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Reducibility of algebraically stable general linear methods

by

K. Dekker

ABSTRACT

An equivalence relation on the class of general linear methods is de-
fined and it is shown that the property of algebraic stability is invariant
for this relation. Methods which are algebraically stable for a singular
matrix G turn out to be reducible. On the other hand, algebraically stable
reducible methods are algebraically stable for a singular G. Each algebrai-
cally stable irreducible method is shown to be equivalent with a method

which is stable for the identity matrix.
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1. INTRODUCTION

In considering the applicability of a numerical method for the solu-
tion of stiff non-linear ordinary differential equations, much attention has
been paid to the class of dissipative equations. DAHLQUIST [5] introduced
the concept of G-stability for linear multistep methods and BUTCHER [3] the
idea of B-stability in the case of Runge-Kutta methods. In 1979, BURRAGE
and BUTCHER [1], and independently CROUZEIX [4], showed that B-stability is
equivalent to a new stability property, so called algebraic stability, under
very mild restrictions (see also HUNSDORFER and SPIJKER [8]). In a more
recent paper [2], they generalised the concept of algebraic stability for
general linear methods.

The analysis and construction of algebraically stable general linear
methods seems to be rather cumbersome [6]. The aim of this paper is to in-
troduce some simplifications in order to facilitate the analysis.

In section 2 we present the class of general linear methods and the
definitions of algebraic stability and consistency.

In section 3 we introduce an equivalence relation between general linear
methods and show that algebraic stability is a property of equivalence .
classes. We define reducibility of a method and prove in subsequent lemmata
a relationship between reducibility and singularity of certain matrices G and
D which appear in the definition of algebraic stability. As far as the ma-
trix D is involved, these results might be regarded as a generalization of
a similar property of implicit Runge-Kutta methods (see HAIRER [7]). As our
main result we have that algebraic stability of an irreducible method im-
plies that both G and D are positive. Moreover, any stable irreducible
method is equivalent with a method which is algebraically stable for G being
the identity matrix.

In section 4 we show that consistency is a property of the equivalence
classes, and that each reducible consistent method can be reduced to an ir-
reducible consistent method.

Finally we present an example in section 5 in order to illustrate the
equivalence relation and the process by which a reducible method can be

reduced.



2. SURVEY ON GENERAL LINEAR METHODS
In the solution of the initial value problem
m

(2.1) y' ) = £5),  y(xy) =y, £ KN >R,

we consider the step by step method with r external and s internal stages

, r s
Yf‘n) = Z a,(!)ygn—l) + h b.(!)f(YSn)), = 1,2,--',39
(2.2) B B =t
an) = i agg)ygn-l) + h y bgg)f(an)), i=1,2,...,r.
tooogm B =1

The partitioning of such a linear method was first proposed by BURRAGE and
BUTCHER [2] and a representation can be given by the partitioned matrix

[2; g;] . In the text we will wuse the shorthand notation (A,B).

BURRAGE and BUTCHER [2] analyse the stability behaviour of these methods

for monotonic problems, i.e. equations satisfying for all u € Rr"
(2.3) <u,f(u)> < 0,

where <, > is some real pseudo inner product. They define a pseudo inner
m .
product for sequences of r vectors from R , say U and V, based on the immer

product on ]f? and a symmetric non-negative definite matrix G:

r
<U, V>, = '2 8y 5<u; V5>

DEFINITION 2.1. A method (2.2) is said to be monotonic if for any monotonic

problem (2.1) there exists a non-zero non-negative symmetric matrix G, such

that the computed results satisfy ﬂy(n)HG < ﬂy(n_l)ﬂc.

DEFINITION 2.2. The general linear method (2.2) is algebraically stable for

a given matrix G if a non-negative diagonal matrix D exists such that the

matrix



T T T
G - A2GA2 AID AZGB2

(2.4) M

T T T
DA1 B2GA2 BID +‘DBI B2 9

is non-negative definite.

Throughout this paper we will assume that G is symmetric and non-negative.
It has been proved [2] that algebraic stability for G implies monotonicity
in the norm induced by G. Application of scheme (2.2) to the equation y' = 0

for y €e I ¢ R shows that any sensible method should satisfy

DEFINITION 2.3. A general linear method is pre-consistent if there exists

r .
a vector u € R", known as the pre-consistency vector, such that

(2.5) Au = e, e =[1,1,...,11% ¢ B®,

A2u u.

In addition, a method is consistent if a vector v exists, such that

(2.6) sz + Bze =u + v.

