducing variables 

which contain no discrimination information. In that case one will find lar­

ger approximate standard deviations and this may lead to new insight in the 

problem of selecting variables in discriminant analysis. 
-1 T 

We take p = 4, k = 4, n 1 = n2 = n3 = n4 = 4 n,µ 1 = (1,0,0,0) , 
T T T T 

µ 2 = (O,I,O,O) , µ 3 = (-1,0,0,0) , µ4 = (0,-1,0,0) , L = r4 ,x = (O,O,x3 ,x4) 

and p 1 = ... = p 4 = .25. Note that any specification of x3 ,x4 leads to 
2 2 

~x;l = .•. = ~x; 4 and P1 Ix= .•• = p4 1x = .25. If we take x3 = x4 = O then 1,1 

and 8 are as in Case 2. If we take x3 = x4 = 1 , then the matrix of inner-·prod-
2 T 

ucts ti h = (x-µh) (x-µ ) (h,t =I, ••. ,4) becomes 
x; , t t 

-1 0 -1 0 0 r 3 2 2 l 
0 -1 0 -1 0 

-l 
2 3 2 

:J 0 2 3 

0 2 2 

Hence 1 1.S still as in Case 2 but 

66 8 2 8 104 0 0 0 

i 8 66 8 2 
0 

0 104 0 0 = = 
2 8 66 8 0 0 104 0 

8 2 8 66 0 0 0 104 

Notice that again there is no question about 0 - 1 ~ 0. Elaborating on 111 
-1 

we obtained the approximate standard deviations . 84 n 2 for the estimators 

R I of Section 2. Computing the diagonal elements of 1 0 1 we obtain the 
t X -1 

approximate standard deviations I.IO n 2 for the estimators R I of Section 
t X 

3. For n 1 = n2 = n3 = n4 = 25 we now obtain the respective approximate stan-

dard deviations .084 and .110 for the estimators R I . The values are very 
t X 

large with respect to the estimated true values p I = .25. Not knowing that 
t X 
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2 
E1 = ••• = E4 now costs about (110/84) - I= 72% of. the observations. This 

is not unexpected because increasing the dimensionality without supplying 

relevant extra information causes extra confusion, especially if E1 = E4 
cannot be postulated. 

Case 5. We modify Case 2 by breaking the symmetry such that the posterior 

probabilities differ from the prior ones. The specifications p = 2, k = 4, 
-I T T T T 

n 1 = n2 = n3 = n4 = 4 n,µ 1 = (1,0), µ2 = (0,1), µ3 = (-1,0) µ4 = (0,-1) 
T and E = 12 are left unchanged but x = (1,0) is taken such that the first 

posterior probability pllx2 (again p 1 = .T. = p4 = .25) is close to .50. The 

matrix of inner-products t. = (x-µh) (x-µ) (h,t=l, ... ,4) becomes 
x;h,t t 

0 0 [ ~ 2 ] 0 0 0 0 

-I -I 0 = 0 2 2 0 

2 0 0 2 4 2 

0 0 2 2 

with the consequence that 

0 -1 -2 -I 
PI Ix P21x P3lx P4lx = e e e e 

and hence 

Pl Ix = .53 P2lx = .20 P3lx = .07 P4lx = .20 

The matrices~. 1 and 0 become 

.25 - • 11 -.04 - . I I 0 0 0 0 16 0 0 0 

- . I I • I 6 -.01 -.04 0 40 8 0 0 48 0 0 
½ 'i = ,0 = ~ = 

-.04 -.01 .07 -.01 0 8 96 8 0 0 144 0 

- . I 1 -.04 -.01 . 16 0 0 8 40 0 0 0 48 

Notice that again there is no question about 0 - 1 ~ 0. If we compute~ 1 ~ 
-1 

then we obtain the respective approximate standard deviations .56 n 2 , 

-1 -1 -1 
.51 n 2 , .34 n 2 and .51 n 2 for the estimators R I (t = 1, ..• ,4) of Section 

t X 

2 and based on the assumption of homogeneity of dispersion matrices. Notice 
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that the largest posterior probability Pljx = .53 has an estimator Rljx with 

approximate standard deviation .06 if n 1 = n2 = n3 = n4 = 25, this accuracy 

is quite satisfactory in our opinion. If we compute~ 0 ~, then we obtain the 
_1 _1 _1 -1 

approximate standard deviations .77 n 2 , .62 n 2 , .43 n 2 , .62 n 2 

REMARK. It would be interesting to combine various modifications of Case 2 

and to see what happens if the prior probabilities are changed. Modifications 

of the latter kind have a considerable effect on the parameters to be esti­

mated: the "bias" which appears if wrong prior probabilities are used may be 

much larger than the approximate standard deviations of the estimators 

RI for p I • Conclusions should always be formulated with respect to the 
t X t X 

introduced prior probabilities. 

5. DROPPING THE ASSUMPTION OF NORMALITY 

Regarding x E JRP and p 1, •.• , pk as given prescribed constants we shall 

now try to estimate the posterior probabilities (I.I) if f 1, ••• ,fk are arbi­

trary continuous densities or more generally if f 1, ..• ,fk are nice Radon­

Nikodym derivatives with respect to some appropriate a-finite measure A on 

JRP. Such generalisations are needed if the measurement vector has discrete 

components. 

Two natural approaches present themselves: (I) adapt the theory of non­

parametric density estimation, (2) see what happens if the theory of Section 

3 is applied. 

With respect to Approach (1). 

