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Numerical aspects of singular perturbation problems*) 

by 

P.W. Hemker 

ABSTRACT 

In this paper a brief survey is given of the main problems that are 

encountered when singular perturbation problems are solved by numerical means. 

Some areas of current research are indicated. 

For a two-dimensional model problem an error estimate is given for the 

Hughes and Brooks Streamline-Upwind Petrov-Galerkin method. 

KEY WORDS & PHRASES: singular perturbation problem; stiff boundary value 

problems; Petrov-Galerkin method 

*) This report will be submitted for publication elsewhere. 



I. INTRODUCTION 

Five or six years ago the field of singular perturbation problems was an almost 

undeveloped area of numerical analysis. Now the interest in it has grown and the num­

ber of papers devoted to the subject increases with considerable pace. Was the pio­

neering work by A.M. Il'in [35], Pearson [45], Dorr [21] and Kreiss et al.[!] all de­

voted to difference schemes for two-point boundary-value problems, now the interest 

is shifting to 2-dimensional problems that are discretized mostly by finite-element 

type methods. The academic efforts approach more and more the engineering interests 

of methods for solving real-life problems such as the Navier-Stokes equations with 

large Reynolds number. 

The existence, for small values of a parameter e, of asymptotic expansions of 

the solution may do away with the necessity of special attention by numerical analy­

sis. Indeed, the solution of the reduced problem, obtained after putting e = 0, can 

often be considered as a standard problem, as can the numerical computation of the 

boundary layer(s) on stretched coordinates. As soon as an asymptotic analysis is 

valid and a few terms in the asymptotic expansion describe the solution sufficiently 

accurate, one usually can rely on standard techniques to obtain numerical approxima­

tions. 

However, numerical analysis of singular perturbation problems mainly concentrates 

on the following question: how to find a numerical approximation to the solution for 

small as well as for intermediate values of e, where no short asymptotic expansion is 

available. Or, more general, how to construct a single numerical method that can be 

applied both in the case of extremely small e and for larger values of e, when one 

wouldn't consider the problem as singularly perturbed any longer. 

Here two main difficulties arise from the numerical point of view. (I) In the 

solution of singular perturbation problems often boundary layers appear, which may be 
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very thin. In order to represent the solution by numerical means, a discretization of 

the region of definition Q is required. E.g. a (regularly or irregularly distributed) 

set of points is chosen inn, on which the solution is approximated. To represent the 

solution in the boundary layer either enough points should be placed in this layer or 

an a priori assumption about the shape of the boundary-layer solution is necessary. 

If the shape of the layer - or even its location - is unknown, this can yield an awk­

ward situation. (2) The second difficulty arises in the ·ca~e of elliptic singular per­

turbation problems, where - for larger values of£ - all commonly used numerical meth­

ods make essential use of the ellipticity of the equation. If the reduced equation 

is no longer elliptic, the numerical method fails for small£. In particular Finite 

Element Methods for the discretization of elliptic PDEs are well analyzed in the case 

of symmetric differential operators and small perturbations thereof. Many singular 

perturbation problems of interest, however, are given by essentially non-symmetric 

operators. 

Numerical means to handle the first difficulty (mesh construction) are "adaptive 

discretization methods". Here, the proper mesh on which the differential problem is 

discretized, is generated during the process that computes the approximate solution. 

Thus, the processes of discretization and solution of the discretized equation are 

closely interwoven. For two-point boundary-value problems significant progress has been 

made in this direction [2,3,46]. Two general purpose codes for these problems, that 

can also be used for singularly perturbed problems, have been cons~ructed by Lentini­

Pereyra and by Ascher-Christiansen-Russell [17]. The development of numerical me­

thods for adaptive discretization in two dimensions is only beginning. Thus far, a 

few attempts have been made for non-singular perturbation problems by Babuska and 

Rheinbold [6,7]. A program that implements an adaptive method is constructed by Bank 

et al. [10]. Some applications of the theory of Babuska to singular perturbation prob­

lems have been published by Reinhardt [48,49]. Apart from these results the subject 

seems to be completely open to research. 

