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On the comparison of LHIE-GAUSS-SEIDEL and ILU relaxation in mult 
algorithms*) 

by 

P.W. Hemker 

Abstract 

In this paper we compare the efficiency of Symmetric- and ZEBRA line

Gauss Seidel relaxation and Incomplete LU-factorization rela.xation in mul

tigrid algorithms. To this end we compute convergence rates and ve make an 

operations count for general regular 7-point discrete operators. As model 

problems for the numerical computation of the convergence rate we use the 

anisotropic diffusion and the convection diffusion equation. 

KEY WORDS & PHRASES: MuUigrid method, Incomplete LU faetol"ization, 

Relaxation methods 

*) This report will be submitted for publication elsewhere. 



Introduction 
We are interested in finding efficient variants of the multigrid algo
rithm that can be used for the solution of the discretized general lin
ear 2nd order elliptic partial differential equation 

(I) -V(aVu) + bVu +cu= f, 2 on rl c lR , 

with variable coefficients a, b and c, on a regular rectangular discret
ization. In particular we are interested in the solution of regular 7-
point discretizations such as they arise from the simplest finite ele
ment discretization on a regular triangulation (i.e. the FEM with con
tinuous piecewise linear trial- and test-snaces). Further, the 7-point 
discretizations are the simplest discretizations that can deal with 
the mixed derivatives uxy in(!). As a snecial case our discretizations 
include the usual 5-point finite difference discretizations, but - in 
this paper -we shall not consider the particular gain of efficiency 
that can be obtained when we tailor our methods to these cases. Neither 
do we treat particular shortcuts that can be made for contant coeffi
cients. 

We consider multigrid algorithms of the following type: the Multi 
Level Algorithm (MLA) on level (1) consists of: 
(1) p relaxation sweeps on level f (pre-relaxation); 
(2) a coarse grid correction, consisting of: 

a) computation of the residual; 
b) restriction of the residual to level (l-1); 
c) approximation of the solution of the residual equation on level 

(f-l), by either 
i) cr sweeps of the MLA on level (l-1), 
ii) or, if l-1 = 0, by any other reasonable method; 

d) prolongation of the correction to level l; 
e) addition of the correction to the latest approximate solution; 

(3) q more relaxation sweeps on level l (post-relaxation). 

This algorithm (called Correction Storage Cycle, by Brandt (I)) 
is the usual multigrid algorithm for linear equations. The strategy is 
detennined by the fixed numbers p, a and q. Different variants are also 



possible by selecting different procedures for (i) the relaxation, i) 
the prolongation or (iii) the restrict 
Guided by our 7-point discretizations (or rather the finite element 
principle behind it), we select a 7-point restri R7 and a 7-point 
prolongation P7 in the above algorithm. The prolongation P7 corresponds 
to linear interpolation on the finite element triangles. The restric
tion R7 is its transposed; both P7 and R7 are described by the convolu
tion star 

r i I l ~ 
l l I 
2 :! 

l ! LI 2 

The 7-point linear interpolation is more efficient than the usual 9-
point (bi-) linear interpolation (cf. ll,J2). A further advantage of 
P7 and R7, in conjunction with the finite element discretization, 
that for the constant coefficient equation (l) the coarse grid FEM
discretization, AH, yields difference stars identical with those ob
tained from the Galerkin approximation, i.e. the coarse grid operator 

In this sense the FEM discretization, P7 and R7 are strongly related. 
Most work in the ~ulti Level Algorithm is spent with relaxation 

and, therefore, the selection of an efficient relaxation procedure is 
of utmost importance. Three good candidates for our purpose are Sym
metric and Zebra line-Gauss-Seidel relaxation and Incomplete LU-fac
torization (ILU)-relaxation (cf. l, 6- l l). Another good possibility, 
Red-Black relaxation, seems to be more appropriate for 5-point discre
tization and synnnetric problems (cf. 3). Generally, line-Gauss-Seidel 
seem more efficient than point-Gauss-Seidel procedures. For a descrip
tion of the relaxation procedures we refer to the literature mentioned 
above. 