Since ROSENBLATT (1956) started the subject, many contributions were 

made. A recent review is BEAN-TSOKOS (1980). It is emphasized that the pos­

terior probabilities (I.I) depend only upon the values of the densities in 

the particular point x. This implies that results based on the integrated 

mean square error as performance characteristic are not useful. Another 

complication is that the mean square error loses much of its appeal if one 

wants to construct confidence intervals instead of estimators. This makes 

clear why we have to adapt the existing theory to our particular needs. 

We restrict the attention to Rosenblatt's original idea to use a window 



15 

estimator (Parzen's kernel estimators are ignored because we want to make 

one simple definite proposal to construct confidence intervals for posterior 

probabilities). Let U denote some neighbourhood of x. The value fh(x) of the 

density in xis approximately equal to ph/A (U) where A(U) is the measure of 

U, and ph = fu fh dA = P(¾i € U). Hence the posterior probability ptlx is 

approximately equal to 

(5.2) 
k 

= pt pt/ I Ph Ph 
h=1 

The natural estimators for ph and Ptlx are 

(5.3) 

and the central limit theorem for relative frequencies implies that the fol­

lowing results hold if U is a fixed neighbourhood of x. 

LEMMA 5. 1. If ~ -+ 00 , then 

(5.4) 

-1 
THEOREM 5.2. If n-+ 00 and~ n -+ bh > 0 (h=1, ••. ,k), then 

(5.5) 

where 'l' is determined by (2.5) and I:!,. by 

(5.6) l:!,.h t = 0 (h # t) , 

CONCLUSION. We propose to use 

(5. 7) 1.96 
-1 n 2 

! 
{("l'l:!,.'l')t,t}2 

as a 95% confidence interval, both for Ptlx and for Ptlx. 

tained by plugging in estimates for the unknown parameters. 

.... .... 
1¥ and I:!,. are ob-

The basic problem is how to choose the neighbourhood U. Two conflicting 

aspects can be distinguished: ( 1) U should be "small" because this guarantees 



16 

that ph/A(U) is close to fh(x) such that one may hope that ptlx is close to 

the true posterior probability ptlx (notice that difficulties appear if all 

ph's are small), (2) U should not be "small" because the standard deviations 

of the estimators get large if the probabilities (5. 1) are. small. Notice that 

6h,h in (5.6) explodes if ph + 0. Usually an appropriate choice of U cannot 

be made without looking at the data and the sample sizes. This data depen­

dence invalidates not only the proofs of Lemma (5.1) and Theorem (5.2) but 

even their formulation, because the normal distributions in the right hand 

sides of (5.4) and (5.5) will depend on the sample sizes if U is shrinked as 

n + 00 , which is quite natural. Hence some mathematical plasterwork is needed 

to prove that 

(5.8) lim 
n+ oo 

P(ptlx E interval (5.7)) = .95 

holds for the sequence of data-dependent neighbourhoods U which will be pro­

posed. Mathematical theory for choosing U is relegated to the appendix be­

cause this theory is not completely relevant since it focusses the attention 

on constructing confidence intervals for a density instead of for the poste­

rior probabilities. However, the following procedure is reconnnended. 

Step 1. We mentioned that two conflicting aspects are involved 1n the choice 

of U. It is intuitively clear that reconciliation in the light of the data 

appears if the sample sizes are sufficiently large. However, if pis not 

small and n = n 1 + ••• +~is not large then it will not be possible to 

keep bias (aspect 1) and variance (aspect 2) within reasonable bounds. The 

remark following (8.15) suggests that n is certainly sufficiently large if 

the strong requirement (8.16) is satisfied and that lousy results have to be 

expected if even the weak requirement (8.17) is not satisfied. In the latter 

case one should try to reduce the dimension p or increase the sample sizes. 

Step 2. Compute the outcomes of 

(5.9) X = n-1 l l x_. 
• • --hi 

in order to characterize the general situation of the data. Using the total 

sample covariance matrix M, the space ]RP is endowed with the inner-product 



t -I 1 
(y,z)m = y M z, norm II yllM = {(y,y)M}2 and metric dM(y,z) = II y - zU M. 

Step 3. Compute the Mahalanobis distances 

(5. 10) d 

and 

(5. I I) 

(i=I, ... ,~; h=l, ... ,k). 

Step 4. Compute 

(5.12) 

and r = r(p,d,n) by requiring 

(5. 13) 
2 2 

P(x ·d2 :: r ) p, - = P(/ 
p 

2 
< r (p,O,n)) 

17 

where x2 (x2 2) has (non-central) chi-square distribution with p degrees of 
p p;d 2 

freedom (and non-centrality parameter d ). Next the neighbourhood of xis 

defined by 

(5. 14) U = {y E m_P ; dM (y,x) < r(p,d,n)} 

The radius r(p,O,n) of ball U in case x = X has been determined such that 

the bias of a density estimator satisfies certain requirements. The extension 

(5.13) is such that r(p,d,n) is an increasing function of d= ~(x,x,_). The 

rationale behind (5.13) is that we want to avoid the situation that all p 's 
h 

are small because then (5.2) is very unstable. 

Step 5. Continue along the lines of (5.3), •.. ,(5.7) and note that (5.11) is 

exploited in 

# {i ~i EU}=# {i; dM(x,Xhi) < r(p,d,n)} 
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With respect to Approach (2). 

If one applies Section 3 to situations with non-normal densities, then 

a non-vanishing bias will appear: the procedures of Section 3 are far from 

"robust". Note that a similar behaviour would be displayed by the confidence 

interval (5.7) if U is kept fixed. By shrinking U as n • 00 we created the 

theoretic possibility to satisfy (5.8). This possibility does not exist if 

Section 3 is to be applied. 