3. REDUCIBILITY

The class of general linear methods, defined by (2.2), contains a
variety of schemes, many of which bear a close resemblance. For example,
when we multiply the solution vectors y(n), computed with some scheme, with
a non-singular matrix, we obtain a different scheme, which behaves similar-

ly. In this section we will try to give a standardised formulation of (2.2).

DEFINITION 3.1. Two general linear methods (A,B) and (K,E) are said to be

equivalent iff there exists a non-singular matrix T and a permutation ma-

trix P, such that

~ T T

A1 B1 P AIT P B]P
(3'1) ~ ~ C —1 —1 )

A2 » B2 T 'AZT T B2P



LEMMA 3.1. Let (A,B) be algebraically stable for G and assume that (A,B)
and (A,B) are equivalent. Then (A,B) is algebraically stable for T gT.

PROOF. The algebraic stability is a direct consequence of the non-negativity
T
T 0 ] T 0
of {0 PTJ M [0 P] . 0
Given a linear method, we can form new schemes by inserting irrelevant in-
ternal stages, i.e. not affecting the final result; alternatively, we may
combine two methods into formulation (2.2) or add some external stages. In

our analysis we wish to avoid these methods and consider irreducible methods

only.

DEFINITION 3.2. A method is called reducible if it is equivalent with a

me thod (X,g), such that the following equalities hold for s, <sor

<
1 < rl <r

(a) ;g!) =0, 1= ],2,,,,’31’ j =1, +1

1] 1 ] 3L
~(2 .
(b) aéj) =0, i= 1,2,...,r1, j= rl+1,...,r,
3.2
(3.2) ~(1) _ 1 e
(c) bij =0, i=1, s+-+35 5 jo=s*l..058,
~(2 . .
(d) béj) = 0, i= 1,2,...,r1, j= sl+l,...,s.
In particular, we call the method s-reducible if s, <s and r o =rx and r-
reducible if r, < r and s, = s.

1 1

Because of the equivalence relation we may assume that a reducible

method can be written as

- | - _ Lo
A 10 B '
1,1 | 1,1
Al = __1___% _____ R B, = __:__% _____ s
A2 1413 Bi21 B3
(3.3) ! B L ' .
_ | 3 ) Do
A 0 B, !0
A= |21 2,1 1
27 |mtetemm |, By = |t ,
Ay 2 189 5 i By,21 B2,3
L |
|




where A e R , A € R , B e R | l,-B21
9

1,1 € R

DEFINITION 3.3. The general linear method~[A1,1 Bl,l}, defined by (3.3),
is called the reduced method of (A,B). A2,1 B2,1

In the following lemmata we will establish a relationship between re-
ducibility and singularity of G and D; moreover, we show that reduction
preserves algebraic stability. At first, we state a useful property of sym—

metric non-negative matrices.

LEMMA 3.2. Let M be symmetric and non-negative. If v is a vector such that

vIMy = 0 then it is an eigenvector of M with Mv = 0.

PROOF. For any vector w and arbitrary constant € non-negativity implies that
T
(v+ew) M(v+ew) = 0.

However, the term independent of € in this form vanishes, so that the coef-
ficient of € should be zero too. Since this holds for all w, the result
follows. [

LEMMA 3.3. Let (A,B) be algebraically stable for a non—singular matrix G.
Assume that the diagonal matrixz D from (2.4) is singular. Then (A,B) is

s—reducible.

PROOF. Let v be a vector from the null space of D. Then,
(0 VT)M(O) = VT(BTD+DB ~BTGB v = -VTBTGB v = 0 because M is non-negative
v 1 1 72772 2772 T

and G is positive. Thus, according to lemma 3.2, (B?D+DB1—B2GB2)V = 0 and

GBzV = 0, so that DBlv = 0 and B2v = 0, as G is non-singular.

Now, as D is diagonal, the null space of D is given by linear combinations

of the basis vectors ej, j= g+l,...,s (possibly after renumbering) .

DB]ej = 0 and Bzej = 0 imply (3.2c¢) and (3.2d) with r, =r and s, = s so

the method is s-reducible. [

LEMMA 3.4. Let (A,B) be algebraically stable for a singular matrix G and

assume that D is non-singular. Then (A,B) is r—reducible.



