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Reducibility of algebraically stable general linear methods *) 

by 

K. Dekker 

ABSTRACT 

An equivalence relation on the class of general linear methods is de

fined and it is shown that the property of algebraic stability is invariant 

for this relation. Methods which are algebraically stable for a singular 

matrix G turn out to be reducible. On the other hand, algebraically stable 

reducible methods are algebraically stable for a singular G. Each algebrai

cally stable irreducible method is shown to be equivalent with a method 

which is stable for the identity matrix. 

KEY WORDS & PHRASES: Numeriaal analysis, Ordinary differential equations, 

Generol Uneari methods, Algebroia stability 

*) This report will be submitted for publication elsewhere. 





1 • INTRODUCTION 

In considering the applicability of a numerical method for the solu

tion of stiff non-linear ordinary differential equations, much attention has 

been paid to the class of dissipative equations. DAHLQUIST [5] introduced 

the concept of G-stability for linear multistep methods and BUTCHER [3] the 

idea of B-stability in the case of Runge-Kutta methods. In 1979, BURRAGE 

and BUTCHER [I], and independently CROUZEIX [4], showed that B-stability is 

equivalent to a new stability property, so called algebraic stability, under 

very mild restrictions (see also HUNSDORFER and SPIJKER [8]). In a more 

recent paper [2], they generalised the concept of algebraic stability for 

general linear methods. 

The analysis and construction of algebraically stable general linear 

methods seems to be rather cumbersome [6]. The aim of this paper is to in

troduce some simplifications in order to facilitate the analysis. 

In section 2 we present the class of general linear methods and the 

definitions of algebraic stability and consistency. 

In section 3 we introduce an equivalence relation between general linear 

methods and show that algebraic stability is a property of equivalence 

classes. We define reducibility of a method and prove in subsequent lennnata 

a relationship between reducibility and singularity of certain matrices G and 

D which appear in the definition of algebraic stability. As far as the ma

trix Dis involved, these results might be regarded as a generalization of 

a similar property of implicit Runge-Kutta methods (see HAIRER [7]). As our 

main result we have that algebraic stability of an irreducible method im

plies that both G and Dare positive. Moreover, any stable irreducible 

method is equivalent with a method which is algebraically stable for G being 

the identity matrix. 

In section 4 we show that consistency is a property of the equivalence 

classes, and that each reducible consistent method can be reduced to an ir

reducible consistent method. 

Finally we present an example in section 5 in order to illustrate the 

equivalence relation and the process by which a reducible method can be 

reduced. 
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2. SURVEY ON GENERAL LINEAR METHODS 

In the solution of the initial value problem 

(2. I) y' (x) = f(y(x)), 

we consider the step by step method with r external ands internal stages 

y~n) 
r (1) (n-1) s 

b ~ ! ) i (Y ~n) ) , = I a .. y. + h I 1. j=l l.J J j=l l.J J 
(2.2) 

i = 1,2, ... ,s, 

(n) r (2) (n-1) s 
b~:)f(Y~n)), y.- = I a .. y. + h I 1. j=l 1J J j=l l.J J 

i = 1,2, ..• ,r. 

The partitioning of such a linear method was first proposed by BURRAGE and 

BUTCHER [2] and a representation can be given by the partitioned matrix 

[!~ !~] . In the text we will use the shorthand notation (A,B). 

BURRAGE and BUTCHER [2] analyse the stability behaviour of these methods 

for monotonic problems, i.e. equations satisfying for all u E ]Rm 

(2. 3) <u,f(u)> ::; O, 

where<,> is some real pseudo inner product. They define a pseudo inner 
m product for sequences of r vectors from lR , say U and V, based on the inner 

product on Rm and a symmetric non-negative definite matrix G: 

r 
<U,V>G = I 

i,j=l 
g .. <u., V. >. 

l.J 1 J 

DEFINITION 2.1. A method (2.2) is said to be monotonic if for any monotonic 

problem (2.1) there exists a non-zero non-negative symmetric matrix G, such 

that the computed results satisfy lly(n)uG::; lly(n-l)IIG. 