In practical situations the sample sizes are essentially fixed and one 

should not jump to the conclusion that (5.7) based on (5.14) is to be pre­

ferred to the interval based on Section 3, if aberrations from normality are 

evident. In fact it is an urgent and very difficult problem to draw reason­

able dividing-lines between (I) the applications where Section 2 is prefera­

ble, (2) those where Section 3 has to be recommended and (3) those where the 

nonparametric approach is to be chosen. It is obvious that the situation of 

these dividing-lines should depend on the sample sizes. If these are small 

then one will not worry much about the bias because the estimated standard 

deviations will be large. If the sample sizes are very small then one will 

prefer the approach of Section 2. If sample sizes are increased then prefer­

ence shifts towards Section 3 and the nonparametric approach. Hence asymp­

totic arguments cannot be conclusive. In fact the subject of this whole paper 

becomes irrelevant if sample sizes get very large: the genuine decision 

maker will not worry about estimated standard deviations and a possible bias 

if these are no more than a few per cent. His main concern will then be re­

garding the uncertainties in his prior probabilities p 1, ••• ,pk and, more 

fundamentally, the specification of his decision situation: is it allowed 

to remain undecided and what is an appropriate loss-function? 

Focussing on the reliability of the procedures of Section 3, the fol­

lowing asymptotic considerations are useful. Assuming that µh = EXhi and 
T 

Ih = E(~i-µh)(~i-µh) exist, it follows from the law of large numbers that 

~- • µh, 

-I ~2 t,,,2 ~ 
n sh • Ih' I':. • , fh(x) • fh(x) and 

x;h x,h 

k 
(5.15) Rtjx + pt ft (x) I L Ph fh (x) = Ptjx if n + co 

h=I 



Here 
6.2 
x;h 

""2 ... 
6.x;h, fh(x) and Rtlx ar~ the 

is de~ined in (3.2) and fh(x) 

estimators defined in Section 3 while 

denotes the right-hand side of (3.1). 
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Note that fh is some normal approximation for the true density fh. Normality 

of f 1, ••. ,fk implies that ptlx coincides with the true posterior probability 

(I. I). Deviations from normality will usually lead to pt Ix =f. Pt Ix . In such 

cases, (5.15) shows that the mid-point Rtlx of the confidence interval of 

Section 3 converges towards the wrong value p I . The length tends to O and 
t X 

the true value p I 
t X 

is contained in its confidence interval with probability· 

tending to 0. This is the price to be paid if one works with a wrong model. 

It has been made clear before that one should be willing to pay this price 

if the asymptotic bias ptlx - ptlx is only a few per cent, and also if it 

is larger provided that it is small in comparision with the standard devia­

tion of the corresponding estimator. 

6. WHAT DOES IT COST TO DROP THE NORMALITY ASSUMPTION? 

Comparing the estimators of Section 3 with those of Section 5 under the 

assumption of normality, one will expect that those of Section 3 will be best 

"on the average". This is not always true because if xis such that prior 

and posterior probabilities coincide then the m.s.e. of the estimator of 

Section 5 will tend to O if the radius r tends to infinity (we ignore the 

restrictions which were recommended in Section 5 because we only want to sug­

gest that there are no general arguments why the estimators of Section 3 will 

always be better than those of Section 5). 

In Section 4 we focussed on the question how many observations it costs 

if the assumption E1= ... =Ekis not used whereas it holds. Now we make no 

assumptions of this kind but we focus on the question how many observations 

it costs if the assumption of normality is not used whereas it holds. The 

answer depends on the proposal (5.11) which requires that for each value of 

n new computations are needed to determine the radius r(p,d,n). We restrict 

the attention to "Case I with n1 = n2 = 50" and "Case 2 with n 1 = ••• = n4 = 

25", the cases being specified in Section 4. 

Case I with n = 100. 

The combined sample will look like a sample from the mixture 
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!N2 (µ 1,r2) + !N2 (µ 2,r2) which has expectation O and covariance matrix(;~) 

w~th the consequence that in (5.9) x .. ~(~)and M ~ (;~)so that 1 

dM(x,x .• ) ~ 1. Specification of p = 2 and n = 100 gives r(2,0,100) = .50 so 

that r(2,l,100) = .63 and ph = P(dm(Xhi'x) ~ r(p,d,n)) = .10. Substituting 

ph = .10 into (5.6) gives ~h,h = 88.9. This value should be compared with 

ee,h = 24 obtained in Section 4. The approximate standard deviation in the 

non-parametric case will be 1.92 times as large as when normality is assumed 
_1 

and we get that the standard deviation is 1.674 n 2 • With n = 100 this gives 

.1674 which value should be compared with the .087 of Section 4. Note that 

one needs 3.7 times as many observations in the non-parametric approach to 

get the same accuracy as in the case with the assumption of normality but 

without homogeneity of covariances. The above-mentioned standard deviation 

of . 1674 means that one may find point estimates like .80 for a posterior 

probability of p 1 Ix= .50. It is obviously of the utmost importance that such 

inaccurate estimates are equipped with a standard deviation. The genuine 

decision maker's action may be different if he hears that p 1 Ix= .80 or if 

he hears that p 1 Ix= .80 ~ .17 or even pllx E [.47,1.0] by the use of an 

approximate 95% confidence interval. 

Case 2 with n = 100. 