PROOF. Let w be a vector from the null space of G. Then, considering the

quadratic form (WTO)M(X) and using lemma 3.2, we find that DAlw = 0 and

GA2w = 0. Let T be a non-singular matrix, such that the last columns of T

r+1,.. ,¥ span the null space of G. Then, DA TeJ 0 for j = ;+1,...,r and

the non-singularity of D 1mp11es that (3.2a) holds. Moreover, GT T A TeJ =0,

2
J = r+1,...,r, implies that T(T A T)e lies in the null space of G; thus
(T A T) =0, i =1 2,...,r and we conclude that (3.2) holds with r, = T
and s, = s. O

1

Combining these lemmata we obtain

LEMMA 3.5. Let (A,B) be algebraically stable for a matrix G and assume that

at least one of the matrices G and D is singular. Let r" = rank(G) and
*

s¥ = rank (D) . Then (A,B) is reductble with s, = s* and r,=r.

PROOF. Let v be a vector from the null space of D and w a vector from the

nullspace of G. According to the proofs of the lemmata 3.3 and 3.4 we have

GBzv =0, DBlv =0, DAlw = 0 and GAZW = 0. Thus (3.2) with r = r*, s, =35

holds after a suitable transformation. [J

We remark that the converse statement of this lemma is not true, be-
cause we can construct reducible methods which are algebraically stable for
a non-singular G whereas D is positive, too. For example, the scheme con-
sisting of two algebraically stable irreducible methods which are computa-
tionally independent of each other. However, we will show that any reducible
algebraically stable method can be reduced to a method which is algebraical-
ly stable for a positive matrix G and a positive matrix D. For simplicity
we will assume in the sequel that a reducible method is already of the form
(3.3).

LEMMA 3.6. Let (A,B) be algebraically stable for G and assume that (A,B) <s
s—reducible. Then the algebraic stability condition is satisfied for a
diagonal matrix S, with rank(ﬁ) S
PROOF. Suppose D is the diagonal matrix from (2.4). Let IS be the diagonal
matrix with ones on the first s, diagonal positions and zeros elsewhere.

1
According to the non-negativity of M we have



Defining D = DlS and using BZIS] = B2, I B I. = IS Bl’ we obtain from

the expression

T~
G AZGAZ AD - A2G32 > 03
T T T
BA B2GA2 B,D + DB1 B,GB,
thus, in (2.4) we can replace D by D. Moreover, rank(s) < rank(IS ) =)s1. 0

1
LEMMA 3.7. Let (A,B) be algebraically stable for a positive G. Then (A,B)
is equivalent with a method which is algebraically stable for I.

PROOF. Let LTL (L lower triangular) be a Cholesky decomposition of G. Then

the matrix

2 2 1 2
-1 T T -1 T T TT

DAL "-B_L LA L " B.D +DB . -B_LLB

) oo -1 AT a7t LT D TATLTLB2
M =
1 2 1717771 72 2

0 I 0 I

L AlL_l B,
is non-negative and therefore the method (A,B) = algebraically

-1
stable for I. [ LAL LB

2 2-

LEMMA 3.8. Let (A,B) be algebraically stable for G = I and assume that

(A,B) Zs r—reducible. Then (A,B) is algebraically stable for G = I where
Irl denotes the square matrix of dimension r with ones on the first r diago-
nal positions and zeros elsewhere.

PROOF. Using I_. A, I =TI A _and A I = A we obtain
—_— r T 2 I'r 1

T
IrlA2 A]D AZIr]BZ _
T

1 2

1 1 1
I 0 I 0 I -A
1 M 1 =1 T T
0 T 0 I DA.-B.I A DB +B D-B.I B
- 1 r, 2 1 .

1 2’r
A 1
T T 2°r
- [Ir A2 B2] (1 Ir ) { 1] .

NHE N H

1 1 B2



The second term on the right hand side is obviously non-negative; therefore,
non-negativity of M implies non-negativity of the first matrix on the right

hand side, so we conclude that (A,B) is élgebraically stable for I . 0

We remark that we have chosen a peculiar decomposition of G in Lemma
3.7 in order that the transformations LAzL_], LB2 and A]L-l preserve the
form of these matrices if they are of the reducible form (3.3). Combining

our previous Lemmata yields our main result.

THEOREM 3.9. Let (A,B) be a general linear method which is algebraically

stable for G and let D be the diagonal matrix in (2.4). Then one of the

following statements holds.

- (1) (A,B) is irreducible and both G and D are positive.

(ii) (A,B) Zs algebraically stable for G and D such that 1 < rank(G) <
rank(G) .

(iii) (A,B) <Zs algebraically stable for G and a diagonal D such that
rank(B) < rank (D).