DEFINITION 2.2. The general linear method (2.2) is algebraically stable for 

a given matrix G if a non-negative diagonal matrix D exists such that the 

matrix 
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T ATD T 

~-
A2GA2 1 - A2GB2 T ] 

(2.4) M= 

DA1-B~GA BTD 
2 1 + DB 1 - B2GB2 

is non-negative definite. 

Throughout this paper we will assume that G is synnnetric and non-negative. 

It has been proved [2] that algebraic stability for G implies monotonicity 

in the norm induced by G. Application of scheme (2.2) to the equation y' = 0. 

for y E: I c :R. shows that any sensible method should satisfy 

DEFINITION 2.3. A general linear method is pre-aonsistent if there exists 
r a vector u E: lR. , known as the pre-consistency vector, such that 

(2.5) T s 
e = [1,1, ••• ,1] E: :R. , 

In addition, a method is aonsistent if a vector v exists, such that 

(2 .6) 

3. REDUCIBILITY 

The class of general linear methods, defined by (2.2), contains a 

variety of schemes, many of which bear a close resemblance. For example, 

when we multiply the solution vectors y(n), computed with some scheme, with 

a non-singular matrix, we obtain a different scheme, which behaves similar

ly. In this section we will try to give a standardised formulation of (2.2). 

DEFINITION 3.1. Two general linear methods (A,B) and (A,B) are said to be 

equivalent iff there exists a non-singular matrix T and a permutation ma

trix P, such that 

(3. 1) 
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LEMMA 3. I. Let (A,B) be algebraicaUy stable for G and assume that (A,B) 
~ ~ ~ ~ T and (A,B) are equivalent. Then (A,B) is algebraically stable for T GT. 

PROOF. The algebraic stability is a direct consequence of the non-negativity 

[ TT O l [T O] 
of O pTj M Op . 0 

Given a linear method, we can form new schemes by inserting irrelevant in

ternal stages,, i.e. not affecting the final result; alternatively, we may 

combine two methods into formulation (2.2) or add some external stages. In 

our analysis we wish to avoid these methods and consider irreducible methods 

only. 

DEFINITION 3.2. A method is called reducible if it 1S equivalent with a 
~ ~ 

method (A,B), such that the following equalities hold for sl < s or 

I :,:; rl < r 

(a) ~(I) 
= o, i = 1,2, ... ,s 1, j = r 1+I, ... ,r, a .. 

1J 

(b) 
~(2) = 0, i = l,2, ... ,r 1, J = r 1+I, ... ,r, a .. 

(3 .2) 1J 
~(I) 

(c) b .. = o, i = I,2, •.. ,s 1, J = s 1+I, •.. ,s, 
1J 

(d) ~(2) o, I,2, ... ,r 1, s 1+I, ... ,s. b .. = 1 = J = 
1J 

In particular, we call the methods-reducible if s 1 <sand rI =rand r

reducible if r 1 <rand sI = s. 

Because of the equivalence relation we may assume that a reducible 

method can be written as 

I I l [;~:~+~~-~ Al = 
AI, 1 I O 

Bl = ------: -----
AI,2 iAI,3 

' I ' 

(3 .3) I I 

~2, 1 _;: _ J ' 
B2 1 0 

A2 
, ,_ 

B2 = -----------
B2 2 B2,3 2,2 I 2,3 

' I 



. s 1xr 1 r 1xr 1 s 1xs 1 
where Al,I E lR A2,l ER , BJ,l E lR 

r 1xs 1 
; B2 , l E lR 

DEFINITION 3.3. The general linear method (Al,! 
is called the reduaed method of (A,B). A2,l 

Bl,1], defined by (3.3), 

B2, 1 
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In the following lemmata we will establish a relationship between re

ducibility and singularity of G and D; moreover, we show that reduction 

preserves algebraic stability. At first, we state a useful property of sym

metric non-negative matrices. 