4 
In this case the combined sample looks like a sample from! hgl N2(µh,I 2) 

which has expectation(~) and covariance matrix (3/2)12 . Now we have x = 0 

so that d = 0 and r(2,0,IOO) = .497. Next we have to determine 

ph = P(dM(¾i,x) ~ .497) = P(2/3 Xz~I ~ .497 2) = .II. Substituting into (5.7) 

gives ~h,h = 129. This value should be compared with eh,h = 2~ 1in Section 4 

and it results in an approximate standard deviation of 1.23 n 2 which is 
-1 

2.32 times as large as the .53 n 2 in the case of normality without the ho-

mogeneity of covariances. For n = 100 these standard deviations are .123 

resp .. 053. So we see that we may not expect that the estimates of the pos­

terior probabilities would be very reliable. 

7. APPLICATIONS TO PHYSICAL ANTHROPOLOGY 

We like to continue the non-technical discussions of Section I because 

such discussions can be very informative, they at least were very revealing 
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to us. 

The idea that posterior probabilities should be equipped with standard 

deviations appeared during discussions of the second author with Van Vark 

who is involved in the physical evolution of our own kind. This subject like 

physical anthropology at large, goes beyond the group membership discus­

sions where posterior probabilities may be useful. The most important appli­

cations of our theory will be sought in the area of medical diagnoses where 

such discussions are central. Nevertheless group membership is important in 

physical anthropology and we shall suggest the implications of our theory, 

or rather those of the way of thinking of classical statisticians, for ac­

tual anthropological practice by elaborating on the following case which 

was suggested to us by Van Vark. 

It was in 1940 that W.E. Horton, while digging for guano at Border Cave 

(near the boundary between Swaziland and Zululand, South-Africa) found frag­

ments of a human cranium. More of the adult cranium was found in his dump 

during 1941-42. It was supposed on the basis of circumstantial evidence, e.g. 

artifacts, that the cranium has belonged to a Middle Stone Age hominid. The 

fragments of the cranium have been set in a plaster reconstruction by 

A.R. Hughes. Rightmire took p = 11 measurements on the original fossil and 

employed multiple discriminant analysis, i.e. canonical variates, to compare 

Border Cave with crania drawn from k = 8 recent African populations (Bushman 

males and females, Hottentot males, Zulu males and females, Sotho males and 

females and Venda males). When all discriminants are considered, Border Cave 

lies closest to the Hottentot centroid and is contained within the .05 limits 

of this distribution. This assignment should not be interpreted in a strict 

sense to exclude it from all Bushman populations. These and many more in­

teresting sentences can be found in Rightmire (1979) which moreover contains 

comments by various interested scholars from different disciplines. CAMPBELL 

(1980) put the statistical comments in perspective and made useful sugges­

tions which led to RIGHTMIRE (1981). Though we welcome the progress made by 

concentrating on typicality indices (from the F distribution) and the pos­

terior probabilities (based on multivariate t densities as suggested by the 

semi-Bayesian approach), we are not completely satisfied because we prefer 

a classical statistical approach where these indices and probabilities are 

regarded as estimates for basic unknown parameters, estimates which should 
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be equipped with standard deviations if not replaced by confidence intervals. 

Our evaluation of Border Cave is based on a comparison with crania drawn 

from k = 8 recent African populations (see Table I). We used samples from 

Van Vark's data bank. It is a pity that Hottentots were not available because 

Rightmire had concluded that Border Cave is closest to the Hottentot cen­

troid. The figures in Table I were obtained by converting those of RIGHTMIRE 

(1979) Table 2 into Howell's measurement system. 

The reader is invited to make univariate comparisons by looking at 

Table I and the column of standard deviations in Table 2 (Student's 2 sample 

test is the correct tool). Rightmire's Table 2 shows that Hottentot males 

and Bushman males are very similar so that we do not worry much about the 

missing Hottentots. It is clear from our Table I that most Border Cave scores 

are too large to fit one of the samples. Border Cave is not very "typical" 

for one of the 8 populations involved, in fact it looks rather "atypical". 

Hence prior and posterior probabilities should be regarded with suspicion 

because they are based on the assumption that Border Cave has randomly been 

drawn from one of the k populations involved. This complication deepened our 

insight. In fact we are grateful that we have chosen Border Cave for illus­

trative purposes and not some standard example from the area of medical diag­

nosis or anthropological sex-diagnosis. Physical anthropology has always 

been rich in motivating statisticians. We believe that the basic reason for 

this phenomenon is that sample sizes etc. are essentially limited in anthro­

pology. In many other areas of application one can increase sample sizes 

easily and the interest in what can be proved on the basis of available data 

is much less tense. It is pertinent to anthropological discussions that un­

certainties are expressed as clearly as possible. Anthropologists are keen 

on systematic errors, measurement errors, statistical errors, etc. They 

are always aware of the fact that population parameters are unknown and are 

insufficiently revealed by the available data which cannot be extended as 

easily as in experimental sciences. Missing data problems in anthropology 

are not caused by lazy or careless experimenters but by the true nature of 

the problem. It makes no sense to ignore Border Cave because Horton should 

have been more careful. 

The next step in evaluating Border Cave is to take into account the 

multivariate character of the data, e.g. by computing Mahalanobis distances 
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and canonical variates and by performing Hotelling tests instead of Student 

tests. Table 3 presents some of our results. Note that ;;;h,h was defined in 

Section 2 and ~;;h in Section 3. The null-hypothesis¾ can be tested that 

Border Cave is from the same population as the h'th sample by referring the 

Hotelling T2 statistic 

( 7. 1 ) -1 -1 p-1 ~2 n. (n-k-p+1)n (n. +1) o n n x;h,h 

to the F(p,n-k-p+1) distribution if normality is postulated together with 

homogeneity of covariances (see Section 2 and RAO (1965) 8.b.2.XII) and by 

testing 

(7.2) 
-1 -1 -2 

(~-p)(~+ 1) p ~x;h 

in the F(p,~-p) distribution if normality is postulated but no assumptions 

are made concerning the covariances (if one tries to verify that (7.1) and 

(7.2) coincide if k = 2 and n = ~ + 1 then one should notice that 

n 62 = n ; 2 : the m.l.estimators of the sections 2 and 3 are different h x;h,h x;h 
because the underlying models differ). 