The emphasis in the numerical analysis of singular perturbation problems thus 

fa-r lies with the 2nd difficulty: the construction and the analysis of methods for 

strongly non-symmetric operator equations. Here almost all research is devoted to 2nd 

order elliptic equations with a significant first derivative. The model problems most­

ly studied are: in one dimension 

(I. I) 

-Ey" + fy' + gy s, 

y(O) = a., y(I) f3' 

£ > o, 0 f,g,s E C (Q); 

and in two dimensions 

on n (0, I), 



-v (E'vu) + b'vu + cu f on Q C JR2 

(I. 2) u = g on rD 

ne:'vu = h on rN 

r D u r N = :rn, e: E. JR2x 2 a positive definite matrix, b E [c 1 (n) ] 2, with 17b 
c,fEC0 (n). 

0 and 

As was pointed out by Brandt [IS], if the more-dimensional problem is the final 

aim, the one-dimensional problem is often a real over-simplification. In the first 

place this is by the dimensionality of the problem itself. In two dimensions the 

shape of the boundary-layers may be much more complex than in the one-dimensional 

case. The second reason is directly related to the numerical approximation of the 

equation. If the 1-D differential equation is approximated by a difference equation 

( I. 3) 

the value y. is determined by the values y. 1 and y. 1, as is the case when the dif-
1. 1.- 1+ 

ferential problem is restricted to the interval [x. 1.x. 1]. Hence, the coefficients 
1- 1+ 

in (1.3) can be determined such that y. is aunroximated with an arbitrary high accur-
1. 

acy. This situation never occurs in the case of more dimensions, where the differen-

tial solution at a gri1point is not determined by its value at any finite number of 

neighbouring gridpoints. 

In this paper we first consider, in section 2, simple difference schemes for a 

I-dimensional problem and we show what numerical difficulties arise when the differ­

ential problem becomes singularly perturbed. Here we indicate one line of research: 

the search for e:-uniform methods. In section 3 we introduce global methods: colloca­

tion, Galerkin and finite elements, and in the next section we show how error esti­

mates for the usual methods degenerate for small e:. Here we mention the line of re­

search which, in 2-dimensional problems, applies Petrov-Galerkin methods for adapting 

the schemes to singular perturbations. In section 5 we describe the Hughes and Brooks 

Petrov-Galerkin method and in section 6 we derive an error estimate for it. Finally 

we give some bibliographical notes and indicate some other lines of current research. 

2. FINITE DIFFERENCE METHODS 

The simplest example to show what happens with the discretization of strongly 

non-symmetric problems by classical means is given by the equation 

(2. l) 
e:y" + y' = 0, on (O, I) 

{y(O) = O, y(l) = I. 

Central discretization on a regular mesh {O 

yields 

= 1 j x. -x. l = h } 
l 1.-

3 
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~c -y. = ,e: l. 

2 
e: (y. I - 2y. + y. 1) /h 

1.+ l. 1.-
+ (y . I - y . I ) / 2h = 0, 

1.+ 1.-

(2. 2) Yo= 0, YN = 1. 

Its solution reads 

(2 .3) i N 
y. = ( 1-r ) / (1-r ) , 

l. 

with r := (2e:-h)/ (2e:+h). The exact solution of (2.1) at x. is given by (2 .3) with 
l. 

r := exp(-h/e:). We see that 

and hence 

(2.4) 

I 2e:-hl exp(-h/e:) - --2e:+h 

ly(x.) - y. I = o«E-l) 
l. l. e; 

for c!:) + 0, 
e; 

for (~) + 0, 
e: 

for a fixed point x. in (0,1). The error is bounded by C(e:)h2 ; i.e. the approximation 
nd 1. 

is 2 order accurate, but the error constant C(e:) may increase intolerably as e: • 0. 

In fact we see that the discrete solution oscillates for 2e: < h, and (for even N) we 

find 

limy. 
e: • O l. 

i/N 

h ,,. __ 
2e:N 

(for even i) 

(for odd i), 

whereas for the true solution lim _,,_('\ y(x.) = 0. The large error for small e: is clearly 
e;-.,,, l. 

due to instability of the operator L.c since the eigenvalues of this discretized -h,e: 
operator are 

-2e: I ~ in L = - + - /4e:L-hL cos(--). 
1. h h2 N+l 

The simplest way to overcome this instability is to use "upstream" differences in­

stead of central differences, i.e. to take 

(2. 5) 
u _ 2 

L- y. = e: (y. I - 2y. t y. l) /h + (y. l - y.) /h -h,e: l. i+ l. i- i+ l. 
o. 

The solution of this difference equation is (2.3) with r := e:/(e:+h). Here we see 

and hence, for a fixed x. E (0,1), 
l. 