(iv) (A,B) can be reduced to a method which is algebraically stable for a
positive G, and either D is positive or D is empty.

PROOF. At first we observe that irreducibility implies (i) as a consequence
of lemma 3.5. Secondly, if at least one of the matrices G and D is singular,
the method is reducible according to this lemma. When we choose the trans-
formation matrix T in such a way that the last columns span the null space
of G and define the positive square matrices G and D by omitting the zero
rows and columns from TTGT and PTDP, it is obvious that the reduced method
is algebraically stable for G and D. We note that D might be empty, if D is
a zero matrix. Next, assume that G and D are positive and (A,B) is s-redu-
cible. Then there exists a D such that rank(B) < s, <s = rank (D) according
to lemma 3.6. Finally, let G and D be positive and suppose (A,B) is trans-

formed into the form (3.3) with r < r. Let LTL be a decomposition of G.

1
Application of the transformation (3.1) with T =L 1 yields a method which

is algebraically stable for I, according to lemma 3.7. Moreover, the trans-
formation preserves the special form (3.3), so the transformed method is
still reducible with r, <r. Thus we can apply lemma 3.8 and find that the

transformed method is algebraically stable for Ir . Therefore, the original
1



method is stable for LTIr L, according to lemma (3.1). [
1

DEFINITION 3.4. A general linear method (A,B) is said to contain (K,g) if

either (K,E) is equivalent with (A,B) or (K,E) can be reduced from a method

which is equivalent with (A,B).

COROLLARY 3.10. Any algebraically stable method contains an irreducible
method which is algebraically stable for a positive matrix G and a positive

diagonal matrix D.

LEMMA 3.11. Let (A,B) be irreducible and algebraically stable for G. Then
the dimension of the null space of A)-I 18 at most s.

PROOF. Suppose that the dimension of the null space of A -I is larger than

2

s. Then we have at least s+] independent vectors VisVgs sV such that
. . . . . . +
AZVj = vj. Thus, there exists a non trivial linear combination v = Z§_: ajvj

satisfying DAlv = 0. Moreover, A2v = v. However, these relations imply that
the method is reducible, which is a contradiction. Thus the assumption is

not valid and we conclude that the dimension is at most equal to s. [
4., CONSISTENCY

In this section we show that pre-consistency and consistency properties
of a general linear method are preserved by the transformation and reduction

processes of the previous section. Moreover, we prove that any pre-consis-

tent method is equivalent with a very special method.

LEMMA 4.1. Let (A,B) and (X,E) be equivalent. Then (A,B) is consistent iff

(K,E) 18 comstistent.

PROOF. Assume (A,B) is consistent with pre-consistency vector u and the

additional vector v. Assume that the equivalence relation is determined by
the transformation matrices T and P. Then we have A T—lu = T-IA TT_]u =

-1 ~ -1 T -1 T -1, 2 2
=T 'u and A]T u=P"P A]TT u=Pe=e, soT uils a pre—consistency vec-

tor of (K,E). Moreover, A T_lv+§ e = T_lA TT_lv+T_1B Pe = T-](A2v+B2e) =

2 2 2 2
=T 1(u+v), according to (2.6). Thus (A,B) is consistent. [J
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Choosing ‘a transformation T with the pre-consistency vector as its

first column, we can transform a method into a standardized form:

COROLLARY 4.2. A pre—-consistent method is equivalent with a method having

e, = [],O,...,O]T as pre-consistency vector.

In the sequel we will implicitly assume that a method is consistent
and we will call a method stable if it is algebraically stable for some non-

zero matrix G. Observing that the matrix A, has an eigenvalue equal to one

2
and that stability implies that A, is power bounded, we arrive at (see [6]).

LEMMA 4.3. A stable general linear method (A,B) is equivalent with a method
~ T~ T . ~ ~ ~
(A,B) such that eiAzej = ejAzei = sij’ i=1,2,...,r, for some r, 1 <r < r,

where 6ij denotes the Kromecker delta.

LEMMA 4.4. Let (A,B) be algebraically stable for G and let u be the pre-
consistency vector. Then Gu = 0 implies that (A,B) can be reduced to a

method without internal stages.

PROOF. Using A2

and lemma 3.2 implies M(g) = 0, which yields DA]u-BgGAzu = De—BgGu =De = 0.