Of course it is informative to compute the probability that the observed 

outcome is exceeded. These F-probabilities can be found in Table 3 and are 

called "typicality probabilities" in the recent publications of Campbell and 

Rightmire. Note that all these F-probabilities are smaller than .05 which 

means that Border Cave is significantly atypical at the 5% level for all 

recent African populations considered. This is in perfect agreement with ex­

pectations based on the earlier univariate comparisons. 

We would like to add the following idea. The above mentioned typicality 

probabilities measure the typicality of Border Cave with respect to the sample 

from population h. If anything should be called the typicality of Border Cave 

with respect to population h, then this should be the unknown parameter 

(7. 3) 

where G has the x2 (p) distribution. This entails the problem to construct a 

confidence interoal for the typicality probability ah(x) of Border Cave with 



respect to population H~ The re'qui:red ·c:'c:rr~fiden~e i.riter~al is ea~iiy obtain­

ed by transforming the 2cinfi.dence interva'.l f6r the unknown p~rameter (2.2), 

if I: = 
I 

= tk is postulated, or (3."3) of homogeneityof covariances is not 

required. Now Xis regarded as a prescri.hed constant arid riot as a random 

drawing as in the theory behind (7.1) and (7.2). An exact codfidence 'fnter.:_ 
2 

val for 11 ·h h, under the assumptions of Section 2, follows from the dis-
x, ' 

tributional result that 

(7. 4}. ~(n-k-'-'p+ I) 
-1 

n .-1 62 
p x;h,h 

has the noncentral F distribution with p and n - k - p + I d.f. 1 s and non­

centrality parameter nh 112 h h (see e.g. RAO (1965) 8.b.2.XII). In practice 
x; ' 

one might content oneself with approximate results based o'n the unbiasedness 

of 

(7.5) 
· . -I -J ~.z. -I 

(n-k-p- I ) · n · 11 · - n. p 
x;h,h n 

as ari estimator for 11 2 a.nd the corresponding variance 
x;h,h 

(7. 6) (n-k-p-3)-J {2 114 + 4(n-k-l)n:-l 11x2 ·h··h + 2p(n-k-l)r{."'"2 }. 
x;h,h h , , ~ 

We applied this approach to Border Cave and Zulus. Starting from 

~ . 3 3 = 6.66 we obtained the apprbximate outcom~"s 42 and 13 for (7.5) and 
x, ' 

(7.6) with the consequence that [35,49] is an approximate confidence in:terval 

for 112 . 3 3 ; Converting this by means of (7.3) delivers a confidence interval 
x, ' 

for a.3 (x) "left of everythingu. This makes very clear that Border Cave is 

very atypical for the Zulu population, at least if t 1 = ,;. Ek is postulat-

ecL 
. . . 

If the assumptions of Section 2 · are weakened to those of Se'cd.on 3, then 

the uncertainty is increased considerably because I:h·has to be estimated on 

the basis of sample h only. Instead of (7.4) we now obtain that 

(7. 7) 

has the noncentral F(p;¾-p;nh 11;;h) distribution and that 
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(7.8) 
-1 ~2 - -1 

(nh-p-2)¾ x;h nh p 

is an unbiased estimator for ~2 
x;h 

with variance 

(7.9) -I A4 -1 A2 -2 (n,-p-4) {2 Ll + 4 (n -2)n, Ll + 2p (n, -2)n, } 
n x;h h n x;h n n 

-Applying this approach to Border Cave and Zulus we obtain from~ = 6.14 in 
x;3 

Table 3 and¾= 55, p = II that (7.8) and (7.9) are approximately equal to 

28.5 and 5.6. Hence [23.7,33.3] is an approximate confidence interval for 

~;; 3 • Conversion by means of Xii delivers [.0005,.02] as approximate confi­

dence interval for the typicality probability (7.3) of Border Cave with res­

pect to the population of Zulus. The impression made by this result differs 

from that made by the F-probability in Table 3 though a common feature is 

that everything is at the left of .05: whichever way we turn, Border Cave 

is certainly not random drawing from the population of Zulus. 

The next step in evaluating Border Cave is to compute approximate con­

fidence intervals for posterior probabilities because (I) RIGHTMIRE (1981) 

computed similar estimates, (2) we like to illustrate our theory. It is ob­

vious that these computations are not very relevant because F-tests and con­

fidence intervals for typicality probabilities show that Border Cave cannot 

be regarded as a random drawing from one of the populations involved. Results 

of the computations are presented in Table 3. The enormous standard devia­

tions for Bushman males and Zulu males show that if Border Ca:ve were known 

to be Bushman, Zulu, Dogon or Teita, then it will either be a Bushman male 

or a Zulu male. It is impossible to discriminate between these two possibil­

ities. 

Our final step in evaluating Border Cave is to conclude from Border 

Cave's atypicality that no interpretations should be based on the confidence 

intervals for the posterior probabilities. One should rather reexamine 

Rightmire's original conclusion that Border Cave lies closest to the Hotten­

tot centroid. His conclusion refers to the centroid of the Hottentot sample. 