(2. 6) h ly(x.) -y. I = 0(-) 
l. l. e: for E. -+ O. 

e: 

This approximation is only 1st order accurate for h-+ 0, but here we see lim "' y. = O 
€"""7\/ l. 

for i > 0, i.e. the asymptotic behaviour of the true solution is reflected in its 

discrete approximation. This success of the "upstream" difference approximation de­

pends crucially on the choice of the right one-sided difference, which uses the "up­

stream" value Yi+! (i.e. away from the boundary layer). If we would have taken the 

difference approximation (y. -y. 1)/h for y'(x), then we would not have found a good 
l. I.-

approximation to y(x.) at all. 
l. 

(2. 7) 

We observe that 

LC 
h,e:+h/2 

i.e. the "upstream" discretization is equivalent with the central discretization if 

we replace the parameter e: by e: + h/2. The addition of the extra term +h/2 is called 

aritifiaiaL diffusion or artifiaiaL visaosity. 

The artificial viscosity formulation of the one-sided difference approximation 

can be used more generally for equation (I. I). Then the upstream discretization is 

equivalent with the central difference discretization, replacing e: by 

(2. 8) e: + h 1 f (x.) I/ 2 
l. 

hf(x.) f(x.)h . ( ]. ) ]. e: + sign 2e: 2 

Uniform numenaal methDds for singular perturbation prioblems 

Both the error bounds (2.4) and (2.6) are of the form 

Jy. -y(x.) I s C(e:)hP, 
l. l. 

the error is of order p, but the error constant depends one:. In (2.4) the error 

really degenerates fore: • 0, but also in (2.6) we cannot improve the bound so that 

C(e:) is independent of e:. Indeed, if we set i = I we find (Il'in [35]) 

and 

e: 

I 1 -E+h _ 1-exp(-h/e:) I 
1 _ (-e:-)N I-exp (-1 /e:) 

e:+h 

1 -1 
lim 1 y 1 - y (x 1 ) I = 2 - e i+ 0 , 
h-+0 
e:=h 

Thus, the error bound does not hold uniformly in e:. Il'in shows that an error bound 

5 
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with C independent of h or s is obtained for the discretization of (1.1) with g(x) == 0, 

if central differences are used with an artificial diffusion: 

f(x.)h f(x.)h 
l. l. 

+ --2- [coth( 28 ) 2£ J 
f(x.)h 

l. 

This corresponds to the artificial diffusion (2.8) where sign(z) is replaced by 

coth(z) - 1/z. The shape of this function is shown in figure l. 

coth(z) - 1/z 

z-
Figure I. The exponential fitting function coth(z) - 1/z. 

Miller [20,28,39] has proved that uniform bounds can be obtained only if the differ­

ence scheme is exponentially fitted, i.e. if the coefficients in the difference equa­

tions contain exponential functions. 

Much effort has been spent on the construction and analysis of £-uniform differ-
nd 

ence schemes and some results have been obtained. E.g. 2 order uniform methods have 

been constructed for the I-dimensional convection diffusion equation (e.g. (1. I) with 

b(x) ~ B > 0, c(x) <; 0), cf. [14,20,23,28,37]. However, fundamental difficulties a­

rise when any of these methods are to be generalized to more dimensions and little 

progress has been reported so far. 

3. GLOBAL METHODS 

Systematic means for obtaining the discretization of a continuous equation 

(3. I) Lu f, 

La differential operator L: S + V, u ES, f EV, Sand V Banach spaces of functions 

defined over a region~. are given by global or weighted residual methods. Here the 

solution u of the continuous equation is approximated by an element¾ in some finite 

(N-) dimensional function space Sh the trial-space, Sh cs. Since usually u i sh,¾ 

is determined such that the residual, 



f - LI\ , 

is small is some sense. Examples of weighted residual methods are collocation methods 

where 

is required for N points xi; or Galerkin methods where the requirement is 

for N functions wi. The functions wi span the finite-dimensional function space Vh, 

the test-space. If Sh = Vh, the method is called a Bvhnov-Galerkin method, if Sh f. Vh 

it is a Petrov-Galerkin method. Standard finite element methods (FEM) are Bubnov­

Galerkin methods, where the functions W· have a small support inn. The simplest FEM 
i 

is constructed by taking a triangularization Th of the domain~ with N vertices xi. 