LEMMA 3.2. Let M be symmetria and non-negative. If v is a veator suah that 
T v Mv = 0 then it is an eigenvector of M with Mv = O. 

PROOF. For any vector wand arbitrary constant€ non-negativity implies that 

T (v+ew) M(v+ew) ~ 0. 

However, the term independent of€ in this form vanishes, so that the coef

ficient of€ should be zero too. Since this holds for all w, the result 

follows. D 

LEMMA 3 .3. Let (A,B) be algebraiaaUy stable for a non-singular matrix G. 

Assume that the diagonal matrix D from (2.4) is singular. Then (A,B) is 

s-reduaible. 

PROOF. Let v be a vector from the null space of D. Then, 

(O vT)M(~) = vT(BiD+DB 1-B~GB2)v = -vTB~GB 2v = 0 because Mis non-negative 

and G is positive. Thus, according to lemma 3.2, (BiD+DB 1-B~GB 2)v = 0 and 

GB 2v = O, so that DB 1v = 0 and B2v = 0, as G is non-singular. 

Now, as Dis diagona½ the null space of Dis given by linear combinations 

of the basis vectors e., j = i+J, ••• ,s (possibly after renumbering). 
J ~ 

DB 1ej = 0 and B2ej = 0 imply (3.2c) and (3.2d) with r 1 =rand s 1 = s so : 

the method is s-reducible. D 

LEMMA 3.4. Let (A,B) be algebraiaaUy stable for a singular matrix G and 

assume that Dis non-singular. Then (A,B) is r-reduaible. 
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PROOF. Let w be a vector from the null space of G. Then, considering the 
T w 

quadratic form (w O)M(0) and using lemma 3.2, we find that DA1w = 0 and 

:A2w = O. Let T be a non-singular matrix, such that the last columns of T 

r+l, ... ,r span the null space of G. Then, DA1Te. = 0 for j = ;+l, .•. ,r and 

h . 1 . f . 1· ( ) J -I t e non-s1.ngu ar1.ty o D 1.mp 1.es that 3.2a holds. Moreover, GT T A2Te. = 0, 

j = r+l, ••. ,r, implies that T(T- 1A2T)e. lies in the null space of G; thu; 
T -I ~ J 

ei(T A2T)ej = 0, i = 1,2, .•. ,r and we conclude that (3.2) holds with r 1 = r 
and s 1 = s. • 

Combining these lemmata we obtain 

LEMMA 3 .5. Let (A,B) be algebraically stable for a matrix G and assume that 

at "least one of the matrices G and Dis singular. Let r* = rank(G) and 
* * * s = rank(D). Then (A,B) is reducible with s 1 = s and r 1 = r . 

PROOF. Let v be a vector from the null space of D and w a vector from the 

nullspace of G. According to the proofs of the lemmata 3.3 and 3.4 we have 

* * GB 2v = 0, DB 1v = 0, DA 1w = 0 and GA2w = 0. Thus (3.2) with r 1 = r, s 1 = s 

holds after a suitable transformation. D 

We remark that the converse statement of this lemma is not true, be

cause we can construct reducible methods which are algebraically stable for 

a non-singular G whereas Dis positive, too. For example, the scheme con

sisting of two algebraically stable irreducible methods which are computa

tionally independent of each other. However, we will show that any reducible 

algebraically stable method can be reduced to a methoci which is algebraical

ly stable for a positive matrix G and a positive matrix D. For simplicity 

we will assume in the sequel that a reducible method is already of the form 

(3. 3) . 

LEMMA 3.6. Let (A,B) be aZgebraicaZZy stable for G and assume that (A,B) is 

s-reducibZe. Then the algebraic stability condition is satisfied for a 

diagonal matrix D, with rank(D) ~ s 1 . 

PROOF. Suppose D l.S the diagonal matrix from (2 .4) • Let I be the diagonal 

matrix with ones diagonal positions 
sl 

on the first s 1 and zeros elsewhere. 

