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Defect correction for the solution of a singular perturbation problem*) 

by 

P.W. Hemker & P.M. de Zeeuw 

ABSTRACT 

A method is described for the accurate discretization of a differential 
equation in which te highest derivative is multiplied by a small parameter. 
It is well known that for such singular perturbation problems with a strongly 
asymmetric differential operator almost all discretizations are either unsta­
ble or inaccurate or direction dependent. By the combination, in an iterative 
process, of an inaccurate stable and an accurate unstable scheme we obtain 
an accurate stable solution, without adapting the scheme to the flow direction. 
In fact, two approximate solutions are obtained, that -uniformly in£- are 
both O(h2) accurate in the smooth part of the solution. The difference between 
both solutions can be used for the detection of the unsmooth parts. 

KEY WORDS & PHRASES: singular perturbation problem; defeat correction; 
stiff boundary-value problem 

*) This report will be submitted for publication elsewherer 



1 • INTRODUCTION 

An iterative process is used to obtain the accu­
rate solution of a singular perturbation problem. 
As a model problem we use the convection diffu­
sion equation 

-+ 
(la) -E~U +a.Vu= f, z 
on a bounded domain Qc]R , with either Dirichlet 
or natural boundary conditions 

(lb) u = g on an 1, 
-+ (le) nEVu =hon an2 , 

where~ is the outward normal on the boundary 
an= an 1uan2 • 

The problem is written in symbolic form as 

(2) LEu = f. 

It is well known that for such a problem with a 
strongly asymmetric differential operator, the 
usual discretizations are either unstable (the 
usual symmetric discretization methods: central 
differences, finite elements or Bubnov-Galerkin 
methods) or inaccurate (artificial viscosity) or 
direction dependent (various streamline-upwind 
or Petrov-Galerkin discretizations). By the 
combination, in an iterative process, of an in­
accurate stable and an accurate unstable scheme, 
we construct a solution which is accurate, 
uniformly for all E, without adapting the scheme 
to the subcharacteristic directions (flow-direc­
tions) in the problem. 

In the iterative process two standard discreti­
zations of (2) are used: 

(3) LE,h uh= fh, 
a standard accurate discretization (e.g. standard 
central differences or a finite element discreti­
zation with piecewise linear test and trial 
functions on a regular triangularization), which 
is unstable for e:«h , and an artificial diffusion 

(artificial viscosity) discretization 

(4) La,h ¾ = fh, 
which is the same as (3) but with a= E + O(h), 
whence (4) is stable. It is well known [6) that 
both discretizations yield bad results for small 
ratios E/h. 

We combine the discretizations (3) and (4) in an 
iterative process of defect correction type. In 
case of a linear problem an elementary defect 
correction process generates a sequence of appro­
ximate solutions u< 1 ), i = I ,2,3, .•••• , by the 
iteration (iterative refinement) 

u(O)= 0 
' 

(5) Lu(i+l) = f - Lu(i) + Lu(i). 

If lim. u(i)= u* and Lis injective, then u* 
is the §6iution of the "target equation" 

Lu= f. 

Lis usually some approximation to L, for which 
the equation (5) is readily solved. 

For our problem we study a "mixed" defect correc­
tion iteration with two target operators and two 
approximate operators. They are combined as: 

(6a) 

(6b) 

u(O)= O, 

1 u<i+D= f 
~1 (i+I) I 
L2u = f 2 -

If this iteration converges, 

utions" uA = lim. u (i) and 
1-+«> 

With f 1 = f 2 =: f, obviously 

by 

we obtain 

uB = lim. 
1--

UA is characterized 

two "sol­
u(i+D. 

~ ~ ~-I ~ A ~ ~-I 
(7) [L2-<L2-L2)Ll (LI-Ll)]u = [I-(L2-L2)LI ]f 

and uB is given by a similar equation. 