T . 2 
h in Q c JR Th in ~ c JR. 1 • 

To each xi a ¢i is chosen such that ~i is linear over each triangle and ¢i(xj) 

For these ¢i we denote 

MO,! (T) = Span{~.}. 
h i 

0 .•• 
iJ 

Before the FEM discretization is applied 
k+2m( ) k( ) h' . where L: C n + C n, tis equation 

to an elliptic differential equation Lu f, 

is reformulated to its weak form, where 
-m m -m L: Hm(Q) + H (n), with H (n) and H (Q) the usual Sobolev spaces. Then the FEM uses 

m m ) s = V = H (n) and sh= vh CH (n . 

EXAMPLES 

The model equation (I.I) is reformulated as 

(3.2) 

B(¢,y) = R.(~) for all~ E V with ~(0) 

y(O) = a, y(l) B, 

B(~,y) = f~ £W'Y' + ~fy' + ~gy dx, 

R.(~) = f~ ~s dx. 

~ ( 1) o, 

7 
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The 2-dimensional model equation (1.2) is reformulated as 

(3. 3) 

B(lj,,u) = l(lj,) for all 1j, € V with 1j, 

u "' g on r D' 

B(lj,,u) = J Vlj,EVU + lj,bVu + lj,cu an, 

l(ij,) = J lj,fdn + J 1/JhdrN. 

For future reference we denote the latter problem also as: find u € S with u = g on 

rD and 

B(l/!,u) = l(I/J) for all 1/J E VB , 

B(I/J,u) (VI/J,EVu) + (1/J,bVu) + (1/J,cu), 

l(I/!) = (1/1,f) + <1/J,h>N, 

4. TIIE ONE-DIMENSIONAL PROBLEM 

(4. I) 

If we discretize equation (2.1), or rather its weak formulation 

I 

J -£1/J'(x)y'(x) + lj,(x)y'(x)dx = 0, 

0 
0 I 

by the FEM with Sh= Vh = M' (Th) on a regular partition Th 

I} of [0,1], then the discrete equation 

N 
I 

I r -£1/J!ip~ + ijJ.ijJ'. dx ¾(x.) = 0, 
j=O ) ]. J ]. J J 

(4. 2) 0 

¾ (0) o, ~(I) l , 

is completely equivalent with eq. (2.2). Thus, we see that this FEM suffers from the 

same lack of stability as the central difference discretization. 

In order to see this effect appear in a degenerating error estimate for a Bubnov­

Galerkin method, when combined with the strongly asymmetric bilinear form B(v,u), we 

consider equation (I.I) with constant coefficients£, f, g ~ 0 and homogeneous bound­

ary conditions in its variational formulation (3.2). The solution satisfies 

B(v,u) l(v) 

the approximate solution~ satisfies 



B (v.. , uh) = .f ( v ) 
n . h 

Vv, 
n 

Hence, the error e u11 - u satisfies 

0 

We easily derive 

(4.3) 
., 

de'i"'" + (»,,o.,e) = B(",") = "(' 'l "( ' ~. ~ ~ n u-u11 ,e, "'n u-v1:,c" 

Further we find for 1 
• * 

u - vh, vh the best approxi:nant in Sh to u, 

(4.4) 

whence 

B ( n, e) = ( n' , c e' ) + ( 1, fe') + ( r:, ge) 

,. 3:_ ln'l2 + E !e'l2 
2 ' 2 

f 
+ 2p 

'"l ") 

+ pf I e' I 
2 

(r-pf);e•I~ + glei~ ~ 

') 

+ 2 gl eff'" 

for all p > 0, 

To obtain a positive coefficient for le'! we have to select p such that 

pf/E = 1/c < l. We get 

(4.5) 

where 1 is the error of the best approximant of u in Sh. For large ratios f this can-
-! f 

not be a useful error estimate since the rhs is 0(;:: ) for r • 0. 

Several remedies have been proposed to obtain better global methods: 

(i) to use artificial diffusion in the FEM discretization, i.e. to solve the problem 

for a valuer which is increased up to O(h); 

(ii) to adapt the spaCE.c Sh' such that the (rapidly changing) solution can be better 

approximated by elements from Sh [4!]; 

(iii) to adapt the space Vh such that a stable discretization is found [30]. 

The first possibility is the simplest to apply, but it has the severe disadvant-

age that such a method can be only 1st order accurate. The loss of accuracy lS seen 

over the whole region, but becomes particularly apparent in the boundary layers which 

show up as overly diffusive. Hence, this approach was severely criticised for practi­

cal applications [16,34]. 