According to the non-negativity of M we have 



[ I. 0 ] Mfr O ] ~ O. 
o r Lo r 

s I s I 

Defining D = DI and using B2ISI = B2, I BI 
SI Si I SI 

the expression 

= I B 1 , we ob.tain from 
SI 
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thus, in (2.4) we can replace D by D. Moreover, rank(D) ~ rank(! ) = s 1• D 
SI 

LEMMA 3.7. Let (A,B) be algebmiaally stable for a positive G. Then (A,B) 

is equivalent with a method whiah is algebraiaally stable for I. 

PROOF. Let LTL (L lower triangular) be a Cholesky decomposition of G. Then 

the matrix 

{ 
-1 ] ~ ~ A1L B1 . 

is non-negative and therefore the method (A,B) = _ 1 algebraically 
LAL LB stable for I. 0 2 2· 

LEMMA 3 .8. Let (A,B) be algebraiaaUy stable for G = I and assume that 

(A,B) is r-reduaible. Then (A,B) is algebmiaally stable for G = I , where 
ri 

I denotes the square ma.tr-ix of dimension r with ones on the first rI diago
r1 

nal positions and zeros elsewhere. 

PROOF. Using I A2 I = I A and A1I = A we obtain 
r1 rI rI 2 rl I 

[> :i M [> ] [ T 

T T 

rBJ 
0 I -A2I A2 A1D-A2rr 1B2 = rl rl 
I DA1-B~Ir 1A2 DB +BTD-BTI 

2 
I 

- [I AT BT] (I-I ) [Az::I] . r 1 2 2 rl 
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The second term on the right hand side is obviously non-negative; therefore, 

non-negativity of M implies non-negativity of the first matrix on the right 

hand side, so we conclude that (A,B) is algebraically stable for I D 
r 1 

We remark that we have chosen a peculiar decomposition of Gin Lennna 

3.7 in order that the transformations LA2L- 1, LB2 and A1L- 1 preserve the 

form of these matrices if they are of the reducible form (3.3). Combining 

our previous Lemmata yields our main result. 

THEOREM 3.9. Let (A,B) be a general linear method which is algebraically 

stable for G and let D be the diagonal matrix in (2.4). Then one of the 

following statements holds. 

(i) (A,B) is irreducible and both G and Dare positive. 

(ii) (A,B) is algebraically stable for G and D such that 

rank(G). 

::;; rank(G) < 

(iii) (A,B) is algebraically stable for G and a diagonal D such that 
~ rank(D) < rank(D). 

(iv) (A,B) can be reduced to a method which is algebraically stable for a 

positive G, and either Dis positive or Dis errrpty. 

PROOF. At first we observe that irreducibility implies (i) as a consequence 

of lennna 3.5. Secondly, if at least one of the matrices G and Dis singular, 

the method is reducible according to this lennna. When we choose the trans

formation matrix Tin such a way that the last columns span the null space 
~ of G and defim~ the positive square matrices G and D by omitting the zero 

T T rows and columns from T GT and PDP, it is obvious that the reduced method 

is algebraically stable for G and D. We note that D might be empty, if D is 

a zero matrix. Next, assume that G and Dare positive and (A,B) is s-redu

cible. Then there exists a D such that rank(D) ::;; s 1 < s = rank(D) according 

to lemma 3.6. Finally, let G and D be positive and suppose (A,B) is trans

formed into the form (3.3) with r 1 < r. Let LTL be a decomposition of G. 

Application of the transformation (3.1) with T = L-l yields a method which 

is algebraically stable for I, according to lemma 3.7. Moreover, the trans

formation preseirves the special form (3 .3), so the transformed method is 

still reducible with r 1 < r. Thus we can apply lemma 3.8 and find that the 

transformed method is algebraically stable for I . Therefore, the original 
rl 
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method is stable for LTI L, according to lennna (3.1). D 
rl 

DEFINITION 3.4. A general linear method (A,B) is said to contain (A,B) if 

either (A,B) is equivalent with (A,B) or (A,B) can be reduced from a method 

which is equivalent with (A,B). 