It seems very relevant to us to pose questions of the following kind. Does 

sufficient evidence exist for the statement that the Border Cave specimen 

is closer to the Hottentot population than to e.g. that of Teita males? The 

underlying concept of distance requires that E1 = ... =Ek is postulated. 
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We become interested in the testing problem where the null-hypothesis 

H: 6 = 6 x;l,l x;7,7 

is to be tested that "the triangle with apex x (=Border Cave) and other ver­

tices µ 1(=Bushman males~ Hottentot males) and µ7 (=Teita males) has equal 

legs". Similar problems (with E known) were met with in Van Vark's research. 

The reader should notice that testing His an extremely complicated affair. 

We were not able to develop satisfactory exact theory. So we took refuge in 

asymptotic theory. Instead of reporting the corresponding results we content 

ourselves, and hopefully the reader by using the following crude approach. 

In (7.5) and (7.6) we learned how to construct an approximate confidence in-
2 

terval for 6 ·h h" It is true that certain dependencies are hidden behind 
x, • 

the intervals for h = I (Bushman males) and h = 7 (Teita males). The above-

mentioned asymptotic theory accounts for these dependencies. However, if ap­

proximate confidence intervals are available for 62 . 1 1 and 62 _7 7 then the 
A x, ' x, , 

interpretation will be clear. Starting from 6 ·I 1 = 6.48 (Z .7 7 = 7.38) 
x, , x, , 

we obtained the approximate outcomes 39 and 13 (52 and 20) for (7.5) and 

(7.6) with the 
2 

val for 6 ·I 1 x, ' 

consequence that [32,46] is an approximate confidence inter-
2 

(and [43,61] for 6x. 7 7). These crude computations suggest - , , -
that the difference between 6 ·I 1 = 6.48 and 6 . 7 7 = 7.38 is on the verge 

x, • x, ' 
of being significant. The Border Cave specimen is closer to Bushman males 

than to Bushman females, Dagon females and Teita females. It is very likely 

that Border Cave is also closer to !Jushman males than to Teita males. 

We are reluctant to make further definite statements especially because 

we are of opinion that it is less interesting to compare Border Cave itself 

with other populations than it is to compare the population from which 

Border Cave is drawn with other populations. In that case not much more can 

be concluded than that the population, from which Border Cave is drawn, dif­

fers from the recent African populations considered. We want to prove this 

assertion by showing that the difference between the Border Cave population 

and that of Dagon females is on the verge of being significantly larger 

than the difference between the Border Cave population and that of Bushman 

males. Letµ denote the vector of expectations for the Border Cave population. 

Earlier in this section we learned that~:µ= µh can be tested by 
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referring (7.1) to the F(p,n-k-p+I) distribution. Now we are interested in 

a confidence interval for (µ-µh)T I:- 1(µ-µh) =LI~. We want to show that the 

confidence intervals for LI~ and for LI~ show so much overlap that H: LI~= LI~ 

is on the verge of rejection. An exact confidence interval for LI~ follows 

immediately by noting that (7.1) has the noncentral F'(p,n-k-p+l, 

nh ~+1)-I LI~) distribution. We are content with crude approximate results 

based on the consequence of the above-mentioned result that 

(7.10) 

2 
is an umbiased estimator for Llh with variance 

(7.11) 

.... 
Starting from LI x; I , I 
comes 29 and I.I for 

= 6.48, n 1 
(7. IO) and 

= 41, p= 11 and n = 375 we obtain the out­

(7.11). Hence [27,31] is an approximate con-

fidence interval for 2 
LI I • Starting from ~x; 6 , 6 = 8.30 and n6 = 53, we simi­

larly obtain outcomes 54 and 2.2 for (7. 10) and (7.11). Hence [49,59] is an 

approximate confidence interval for 6~. We see that our supposition was wrong. 

The Border Cave population is definitely different from that of recent Dagon 

females. 
.... 

Starting from 6 . 2 2 = 7.59 we obtain also that the approximate confi-
x, ' 

dence intervals show no overlap though they are very close to each other. 

Conclusion. Border Cave specimen is closer to Bushman males than to Bushman 

males, Dagon females and Teita females and probably also to Teita males. If 

one considers the meanµ of the population from which Border Cave is re­

garded as a random drawing, then the extra uncertainty is less than we had 

expected. The same conclusions can be made for the population parameterµ 

as for the score vector x. 
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Border 
measurements Cave 

SOS, Supraorbital projection 10 

FMB, Bifrontal breadth 112 

NAS, Nasio-frontal subtense 15 

NFA, Nasio-frontal angle 150 

WMH, Check height 21 

FRC, Nasion-bregma chord 116 

FRS, Nasion-bregma subtense 32 

FRF, Nasion-subtence fraction 51 

FRA, Frontal angle 122 

OBB, Orbit breadth, left 45 

UDH, Mastoid height 26 

,Measurements of Border Cave compared with means 
for eight modern African populations. 