9 
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To obtain higher order methods that can be applied to problem (I.I), the adapta­

tion of the trial- and test-space has been studied by several authors [ll,12,J3,16, 

18,24,25,26,29,30,36,41,42,43]. Almost all the analysis is made for the case where no 

turning points are present, i.e. Jf(x)I ~ C > 0. In this case a boundary layer appears 

only at the end of the interval and the boundary layer is of exponential type. There­

fore, in order to fit the solution by an elemerit of the trial space, the inclusion of 

exponential trial-functions in Sh is a natural procedure [13,41]. 

In order to obtain good pointwise approximations at the nodal points, it is ad­

vantageous to adapt the test-space. For the bounded bilinear form B(v,u) and the 

Green's function G(•,•) for problem (I.I), we find 

Hence, it is clear that pointwise errors are essentially smaller than the error in 

the H-U 5-norm if the Green's function G(xi,·) can be well approximated by elements in 

Vh. 
The Green's functions G(x. ,·), being solutions of the adjoint of the original 

1 

problem, show exponential boundary layers themselves (with the direction reversed). 

In practical methods, bases in Sh and in Vh are used of which all elements have a 

limited support. A typical basis of exponentially fitted spaces Sh and Vh is shown in 

figure 2. To obtain higher order approximations, these spaces can be supplemented with 

piecewise polynomials [25,26,30]. 

Figure 2. A basis of exponentially fitted 

functions in Sh and in Vh for 

the equation -e:y" + y' = f. 

Both pointwise and global error-estimates, in the 

in de Groen [25,26]. A further analysis based on 
norm II ell = /2:11 e' U 2+11 ell z', can be found e: 
the Generalized Lax-Milgram theorem 



is found in [8]. 

Other adaptations of the space of test-functions Vh are introduced by Christie 

et al. [18], who use 

N-l 

V " I 
j=l 

il 
v.~.(x)J, 

J J 

= J- J { 
(x-x. 1) /h. + 2 3a(x-x. 1)(x.-x)/h., x c 

J- J J 

(x. 1-x) /h. I 
J+ J+ 

2 - 3a(x-x.)(x. 1-x)/h. 1, 
J J+ J+ 

(x. 1,x.), 
J- J 

XI'. (x. ,x. I), 
J J+ 

I I 

i.e. the piecewise linear functions are perturbed with piecewise quadratics. The para­

meter a is adjusted such that stable approximations are obt~ined. The selection of an 

optimal a is studied in [24]. 

Another Petrov-Galerkin method for the problem (I.I) is studied by Barrett and 

Morton [11,12]. They consider 

approximately symmetrizes the 

operator N: H1 • H1 such that 0 0 

a test-space Vh z NcSh, where Ne is an operator which 

bilinear form B, i.e. N is an approximation to the 
£ 

the operator B(Nw 1,w2) is a S)'llllletric bilinear form. 

5. THE TWO-DIMENSIONAL PROBLEM 

We consider equation (1.2) and we study a Petrov-Galerkin method as was proposed 
0 I by Hughes and Brooks [16]. For the trial-snace we take Sh= M' (Th) and for the test-

~ ~ I 
space we use Vh = MSh, where M: H (n) • L2(n) is the operator defined by 

(5. I) Mu u + kbv'u, k E IR, k :2: 0, 

with k = k(h,E, ... ). For the special case k = 0 the method is identical with the 

classical FEM and the method fails for singular perturbation problems. However, we 

search for a proper choice of k and derive error bounds that make sense also for 

small E. We see that for Sh= MO'l(Th) the range Vh = MSh consists of functions that 

are the sum of a continuous, piecewise linear function~ and a discontinuous, piece­

wise constant function kbv'~. 

Since Vh ¢ H1(n) we have first to reformulate our original equation to another 

variational form than (3.3), before we can discretize it with this Vh. We construct 

an intermediate formulation between the classical form (1.2) and the weak form (3.3). 

By application of Green's formula over the domain n, it is clear that any solution 

u ~ c2 (n) of (1.2) is also a solution of (3.3); but, in general, if (3.3) admits a 

solution, (1.2) does not. Classical regularity theory, however, shows that for data 

smooth enough the solution of (3.3) is a solution of (1.2) indeed. In short, as soon 

as the existence of a solution of (1.2) and the uniqueness of the solution of (3.3) 

is established, the two are different formulations of one and the same problem. 