COROLLARY 3 .10. Any algebraicaUy stahle method contains an irreducible 

method which is algebraically stable for a positive matrix G and a positive 

diagonal matrix D. 

LEMMA 3 .11. Let (A,B) be irreducible and algebraicaUy stable for G. Then 

the dimension of the null space of A2-I is at mosts. 

PROOF. Suppose that the dimension of the null space of A2-I is larger than 

s. Then we have at least s+l independent vectors v 1,v2, ••• ,vs+I such that 
A Th h . . . i i · mb. • Is+ 1 

2vJ. = vJ.. us, t ere exists a non trivia inear co ination v = . 1 a.v. 
J= J J 

satisfying DA1v = O. Moreover, A2v = v. However, these relations imply that 

the method is reducible, which is a contradiction. Thus the assumption is 

not valid and we conclude that the dimension is at most equal to s. D 

4. CONSISTENCY 

In this section we show that pre-consistency and consistency properties 

of a general linear method are preserved by the transformation and reduction 

processes of the previous section. Moreover, we prove that any pre-consis

tent method is equivalent with a very special method. 

LEMMA 4.1. Let (A,B) and (A,B) be equivalent. Then (A,B) is consistent iff 

(A,B) is consistent. 

PROOF. Assume (A,B) is consistent with pre-consistency vector u and the 

additional vector v. Assume that the equivalence relation is determined by 
~ -1 -] -1 the transformation matrices T and P. Then we have A2T u = T A2TT u = 

-1 ~ -1 T -1 T -1 . . = T u and A1T u = P A1TT u =Pe= e, so T u is a pre-consistency vec-
~ ~ ~ -1 ~ -1 -1 -1 -1 tor of (A,B). Moreover, A2T v+B2e = T A2TT v+T B2Pe = T (A2v+B2e) = 

-1 ~ ~ = T (u+v), according to (2.6). Thus (A,B) is consistent. D 
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Choosing a transformation T with the pre-consistency vector as its 

first column, we can transform a method into a standardized form: 

COROLLARY 4.2. A pre-consistent method is equivalent with a method having 

e 1 = [I,0, ..• ,O]T as pre-consistency vector. 

In the sequel we will implicitly assume that a method is consistent 

and we will call a method stable if it is algebraically stable for some non

zero matrix G. Observing that the matrix A2 has an eigenvalue equal to one 

and that stability implies that A2 is power bounded, we arrive at (see [6]). 

LEMMA 4.3. A stable general linear method (A,B) is equivalent with a method 
~ ~ T~ T~ (A,B) such that e.A2e. = e.A2e. 

1. J J 1. 
where o .. denotes the Kronecker 

1.J 

= o .• , i = 1 , 2, ••• , ; , for some ; , I :::: ; :::: r, 
1.J 

delta. 

LEMMA 4.4. Let (A,B) be algebraically stable for G and let u be the pre

consistency vector. Then Gu= 0 implies that (A,B) can be reduced to a 

method without internal stages. 

T PROOF. Using A2u = u we find that (G-A2GA2)u = 0. Thus, algebraic stability 

and lemma 3.2 implies M(~) = 0, which yields DA1u-B~GA2u = De-B~Gu =De= 0. 

Consequently, the diagonal matrix D contains zeros only and according to 

lemma 3.5 (A,B) can be transformed to form (3.3) with s 1 = rank(D) = 0. D 

LEMMA 4.5. Let; (A,B) be consistent and (A,B) a reduced method with at least 

one internal stage. Then (A,B) is consistent. 