Table I 

Bushmen Zulu 

males females males 
N1 = ld N7 = 49 N1 = 55 

6.73 5.69 6.18 

97.27 93.90 IOI. 98 

15.41 16.20 17.84 

143.20 143.65 141.51 

20.93 19.84 20.73 

109. 17 105. 10 111.69 

28.46 28.22 27.71 

47.59 45.08 47. 16 

124. 29 122.73 126.33 

39.27 37.67 40.44 

25.24 21.61 28.42 

Dogon 

females males females 
N4 = 46 Ns = 48 Nr, = 53 

5.24 5.40 4.08 

97.74 99.54 94.34 

16.48 16.46 15.45 

142. 70 143.46 143.68 

20.06 21. 21 19.96 

n 09. 39 110.00 105.66 

27.70 26.69 25.64 

46.04 47.88 44.62 

125. 33 127.58 127 .28 

39.20 39. 71 38.08 

25.61 29.06 25.21 

Teita 

males 
N7 = 34 

6.44 

100.06 

18.79 

138.88 

22.21 

108.71 

26.62 

48.82 

127.41 
' 

39.65 

29.09 

females 
N8 = 49 

4.94 

95.43 

17. 12 

140.49 

20.18 

105.76 

27.02 

47.37 

125.43 

37.76 

24.18 

N 
00 
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Table 2 

standard Correlation-matrix 
~eviatio-

I 2 3 4 5 

sos 1.18 1.00 

FMB 3.43 0.29 1.00 

NAS 2.21 0.25 0,33 1.00 

NFA 4.43 -0.18 -0.07 -0.96 1.00 

WMH 2. 17 0.06 0.26 0.03 0.04 1.00 

FRC 4.63 0.04 0.22 0.09 -0.04 0.22 

FRS 2.62 -0.01 0,06 -0.12 0.15 -0.02 

FRF 3.46 -0.03 O. IO 0.02 0,01 0.22 

FRA 3.78 0.03 0.04 o. 19 -0.19 o. 14 

OBB 1.65 0.08 0.63 0.25 -0.09 0.04 

MDH 3. 14 O. I I o. 18 0.04 0.01 o. 16 

Standard deviations and correlation matrix for the eleven 
measurements in the eight populations for the case with 
homogeneity of dispersion matrices. 

6 

1.00 

0.60 

0.53 

-0.18 

0.11 

o. 12 

7 8 

1.00 

0.18 1.00 

-0.89 0. 18 

-0.01 0.02 

0,03 o.oo 

9 

1.00 

0.06 

0.02 

IO 

1.00 

o. 12 

11 

1.00 

N 
1.0 
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Table 3 

I 
with homogene~ty of disp~rsion matrices 

N. ti F-prob posterior standard dev. 
l. x;h,h probabilitv oost-orob. 

males 41 6.48 
I 

0.025 I 0.749 
Bushmen 

females 49 7.59 0.008 0.000 

males 55 6.66 0.021 0.231 
, Zulu 

females 46 7. 13 0.013 0.009 

males 48 7. 13 0.013 0.009 
I.iogon 

females 53 8.30 0.004 0.000 
-· 

males 34 7.38 0.009 0.001 

Teita 
females 49 7.93 0.006 0.000 

Mahalanobis distances, F-probabilities, posterior probabilities 
and standard deviations of posterior probabilities for the 
two cases with and without homogeneity of dispersion matrices. 

0.283 

0.000 

0.271 

0.013 

0.013 

0.000 

0.002 

0.000 

~-. . . . - . r 
without homogeneity of dispe_rsion ma;rice~ __ 

i F-prob posterior standard dev 
x,h orobabilitv oost. orob 

0.044 0.056 

! 
0.311 6.50 

7.69 0.014 0.000 0.000 
I 

6. 14 0.046 0.943 0.313 

7.34 0.020 0.001 0.004 

' 
7.45 0.018 0.000 0.001 

i 

9.76 0.002 0.000 0.000 
-

9.87 0.004 0.000 0.000 

10.96 0.001 0.000 0.000 
. -

l,.) 

0 
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8. APPENDIX 

This appendix is devoted to the rationale behind the choice of the neigh­

bourhood (5.14) recommended in the first part of Section 5. We recall that 

the problem of choosing Uhas two conflicting aspects: (1) U should be small 

in order to guarantee that the bias ptlx - ptlx is small, (2) U should be 

large because (5.6) shows that the asymptotic variance explodes if ph gets 

small. 

This appendix will be based on asymptotic theory, partly suggested by 

the theory of nonparametric density estimation. There is one interesting dif­

ference. Most results in the latter theory deal with the minimization of the 

(integrated) mea:n square error which equals variance+ squared bias of the 

involved estimators. The corresponding solutions are such that variance and 

squared bias are of the same order of magnitude. Our main concern is the 

construction of reliable confidence intervals. A basic requirement in this 

connection is (5.8). This requirement will not be satisfied if the bias 

Ptlx - ptlx is of the same order of magnitude as the estimated standard de­

viation n- 1/ 2{; K o/t }112 in (5.7). When dealing with confidence intervals, 
,t 

Uhas to shrink slightly faster than when dealing with pure estimation. 
T -1 The inner-product (y,z)M = y M z based on the total-sample covariance 

matrix Mis such that orthogonalization processes can be carried out leading 
~ -1/2 to transformed measurement vectors e.g. x_. = M (Xh.-X ), with mean -111. 1 •• 

X = 0 and total-sample covariance matrix I . The Xh.'s satisfy X = 0 
•• -1 ~ ~T P 1 

and (n-1) H ~i Xhi = I. Their outcomes in JRP are scattered around the 

origin somewhat like a sample of n elements from a distribution with expec­

tation O, covariance matrix I and density f. The transformed vector x of 

scores for the investigated individual e.g. x = N-l/2 (x -x ) , is at Eucli­

dian distance llxll = dM(x,x .• ) = d from the origin (see (5.10)). In Section 5 

a neighbourhood U of x was needed for the construction of interval estimates 

for the posterior probabilities. The basic question was which choice should 

be made for the radius r = r(p,d,n) of the the ball U around x. This extreme­

ly difficult problem is tackled by replacing it for the following related, 

but certainly not equivalent, problem. 