For our formulation, let us consider an arbitrary partition of n in open 
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subdomains {Q} such that 
e 

(5. 2) u n 
e e 

and if i 'f j, 

and the boundaries of n are piecewise smooth for each n. We distinguish the follow-
e e 

ing (disjunct) boundaries: the Dirichlet boundary rD, the Neumann boundary rN and the 

internal boundary rint' such that 

(5. 3) = LI dQ. 
e e 

Let us now consider solutions u E H1(n) n c0 (~) of (3.3) such that ulne E H2 (ne) for 

all ne. Possibly u i c2 (n) and hence equation (1.2) has no classical meaning on rint· 

In order to interprete the weak problem in a classical sense, we formulate a condition 

over the inter-element boundaries that is satisfied by u. By definition, the solution 

u of (3.2) satisfies 

(Vv,€Vu) + (v,bVu) + (v,cu) (v,f) + <v,h> 

(5. 4) 

for all v E H~(Q) { u E H1 (Q) I V 

I J v(-V(cVu) + bVu + cu)dQe 
e ne 

(VvsVu + vbVu + vcu)dQ 
e 

(5.5) 

J VnE:Vu dr + I j mp (vnsVu) dr' 

rN rint 
where n is the outward normal on ane, and on the boundary between Qei and rlej (i.e. 

for XE nei n ~ej) we use the notation 

(5.6) jmp(vnEVu)(x) I 
k=i,j 

Equations (5.4) and (5.5) together with the boundary conditions on rD and rN yield 

I jmp(vn EVu)dr 

r. 
0 I 

for all VE CB(n), 

1.nt 

and hence nsVu is continuous over inter-element boundaries. 

Now we reformulate the problem (1.2) as: 
{ I I o- 2 

find u ES= u u EH (n) n C (Q); ul EH (n )} such that 
ne e 



(i) -'v (£'vu) + b'vu + cu = f on each n e' 
(ii) n£1,7U is continuous over inter-element boundaries 

(5. 7) 
(iii) u = g on r D; 
(iv) n£17U h on rN" 

It is innnediately clear that a solution of (1.2) also satisfies (5.7) and that a 

solution of (5.7) is also a solution of (3.3). 

The problem (5.7) can be written in a variational formulation as: find u € S 

such that u = g on rD and 

(w+v) (-'v (E'vu) + bllu + cu - f)dn + J VDEl7U df + 

(5. 8) rint 

+ J v(nEllu - h)dr 0 for all w € L 2 (n) and all v E 
I 

HB(Q). 

rN 
Taking w Mv, M: H~(n) + L2 (n) an injection, we can write this variational formula-

tion as: find u € S such that for all v E H~(n) 

B(v,u) = '.e(v), 

where 

B(v,u) (Mv,-'v(E'vu)) + ('vvEllu) + (v+Mv,bllu+cu), 

t(u) = (v+Mv,f) + <v,h>N. 

This variational form is discretized to obtain the Hughes and Brooks Petrov-Galerkin 

method: the trial-space is Sh= MO,! (Th) c Sand the test space is Vh = Sh n H~(n). 

Further M: ~(n) + 1 2 (n) is chosen to be 

Mv kbVv I 
for all V € HB(n). 

6. AN ERROR ESTIMATE FOR THE PETROV-GALERKIN METHOD 

(6. I) 

We consider the problem (5.7) or (5.8) with the additional assumptions 

£ € 
]R2x2 

b € [HI (n) ]2 

C € c0 (n) 

f € L 2 (n) 

g such that 

h € L2(rN) 

£ positive definite; 

Vb = O; 

0 ~ c(x); 

a g 1: H2 (n) exists for which gJrD = g; 

; nb?: 0 on rN. 
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Ho1o1ever, for simplicity in rhe fonnulations to follow, we restrict ourselves further 

to c,,nstant c'. and k. By C we denote, a generic constant which is independent of h or E. 

To derive an error esti• ate for the Hughes- and Brooks Petrov-Galerkin method, 

we denote the error as e = ~ - u, where u and l\1 satisfy 

B(v,u) "' i(v) for all v • H!(D) 

and 

Hence 

0 for all vh 

Analogous tl, (4.3) - (4.4) we find 

( 6. 2) ll(e,e) B(n,e). 