PROOF. Assume (A,B) is of form (3.3) and u is the pre-consistency vector. 
2 

Then, I A2I u = 
r1 r1 

s 1 ~ I, I u is a 

I A2u = I u and I A1I 2 u = I A1u = I e. Because 
r1 r 1 s1 r1 $1 s 1 

pre-consistency vector for the reduced method. Moreover, 
rl 

let v be the additional vector, then we deduce from (2.6) that 
2 2 I A2I v+I B2I e = I (A2v+B2e) = I (u+v), so I vis the additional 

r1 r1 r1 s 1 r 1 r1 r1 
vector of the reduced method satisfying (2.6). D 

Now, let (A,B) be irreducible, stable for G with e 1 as pre-consistency 

vector. Let RTR be the Cholesky decomposition of G, and r = e~Re 1• Then 

one easily verifies that the transformed method (3.1) with T = rR-l and 

P = I is algebraically stable for r 2I. But it is obvious from the definition 



of algebraic stability that a method stable for a G is also stable for a.G 

if a.~ 0. Using corollary 4.2 we obtain 
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LEMMA 4 .6. Any irreduaib"le, pre-consistent stable method is equivalent with 

a method which is stab"le for the identity matrix and has e 1 as pre-consis

tency vector. 

5. EXAMPLE 

In this section we present a simple example in order to illustrate the 

transformations (3.1) and the t:'eduction process. The example shows that the 

reduction need not be uniquely determined. 

Consider the method with r = 4, s = 3 given by 

[3;2 -3;J [~ 
0 o] A = -1 -1 , Bl = 

1 /~ 

, 
1 

-1 /2 1 /2 0 

7/8 -1 /8 1/8 1/8 1/4 1/4 3/8 

A = 2 -3/8 5/8 3/8 3/8 , B2 = 1/4 -1/4 1/8 

3/8 3/8 5/8 -3/8 1/4 -1/4 -1/8 

1/8 1/8 -1/8 7/8 1/4 1/4 -3/8 

After some calculations we find out that the method is algebraically stable 

for G = p(l,-1,-1,l)T(l,-1,-l,l)+q(3,-1,1,-3)T(3,-l,1,-3), with p > 0 and 

q > O, whereas the diagonal matrix Dis equal to diag(O,p,4q). Thus, acr 

cording to lenuna 3.5, the method is reducible and it can be transformed 

with r 1 = s = 2. 
1 T T 

As the vectors v 1 = (1,1,1,1) and v2 = (-1,-3,3,1) span the null space of 

G, we might choose the transformation matrix T1 = (e 1,e2,v1,v2). Let the 

permutation matrix P interchange the first and third column. Then the 

transformed method (A,B) is given by 
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[3/2 -1/2 0 ~] ['t 
0 ~] ~ 

Al = I - I 0 Bl = 
I I 4 0 

0 0 0 -I/2 0 

A2 ·- 0 0 0 B2 = -3/2 0 

0 0 0 -1/2 1/2 1/4 

1/8 1/8 0 0 1/8 -1/4 0 

One easily verifies that the transformed method is algebraically stable for 
T T T G = T1GT 1 = p(I,-1,0,0) (I,-I,O,O)+q(3,-I,O,O) (3,-1,0,0) and that 

D = pTnp = diag(4q,p,O). 

Consequently, the reduced method is stable for 
T T G1 = p(I,-1) (I,-l)+q(3,-I) (3,-1). However, this method which is obtained 

by taking the upper left hand matrices of the transformed method, is re

ducible too. 

In fact, when we denote the upper left hand matrix in A1 by A1, 1 the trans
-I 

formation T2 = AI,I transforms the reduced method to 

[ J - [:/2 ] Al = 
' Bl = , 

[~ l - [ :] A2 = B2 = ; 

-this method is algebraically stable for G = diag(4q,p). Following lennna 

3.8, we find that the method (A,B) is stable for both G1 = diag(O,p) and 

G2 = diag(4q,O). Actually, (A,B) reduces to two independent methods, 

Backward Euler and the implicit midpoint rule, which are both algebraically 

stable. 
~ ~ Finally, we remark that the pre-consistency vectors of (A,B), (A,B) and 

(A,B) are given by u = ¼(3,-I,I,I)T, T~ 1u = ¼(2,-2,1,0) and 
-1 -1 

T2 r2T1 u = !(I,-1) respectively. 
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