2, THE DISCRETIZATION 

To obtain an approximate solution for (2), we use 
the process (6) with f 1 = f 2 = fh and with the 
operators 

L e:,h' 11 = L a,h' 

L a,h' 12 = 2 diag (La,h) =· D, 

In this way the second iteration step (6b) is a 
damped Jacobi-relaxion-step for the solution of 
(4). The first step (6a) is an order improving 
defect correction step towards the solution of 
(3), where the defect defining operator is simply 
given by 

( 9) E := 1 1-1 1 = (a-e:)~h. 

A B 
uh and uh are now characterized The two solutions 

by 

(IO) (1 h + e:, 

(II) (L h + e:, 

By using local mode analysis [4] we can show that, 
for the smooth parts of ~he solution, {and~ 
are both accurate of O(h ). Furtherf the opera­
tors L h + L hn-lE and L h + ED- L hare e:, o., e:, Ct, 

stable and the numerical boundary layers extend 
over a region of only O (h) in the boundary layer 
region [SJ. 

Remark. 

It is not possible to find an accurate approxima­
tion for our problem (I) by application of the 
simple defect correction (5) alone. If we apply 
(5) with L = L h and i'. = L , for e:«h iteration 
would not conv~tge to a senitRle solution because 
of the instability of L . It would converge to 
the unwanted solution of•£-he "target problem" (3). 
Theoretically, already a single step (Qr a few 
steps) of (5) result in a 2nd order accurate method 
cf. [2] Satz 2.2 , from which follows 

II uh - ¾ull s: ch2 11 u"II • 

Here ¾u denotes the restriction of the true so­
lution u to the mesh. However this is not a use­
ful errorbound in our case, where 11 u"ll may be 
very la2ge. In fact, for small e:, we do not find 
the O(h) convergence in practice for any rea­
sonable value of h. This is shown in table I. 

e: = I ~D D A B 
uh ¾ ¾ 

h = 1/8 0.630 0.0740 0.0780 0.0693 
ratio 2.4? 3.65 3.64 3.46 

h = 1/16 0.0255 0.0203 0.0214 0.0201 
ratio 1. 71 4.02 4.01 3,89 

h = 1/32 0.0149 0.00505 0.00533 0.00516 

Table la. 

2 

10-6 uCD D A B e: = h ¾ ¾ ¾ 
h = 1/8 0.790 0.634 0.608 0.459 

ratio 1.37 1.76 3.82 3.48 
h = 1/16 0.578 0.360 0.159 0. 132 

ratio 1.52 2.08 4.75 4.54 
h = 1/32 0.380 0.173 0.0335 0.0291 

Table lb. 

Table I shows the error in the smooth part of the 
solution in the max-norm. 

~~): the solution after one step (6a); 

¾ : the solution after two steps (6a); 

ut, u~ obtained by iteration of (6). 

The problem: e:~u + u = f on the unit square; 
with the Dirichlet b6undary data and the data f 
such that 
u (x,y) = sin(nx)sin(ny) + cos(nx)cos(3ny) + 

+ (exp (-x/e:) - exp (-I /e:))/ ( I-exp (-1 /e:)). 

3. RELATION WITH MULTIGRID TECHNIQUES 

The algorithm in section 2 can be considered 
independent of multigrid techniques. However, it 
is related to previous work done on multigrid 
methods. 

The use of defect correction in combination with 
a multigrid algorithm is already mentioned by 
Brandt[!] and is theoretically studied by Hack­
busch [2,3]. They consider a multigrid algorithm 
which, in the elementary form of a two-level 
algorithm, can be described by a process (6) as 
well. Then, (6a) is a "coarse grid correction" 
which is now written in the form 

(i+I) = (i) + L-1 (f -L (i)) 
u u I l 1u , 

because~-! 
1 1 is of deficient rank: 
~-] -1 
1 1 = Ph,2h1a,2h R2h,h' 

where Ph 2 and R2 hare the grid transfer 
operator~ Retween he fine and the coarse grid; 
(6b) denotes a sequence of relaxation sweeps. 
In the standard two-level algorithm both target 
operators are the same: 1 1 = 1 2• In combination 
with defect correction (non-standard), the ope­
rator 1 1 corresponds to a more accurate discre­
tization then 1 2• 

In the approach we discuss here, we differ from 
[1,2,3] by using a full rank operator 11 = L h' 
We use the multigrid algorithm only to a, 
solve efficiently the equation (6a). 