In the present context we consider the Multi Level Algorithm only 
as an iterative procedure to solve the discrete equation 

and we neglect the fact that we probably want the solution uh only up 
to an accuracy of the order of the discretization error. 

The efficiency of any multigrid variant is determined by the 
quantity~ where W denotes the amount of work to obtain a reduction 
factor p in the error (or in the residual) of the approximation solu
tion i.e. 

{ II (k) u / u ( 0) n } 1 /k 
Pk = ~ - uti" 2 "~ - ~" 2 

or 
- ={llf -A (k)g /ft£ -Au..(O)fl 1J/k 
pk h -11 ~ 2 h -11 n 2' . 

· · · 1 · (O) B F . t 1 el Clearly, p depends on the 1n1t1a estimate uh y ourier ~o~ ev_ 
analysis we were ab le to determine spectral norms of the amphficat1on 
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operators 

and sup Ip. I 
1 

which are different and depend on the numbers p and q (cf. 6). In this 
paper we consider also the spectral radii of the amplification opera
tors, i.e. the numbers 

p = lim. p. = lim. p .• 1 -+oo 1 1 --+00 1 

This limit depends only on v = p+q (rather than on p and q separately). 
For the 3-different relaxation procedures: symmetric line-Gauss-Seidel 
(SLGS), Zebra line-Gauss-Seidel (ZEBRA) and incomplete LU-factoriza
tion relaxation (ILU) and for different values of a (a= I ,2) and v 
(v = I, 2), we compute the number of arithmetic operations, W, in the 
multi level algorithm and we determine by numerical experimentation 
the value of p. Based on these numbers we determine what variants of 
the MLA are more efficient. 

For a similar approach we refer to (7) and (II), whose results 
are improved and refined in the following section. 

The computational complexity 

In this section we count the arithmetic operations necessary to effec
tuate the Multi Level Algorithm. We neglect the computation of matrix
indices (array subscripts) and other overhead costs, since these can 
be reduced to an unsignificant amount by skilled coding of the pro
grams. Another reason is that no other reasonable means exist to deter
mine the work involved in the excution of an algorithm, if we do not 
want to incorporate the influence of the whole computing system used 
and the coding capabilities of the programmer. 

The amount of work involved in one cycle of the Multi Level Algo
rithm is 

WMLA = {(p+q)WREL+Wc.GC}·4/(4-0), 

1 · b 1 t · 1 k WPREP. Here , r,7REL 1· s th t pus, poss1 y, some prepara 1ona wor .. e arnoun 
of work to effectuate a relaxation sweep, and 

we.Ge = WRESID + WRESTR + WCORR 

is the amount of work to compute the residual, the restriction to the 
coarser grid, and the addition of the prolongated correction to the 
fine grid solution. 

For the line-Gauss-Seidel relaxations, repeatedly the same sets 
of tridiagonal systems have to be solved. This can be done with or 
without the storage of the LU-decompositions of the matrices. Without 
this decomposition available, the solution for N unknowns takes 

3N add, 3N mult and 2N div; 

possibly 2N div can be replaced by 2N mult and N div, if we want to 
avoid (expensive) divisions. With the decompositions available it takes 
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2N add, 2N mult and N div 

and the decomposition itself takes 

N add, N mult and N div 

(possibly 2N add, 3N mult resp. N add, 2N :nult and N div; then to 
store the decompositions we need an extra space for 2N real numbers). 
Additional to the solution of the tridiagonal systems, the cornposi 
of the rhs takes: 

for 9-point operators 6N add and 6N mult, 
for 7-point operators 4N add and 4N mult, 
for 5-point operators 2N add and 2N mul t. 

Thus, we find for our 7-point operator 
i) without storage of LU-decompositions 

REL 
W = 7N add, 7N mult and 2N div; 

ii) with the extra storage of 2N numbers and savings for expensive 
divisions 

WREL = 6N add, 7N mult; 

WPREP = N dd a , 2N mult and N div. 

A SLGS relaxation sweep, defined by A = L - D + U, 

Lu (i+!) 