Consequently, the diagonal matrix D contains zeros only and according to

u = u we find that (G—AgGAZ)u = 0. Thus, algebraic stability

lemma 3.5 (A,B) can be transformed to form (3.3) with s, = rank(D) = 0. [

LEMMA 4.5. Let (A,B) be consistent and (X,E) a reduced method with at least

one internal stage. Then (K,E) 18 consistent.

PROOF. Assume (A,B) is of form (3.3) and u is the pre-consistency vector.

Then, I_ A I2 u I Au=I uand I A 12 u=I Au=1 e. Because
ry 2'r, ry 2 T s 1" s1 1 s

5 21, Ir u 1s a pre-consistency vector for the reduced method. Moreover,

let v be the additional vector, then we deduce from (2.6) that
2 2 . ..
IrlA21r1v+Ir1B21S e = Ir (A2v+B2e) = Irl(u+v), so Irlv is the additional

vector of the reduced method satisfying (2.6). [

Now, let (A,B) be irreducible, stable for G with e, as pre-consistency

1

vector. Let RTR be the Cholesky decomposition of G, and r = eTRe]. Then

one easily verifies that the transformed method (3.1) with T = erl and

P = I is algebraically stable for rZI. But it is obvious from the definition
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of algebraic stability that a method stable for a G is also stable for oG

if o > 0. Using corollary 4.2 we obtain

LEMMA 4.6. Any <rreducible, pre-consistent stable method is equivalent with
a method which is stable for the identity matrix and has e
tency vector.

, as pre-consis—

5. EXAMPLE

In this section we present a simple example in order to illustrate the
transformations (3.1) and the reduction process. The example shows that the
reduction need not be uniquely determined.

Consider the method with r = 4, s = 3 given by

1 1 1 1 0 0 0
Ay=| 1 -1 -l 1|, B, =|0 1 of ,
3/2 -1/2 1/2 -3/2] 0 0 1/2]
7/8 -1/8 1/8 1/8] [1/4 174  3/8
A,= -3/8 5/8 3/8 3/8|, B, = 1/4 -1/4 1/8
3/8 3/8 5/8 -3/8 1/4 -1/4 -1/8
1/8 1/8 -1/8 17/8] 1/4 1/4 -3/8

After some calculations we find out that the method is algebraically stable
for G = p(1,-1,-1,1)Y(1,-1,-1,1)+q(3,-1,1,-3)*(3,-1,1,-3), with p > 0 and

q > 0, whereas the diagonal matrix D is equal to diag(0,p,4q). Thus, acr
cording to lemma 3.5, the method is reducible and it can be transformed

with r1 =s = 2.

T
As the vectors v, = (1,1,],1)T and v, = (-1,-3,3,1) span the null space of

G, we might choose the transformation matrix T = (e],ez,vl,vz). Let the

1
permutation matrix P interchange the first and third column. Then the

transformed method (K,E) is given by
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[3/2 -1/2 0 0] 1/2 0 .0
Kl = 1 -1 0 of , El =] o 1 o] ,
| 1 1 4 | 0 0 0
[ 1 0 0 0] 1 -1/2 0
A, = 0 1 0o o , B,-= 1 -3/2 0
0 01 0 -1/2 1/2 1/4
[1/8 1/8 0 0] 1/8 =1/4 0

One easily verifies that the transformed method is algebraically stable for

~

G TTGTI = p(1,-1,0,0) (1,-1,0,0)+q(3,-1,0,0) (3,-1,0,0) and that
D =PIpp = diag(4q,p,0).

D

Consequently, the reduced method is stable for

G] = p(],—l)T(l,—1)+q(3,-1)T(3,-1). However, this method which is obtained
by taking the upper left hand matrices of the transformed method, is re-
ducible too.

In fact, when we denote the upper left hand matrix in Kl by A1 1 the trans-—
b

formation T2 = A;]] transforms the reduced method to
’

[1 0] [1/2 0]

A] = E) B] = bl
0 1] 0 1
(1 0] [1 0]

A2 = E ) B2 = E)
| 0 1] K 1]

this method is algebraically stable for G = diag(4q,p). Following lemma

3.8, we find that the method (K,ﬁ) is stable for both G, = diag(0,p) and

1
G2 = diag(4q,0) . Actually, (A,B) reduces to two independent methods,

Backward Euler and the implicit midpoint rule, which are both algebraically

stable.

Finally, we remark that the pre-consistency vectors of (A,B), (K,g) and

(,B) are given by u = 1(3,-1,1,1)7, TIlu = 1(2,-2,1,0) and

T;IIZT;]u = 1(1,-1) respectively.
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