4. THE DIFFERENCE BETWEEN {AND~ 

Considering the difference~ - { of the 
solutions of (IO) and (11), we find the 
following 



( l 2) 

Proof 

Because 0f (bb) we have 

D (a~ - u~) L :1,8 - f 
t,h n h 

and hence,by (II), 

or 

(1 5) u 8 -· .. , La,h h "1, 
"' A ." uh . 

From ( n 3) and ( 1 5 ) the le~ .. a fo.t lows 

B A From (12) we see that the differ<i'nce uh - uh is 

lftrge for large ~~u:. In the regions where 
1\,- ut is large, the 2nd order diffen,nces ot 

u~ are large. Here the solution cannot aceurate­
ly be represented. Thus,we may use the differ­
ence u:-ut as an indicator where the mesh should 
be refinea for a better approximation of the 
solution. 

To study the local behaviour of the difference 
u;-uA in more detail, we resort to the local 
rrride~~nalysis [ l }. We consider the problem (la) 
on R" and form the discrete operator L h over 
all R 2 . As a forcing function we takes' the 
umode 11 

f, (jh) 
,l 

ijh(;.; 
e ; 

1 
j ,,z~ 
Re(hw) 

Now the solutions A and uB are studied by 
Fourier analysis. ife note ~hat the Fourier 
transform is a norm-preservin~ bijection between 
the l 2 (a:2) and the L2 ([-r.,+r.]~) functions, i.e. 

i! u Ii ii G !! 
i.•here ~ is the Fourier transform of u. 
From ~ derive 

(16) u.-u~=FT(Hon)diag- 1(L h)th n n a, 
A 

) = u. 
ti 

A a-£( . 2( h''') . 2( h/Z))AA =: a-£ = - 2; sin w1 ,~_+sin w2 J uh 2a s2 
'½i' 

and from (lO) we find 

(17) f ,AA - =~~s 2 (1+~=£s2) + ~! T (1+~=£s2) 
h1 uh - h" 2E h 2'.ll ' 

I (' ' ) . • • where 4iT,h = LO hlW 1s the characcer11t1c 
trigonometric polynomial for the reduced 
difference operator. 

In previous work [4,5] we derived from (17) that 
~ ~s bounded, uniform in£, Moreover, u.A is 
0th~) accurate in the smooth parts of th~ 
solution. We also showed that, for sma~l cA at 
boundary or interior layers the error in~ may 
be 0(1),uniformly in£. In these regions (where 
the discrete solution is not able to represent 
the true solution anyway) the numeric.al approx­
imations may show oscillations. However, the 
discretization (lO) is asymptotic.ally stable and 
the critical regions near the layers have only 
O(h) width. 
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T(\ s~·t~ th~-: cf'!ei.:t ,,f b ~.- U er. tb~ .S?pr1.,xi.cu.tiouw 
\.:.::• ~t~idy ~epar;it~ly tl'i.- "11Jw> 11 .und th~ "high" 
frequet~·c·it:16 in the tr-:~~ ?So1utirm .. Tbe frequ,;nci«M 
art.• cdl led 11hig,h 1' i:ir f'low 1~ with rt.:ftl!i:r~ncw: to tht: 
i:w.~-:t,t:, ua,~d i,si1:.e h_). For ::h.~ 1~1~~1 frequent~'ii:s in 
th1.~ :.•".11:Jtim, ci,,.7 e,.~ (:orrn~idit?.r •• fixt:-d ,.,., and let h-.,.· O. 
F•.}r tht' 11hi~hn f r~;qut'!acii~Si ~·;.;: c,.)n~id«r ~h fi-Jl:.ed 
,an.d Iet: ~1'-,-(L Regi~·i.1~ whcrtt~ the molutioo ii 
sr.iouth .an:1 charact.cri1:ed by 11.;w fr~qu€ncieft~ 
Region;!; w-hcrt: t:he mesh i~ tor: c-oart~ tu repr~­
s~nt ~ sol~JtiQn prr,·,tH.~riy,flrli! dot:linated :)y high 
fr,equencies .. 