Uu(i+l) = 
f - (U-D)u (i), 

f- (L-D)u(i+D, 

can be implemented as 

Du (i+D = 

Du(i+l) 

{f - (U-D)u (i)} 

{-(L-D)u(i+½)} 

+ {-(L-D)u(i+!)}, 

+ { f - ( U-D) u ( i + I ) } , 

since (L-D) and (U-D) are strict block lower and upper triangular. 
After such a relaxation sweep, the residual is computed by 

f-Au = {f- (U-D)u(i+l)}-L)i+l). 

. (i+l) (i+½) 
The computation of { f - (U-D)u } or { ..• - (L-D)u } takes 2N add, 
2N mult. Hence, one SLGS relaxation sweep takes two times the solution 
of a set of tridiagonal systems and an additional SN add and 4N mult. 
The residual computation wRESID takes 7N add, 7N mult; where part of 
the computation may take place before relaxation. 
For the 7-point Incomplete LU-factorization (cf. also ll) 

~ = LU + R, 

we determine the lower and upper-triangular matrices Land U such that 
(R) ij = O at the 7 non-zero diagonals of A; further L and U vanish at 
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all zero diagonals of A and we 
the decomposition complete . The 

WPREP = 7N add, 7N mult and 3N div 

l. This 
Land U from A takes 

(possibly with 3N div replaced by 3N mult and N div). If we want R to 
be kept in storage, its computation takes an additional 2N mult and the 
extra storage of 2N real numbers. The relaxation sweep 

LUu ( i +I) = f - Ru ( i) 

takes 
WREL = 8N add, SN mult and N div, 

(possibly N div replaced by N mult). Here in addition 2N mult are nec
essary if R is not kept in storage. 

Thus we find for ILU relaxation 
i) without storage of R 

WREL = SN add, ION mult, N div, 
WPREP = 7N add, 7N mul t, 3N div· , 

ii) with storage of R and avoiding most divisions: 

WREL = 8N add, 9N mult 
ilREP = 7N add, 12N mult, N div. 

In general for the residual computation of the 7-point operator we find 

WRESID = 7N add, 7N mul t. 

However, after a ZEBRA relaxation, when the residual vanishes over all 
even (odd) lines: 

WRESID.ZEBRA = 3.5N add, 3.SN mult. 

After an ILU relaxation the residual computation 

/i+l) = fh _ ¾u(i+l) = R(u(i+l) -u(i)) 

takes only 

WRESID.ILU = 2N add, 2N mult, 

with eventually an additional 2N mult if R is not kept in storage. 
For the 5-, 7-, 9-point restriction, we find per coarse gridpoint 

general odd-even ZEBRA even-odd 

8 add l mult 5 add l mult 3 add I mult 
6 add I mult 3 add l mult 2 add I mult 
5 add l mult l add l mult 3 add I mult 
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Both for the 7- a~d for the 9-point prolongation we find 3 add and 3 
mult per coarse gr1dpoint. Together with the addition this yields 

WCORR = 1.75N add, 0.75 mult. 

Summarizing we find 

SLGS (1) 

SLGS (2) 

ZEBRA EO(l) 

ZEBRA E0(2) 

ZEBRA OE(l) 

ZEBRA OE(2) 

ILU (l) 

ILU (2) 