Let x1, ••. ,Xn be an i.r.s. from the unknown density f on JRP. Let x be 

a point in JRP at distance llxll = d from the origin. The value f(x) of the 
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density in xis estimated by means of 

(8. I) 

where 

(8. 2) 

f (x) = # {i 
n 

x . E U } / { n A (U ) } 
i n n 

U = {y E m_P, lly-xll ; r(p,d,n)} 
n 

is the ball with centre x and radius r(p,d,n) 

and 

(8.3) 

is the volume of U. 
n 

The numerator in (8.1) has binomial distribution B(n,p) with n 

(8.4) pn = P(Xi E Un)= f f(y)dA(y) ~ f(x)A(Un) 

u 
n 

Bias and variance of the estimator (8.1) for f(x) are of the utmost importan-

ce. Using 

where 

noted 

(.8.5) 

where 

(8.6) 

( a f af ) T 
f(y) ~ f(x) + \dXI, ••• , axp (y-x) + !(y-x) A(y-x) 

r 2 l [A J a f(x) . . . . . 
.. = L ~ ~ J is a symmetric matrix whose eigenvalues will be de-
iJ oX. oXj 

by A1, ... ,Ap! we obtain from (8.4) that the bias 

Ef (x) - f(x) 
n ~! f 2 

u n 

(y-x/ A(y-x)dA (y) / A (U ) = 
n 

2 c 1 (x){r(p,d,n)} 

For the variance we obtain 

(8. 7) 

Var f (x) 
n 

-I 2 
n p (1-p )/ {A(U )} n n n 

- I - I -p ~ n f(x)/ A(Un) = c2 n {r(p,d,n)} 
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where 

(8. 8) 

It follows innnediately from (8.5) and (8.7) that the rate at which the mean 
2 square error E(fn(x)-f(x)) tends to zero as n-+ 00 , is maximized if 

(8.9) r(p,d,n) ~ c3 (p,d) n 
-l/(4+p) 

because then both the variance (8.7) and the squared bias (8.5) are of the 
. -4/(4+p) same order of magnitude as n whereas otherwise one of the two contri-

butions to m.s.e. show a slower rate of convergence. 

However, we are not primarily interested in the construction of an opti­

mal (sequence of) estimator(s). We need a confidence interval for f(x) such 

that the analogue of (5.8) is satisfied. It is obvious that this cannot be 

established unless bias2/var-+ 0. If we need a reliable confidence interval 

then, instead of (8.9), we shall have to require that 

(8.10) 1/(4+p) limn r(p,d,n) = 0 
n-+= 

Further specification such that r(p,O,n) is completely determined. If f is the 

p.d.f of N (O,I) and x = 0, then a considerable negative bias E f (O) - f(O) 
p n 

may be expected because f(O) > f(y) for ally I 0. Focussing on this crucial 

example we shall require that 

(8. 11) jbias! /standard deviation~ {fn n}-l 

The only rationale behind this formula is that bias2/var-+ 0 is needed for 

the confidence interval to be asymptotically reliable. On the other hand, 

the slower this convergence the larger the rate at which the mean square er­

ror tends to 0. The right-hand side provides such slow convergence. The value 

.22 for n = 100 does not seem unrealistic. 

The previous order of magnitude considerations leading to (see (8.5) 

and (8.6) 
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(8. 12) 

and 

(8.13) 

can be replaced by rigorous limit theorems based on 
I 2 

p = P (X. E U ) 
n 1. n 

2 2 
= P(x < r (p,O,n)) 

p = 

2r 

= j e-y y½p-ldy/ r(½p) 

and 

(8. 14) lim 
r+O 

0 
I 2 I 2 
z r 2r 

{ f -y lp-1 I lp-1 1 p+3 j e y 2 dy - ( 1-y) y 2 dyJ /r = 0 

0 0 

By combining (8.11), (8.12) and (8.13), with equality sign= instead of the 

wiggles, we obtain that 

(8. 15) [ lp+I 2 { 2}]1/(p+4) 
r(p,O,n) = 2 2 (p+2) r(½P) / p n(..e.n n) 

REMARK. Crude computations delivered r(l,0,100) = .43 with 
2 p = P(-.43 ~ U ~ .43) = .33 ;r(2,0, 100) = .50 with p = P(x 2 < .25) = 

n - 125 2 n 
I - e · = .12 ;r(4,0,IOO) = .66 with pn = P(x4 ~ .44) = .02. The inter-

pretation of the rapid decrease of p asp gets larger than 2 or 3 is obvious. 
n 

If we control the bias by requiring (8.11), then the variance of the estima-

tor gets large. If both bias and variance are controlled by requiring (8.11) 

and that the standard deviation off (O) is no more than say 20% of the true 
n 

value f(O) = (2TT)-½P, then one will see that these conflicting aims cannot 

be satisfied unless n is sufficiently large. Crude evaluation by means of 

(8. 15) and (8.13) leads to the requirement that n should satisfy 

(8. 16) 4 -2p n (..e.n n) 

This formula should not be taken too seriously. If (8.11) is changed by mul­

tiplying the righthand side with a factor 2 and if one impairs the other 

restriction by only requiring that the standard deviation off (O) 1.s no more 
n 

than 30% of f(O), then (8.16) is drastically modified because the radius gets 

4l/(p+4) times as large and the factor 25p+4 = (.04)-(p+4) is replaced by 



llp+4 = (.09)-(p+4)_ In fact one obtains 

(8.17) 

Defining r(p,d,n) by extending r(p,O,n). The idea behind (5.13) is clear. 

If x # 0 is at a distanced= ttxtt from the origin then we define the ball 
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U around x such that its probability is the same as that for the ball around 

0 with radius r(p,O,n), if f is the density of N (O,I). 
p 
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