Now '.It• us,~ ( lo l to ~~e how u"-uA b~hnv~:3 it1 th~ 
'" h 1 h hf . different regions. 

S2 . ~ 
' sin ... (i"'!h/2) + 

find 
fl A 1 

u -u 

n•r Le .ow roequen;::1e11 

sin2{~~h/2) ~ 0(h2) and we 

,, C ~=~ h2 
·:i 

u,A Ii 
t'l ll :1 h 

0 2 A Ji, 
C h~~ h t,.h ' 

Because 
that in 

u; is bounded!:t un.ifcrn, in ~ we 
ttle smooth part of the ~olution 

corn: l ude 
we have 

u~ - u~ !'. C h2 , 

with C independent of c~ 
For th~ high frequencies 
al so S ... ) t1.nd we find 

hence 

f~ '¾-i;~ !: ~f;f s2 

C h/ (h+c:). 
Hence, fur h<. r, 

,, B 
I, '½i 

c fixed, we find 

- u~ :1 = O(h} 
n 

and for s<h we find 

Ii B A ll 
"¾ - ¾" 

for the high frequencies. 

'.·I A 11 . uh 'I 

Hence we find that in the smooth part of the 
solufion (low frequencies) the difference 
u!l-ui is srn,all, whereas it may be large in those 
rggions of transition layers, where the mesh is 
not fit to represent the true solution. ln this 
way the difference u.B-ut behaves similar to the 

• • 11 .i A R, error 1n the approximation ~--11u. 

5. EXA."!PLES 

As a ~irzt example to show the behaviour of { 
and uh -u,, , we use the same equation as Hughes 
and Brool!s [ 6 J, 

-Etu + cos(e) u + sin(6\ u ; 0 
X ' y , 

on the unit square, with Dirichlet boundary _6 
conditions at the inflow boundary ands= 10 

(0, I) 

flow-
direction 

e 
(O,A)IL--­

(0,0)--------

Inflow boundary 
conditions 

u(x,O) l, 0 s X s I • 
u(O,y) l, 0 s y s A, 
u(O,y) - 0, 2c y > A. 

( l ,0) A = 3/16. 
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At the outflow boundary either natural or homo­
geneous Dirichlet boundary conditions are used. 
For L_ h we use the usual finite element discre­
tizatian with piecewise linear functions on a 
regular triangularization. 
Note: the way the squares are triangularized 
(1SI or IZI) makes no essential difference in the 
results. If the triangle division follows the 
internal layer, the numerical results are 
-of course- slightly better. In the figures 
the triangularization is indicated. 

In colmlOn with [6] we use as flow directions 
8 • 22.5°, 45° and 67.5°. 
In the figxres (I )-(7) we show tRe ~umerical 
solution uh and the difference uh-uh for the 
different cases. 

As a second example we use the variable 
coefficient problem 

-r6u + l.vu = 0 on [-1,+l]x[0,1], 

; • ( y(J-x2), - x(l-y2))T, 

with the Dirichlet boundary conditions 

u(x,y) • 
u(x,y) = 
u(x,y) = 
u(x,y) = 

I+ tanh(I0+20x), y=O, -I ,;x,sO, 
0 , y= I , - I s x s l , 
0 , x= l , 0 s y s I , 
0 ,x=-1,0<y,;I; 

and homogeneous Neumann boundary conditions at 
the outflow boundary: y=O, 0 < x < I. 
Asymptotically for E+O, the true solution is 
constant over the subcharacteristics and the 
outflow profile is the mirror i111111age of the 
inflow profile. 

(-1, I) 

flow \ 

(~l 
(I, I) 

(-1,0) 1--------t------.... (1,0) 
Inlet Outlet 

In the figures (8a) and (8b) we show the 
numerical solution t{ and the difference 
~-{. 
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