WRESID 
+ * 

7 7 

7 7 

~ 
2 
~ 

2 

~ 2 
~ 

2 

~ 2 
~ 2 

~ 2 
~ 

2 

2 4 

2 2 

WRESTR 
+ * 

1.l 1 
4 2 

1.l 1 
2 4 
l 1 
2 4 
1 1 
2 4 
3 1 
4 4 
3 1 
4 4 
1.l 1 
2 4 

Ii I 
4 

Table I 

WCORR WCGC 
+ * + * 

12 3 
10-?- 8 4 4 4 

12 3 
1<>¼ 8 4 4 

13 3 ~ ~ 4 4 4 2 

12 3 ~ ~ 4 4 4 2 

12 3 
6 4_!_ 

4 4 2 

12 3 6 ~ 4 4 2 
13 3 ~ 5 4 4 4 

13 3 s-!. 3 4 4 4 

WREL w11REP flops 
+ * I + * I CGC REL PREP 

11 10 4 1s; 25 - - - -4 

9 10 - 1 2 1 ts¼ 19 4 

7 7 2 - - - to¼ 16 -
6 7 - 1 2 1 1o-} 13 4 

7 7 2 1 o.!- 16 - - - -2 

6 7 1 2 1 10-!- 13 4 - 2 

8 10 1 7 7 3 1o¼ 19 17 

8 9 - 7 12 1 s¼ 17 20 

The operation counts are given (I) with, or (2) without an additional 
storage requirement of 2N real numbers and avoiding divisions. 

To solve the linear system (3) we also need to prepare the coarse 
grid discretizations. If the FEM discretization is given, the consist
ent coarse grid discretizations are those obtained by the Galerkin ap
proximation (2). For each construction of a matrix 

87 additions and 7 multiplications are necessary per coarse gridpoint. 
Thus, for all coarse grid operators together, this amounts to a total 
of less than 

29N add and 2N mult 

operations. 

The efficiency of the different cycles 

In this section we give the results of the computation of p, Pi, Pi by 
numerical experimentation. These results confirm those obtained theore
tically in (6). Using the operations counts from the previous section, 
we determine the efficiency of various MG cycles. We also mention effi
ciency results for the first few iteration steps, where also wPREP is 

6 



taken into account. 
For the experiments we use as model problems the anisotropia dif

fusion equation 

(6) 

and the convection diffusion equation 

(7) £(u +u ) + su + cu = f, 
xxyy x y 

on the unit square in lR2 and with Dirichlet boundary conditions; 
s = sin(~), c = cos(~). 
For the discretization we use the FEM with piecewise linear functions 
on triangles (diagonals parallel toy= -x). The coarsest grid is the 
unit square itself. Finer levels with h = 1/2, 1/4, 1/8, 1/16, I/32 
are used. 

In the tables (2) - (3) we give the efficiency of different M; 

variants for the solution of (1), when applied to the equation (6), in
cluding the preparational work after k = 1,2,3 steps. 

2 2 
U = X + y 

O. I l og pk; 

i.e. the number of floatin3 point operations to obtain a factor 0. I 
reduction of the error or the residual in the first k steps; and 

E = MLA 0. I l ~ . h w-- ogp, wit ~ 3 I /3 
p = TTk=I Pk+3' 

i.e. the number of floating point operations to obtain a factor 0.1 
reduction in the following steps. 

Table 2 
Problem (6) with E =I.Laplace's equation. h = 1/32 

- -
~ "f ~ Relaxation p q a [1 [2 E3 E1 [2 p 

ILU 0 1 1 51 .o 40.7 36.9 40.7 34 .1 33.5 34.2 o. 103 
1 0 1 41. 1 33.7 31.7 61 • 1 41.0 36.7 30.2 0.077 
1 1 1 44.5 39.5 37.9 34.3 33. 1 33.0 34.6 0.023 

0 1 2 50.6 42.6 43.8 53. 1 47.9 47.2 51. 5 o. 105 
1 0 2 43.4 40.4 40.B 7!3.4 53.6 49.2 46.5 0.082 
1 1 2 51.8 48.6 t17 .B 46.8 45.9 45.9 47.0 0.016 

SLG5 0 1 1 69.B 70.8 70.3 65.3 65.5 66.4 69.9 0.195 
1 0 1 62. 1 62.0 62.8 89.4 78. 1 75.0 69.B D.194 
1 1 1 62.0 61.2 61 • 2 53.8 54.6 55.4 59.6 0.055 

0 1 2 94.3 92.7 94.4 93.2 94.6 96.3 103. 1 0.189 
1 0 2 63.2 73.6 79.7 1 35 .4 108.5 103.8 100.5 D.187 
1 1 2 E9.7 73.0 75.2 78.5 79 • 1 79.8 82.6 0.044 

ZEORA E-D 0 1 1 93.0 87.9 83.5 92.G 65.0 Gn.4 55.6 0.277 
1 0 1 ~15 .G S..5.5 53.3 111 • 4 77.7 68. 1 56. 1 0.280 
1 1 1 38.9 38.8 3Q.2 53.5 li5 • 8 43.7 41.3 0.067 

0 1 2 58.8 5G.2 GO.rJ 1 2G. 2 a·,. o 81.7 74. 1 0.236 
1 0 2 47.3 55.5 5!1.4 1 5{1. 4 100.e tl6.9 72.4 D.228 
1 1 2 44.5 49.7 51 • 7 78.2 Gt1. 4 62.3 58.4 0.057 
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Table 3 
Problem (6) with f = 3/37, ~ • n/4, h = 1/16 

RcL:ixation p [] a (" ~ r ~ F:2 [3 r 
" - 1 ·2 3 

I l.11 0 1 1 t. 1 • /1 3l1 • 2 31 • 1 38.4 32.6 32.2 37.2 0 .125 
1 n 1 36.3 31 • 2 3U.S 51 • G 3G.G 33.9 37 .ti • .126 
1 1 1 37.3 3Li • Ll 34.8 32.4 31 • Cl 33.2 111 .3 0.043 

SLCS D 1 1 S4.G SG.7 U2.2 SB.9 b2.'l 64.8 70.0 o. 198 
1 D 1 sn.7 SG.2 s~.s 73. (] 71 • 0 70.6 71.4 0.202 
1 1 1 50.3 c:: r 

-1...J • ._j 56.4 s1.~ 53.ll 54.3 64.7 o.•69 

zc:nR /\ r-r n 1 1 c.s. ~1 G,. 0 S~-. ti S5.Ll t1G. 1 45.8 GS.4 D.352 
1 [) 1 38.1 3~. 7 ti 3. C G3. :~ 47.7 47.2 66.8 D.343 
1 1 1 40.5 3C.O L: Cl. c: 37.2 37. 1 41 .2 67.G o. 198 

Table 4 
The maximal values of EJ and the values of E2, E3, E and p for problem 
(7) withe: =h= 1/16 and (jl=k'fl/8; k= 1,2, ..• ,8. The multigrid strategy 
used is p = q = a = I. 

max (E 1) ~ E2, E3, E p 
k 

ILU 38 35-25 0.02 - 0.005 
SLGS 60 52-44 0.03-0.015 
ZEBRA.EO 107 80-50 0.2 - 0. I 
ZEBRA.OE 185 75-50 0.2 - O. I 

Remarks and Conclusions 

(I) 

(2) 

(3) 

(4) 

(5) 

In this paper the discrete l2-norm is used. The choice of another 
norm (e.g. l1 or lx,) has no essential influence on the conclusions 
reported. 
In most all cases even-odd (coarse lines first) ZEBRA relaxation 
appeared to be slightly more efficient than odd-even ZEBRA. (Hence 
we report only results for the former possibility.) 
W-cycles (a= 2) have slightly smaller convergence factors than V
cycles (a= I), but because of the additional work they are less 
efficient. 
In the numerical experiments a clear difference between Pi and p. 
is only seen for p = 0 or q = 0. As was explained in (4), a strateh 
with q = 0 yields worse reduction of the residual than for the error 
in the first steps of the iteration process; with p=O it yields 
worse convergence for the solution than for the residual. 
The strategy with p = q = I is the most robust. 

Although particular savings can be made for Symmetric line-Gauss
Seidel relaxation, compared to ZEBRA or ordinary I.GS, it is ?,enerally 
not competitive. 

ILU7-relaxation is more efficient than the line-Gauss-Seidel re
laxations considered. Although the preparational work for the construc
tion of the ILU-decomposition is considerable, it doesn't make the 
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relaxation inefficient, even in the first few iterands. 
ILU7-relaxation yields an equally robust algorithm as the line

Gauss-Seidel relaxations considered. 
In short, ILU7-relaxation, combined with the 7-point prolongation 

and restriction, yields an algorithm that is robust and more efficient 
than the other (line-Gauss-Seidel) relaxations considered, 
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