With the norms ~ uM 

t,p > 0. 

') 

✓ (u,u) (the L-(\"?) norm) and lvullE lcvu,sVu)
1
, we get, for any 

B(n,e) -(kbvn,,?(;:-vu)) + (vn~vu) + (kbVri + n,bve + ce) 

(6. :n 

Similarly we derive 

(6.4) 

l's ing e 

( 6. 5) 

B(e,e) 

0 on ~D and ;b? O on rN, we see 

(l+kc) (e,b':e) !+kc -- ? 
<nbe->? 0. 

2 

Combination of (6.2) - (6.5) with t = i yields 

I (' ~ '2 + rl el 2 + -- ? l - 2 2 ,,e,E - (l+kc)<nbe~>) + 4 (3k-p)RbVeU 

(kb Ve, v (e:vu)) - - I 2 2 I 2 
(kbvn,'v(E:vu)) + 2 BvnDE + k(l+kc)Uiivnll + (c +-)Uni . 

p 

Now we use the well-known approximation result [19] 



2 inf Du-1\R + hnvu-Vl\il $ Ch luU 2 , 
UhESh 

with H -11 2 , the norm in H2 (n), to obtain 

IUeffl 2 := Hveli + cReH 2 + (l+kc)<nbe 2> + I (3k---p)Rbl7eD 

(6.6) 
- 2 2 I 2 

s; 2ke:mUb17ellUuU 2 + cDuU 2{kbm e:mh+h (e:m+kbm+ (c+p)k )} , 

where e: is the greater eigenvalue of e, 
m 

From (6.6), for b = 0, we derive the error estimate for the synunetric case: 

(6. 7) 1117 II 2 + ell ell 2 
e E 

If b I O we find the estimate for the asymmetric case. With k f O we recover the 

estimate for the ordinary FEM: 

(6.8) 2 2 p - 2 -- 2 2 -1 2 2 U11ellE + cUeH - 2 Hblleff + <nbe >$ Ch [e:m+ (c+p )/h JlluU 2• 

In order that Cll17eUi < llvelli - ! Rbl7eD 2 we have to select p such that 

15 

-I 
e: . the smaller eiRenvalue of e:. Hence, the error bound is proportional toe:. for min min 
small values of e: .• min 

However, if k F Owe may set p k and obtain 

IUelll 2 

s; 2/k e: Ulenl llull 2 + C{kb e: h+h2[e: +kb + (c+-k1)h2J}DuH 22 , 
max mm m m 

from which we derive (assuming b < C) 
m 

; 2 2 2 4 4 lllelll = vl<e:liull 2 + llull 2 ke: +C{e: kh+h e: +h k+h c+h /k}. 
m m m 

Fore: $ h we find 
m 

RI ell s; ell ull 2 Ah 2 + h 3 + h 4 c + h 4 /k 

Hence, for small e: s; O(h), an optimal bound is found fork= O(h); then we find 
m 
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For E ~ I we find 
m 

Ill elll s ell ull 2 /2 + h 2 + h 4 /k s Chll ull 2 , 

for the optimal k = O(h2). For this c and k, the errorbound is as sharp as in the 
m 

classical case with b = 0 (cf. eqn. (6.7)). For Em~ I, if we assume c1h2 s ks c2h 

we find 

Ill em s ell ull 2 /4E! + h 2 E + h 4 /k s Chll ull 2 , 

2 for the optimal k = h /E . 
m 

We conclude that the optimal value of k is given by 

k 0 (h) 

k 

if E s Ch ' 
m 

if E <': Ch. 
m 

Here we notice a correspondence between the optimal value of k and the optimal artifi­

cial diffusion as found e.g. in Il'in's method (section 2). 

Another analogy between the additional terms fork# 0 and artificial diffusion 

for the FEM was already mentioned by Hughes and Brooks, who noticed that the 2nd order 

difference terms in the discrete operator (5.8) (Vvh,£V¾) and (kbVvh,bV~) can be 

combined to 

Thus, to the original diffusion tensor E an artificial term kbTb is added. This dif­

fusion acts only in the direction of b, whence Hughes and Brooks call their method a 

Streamline-Upwind Petrov-Galerkin method. (For the relation between upwinding and 

artificial diffusion see section 2.) 

Combining the estimates for Esh and E ;:o: h, we find with the optimal 

k RI~• min(h,E ) 
E m 

the following error estimate 
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7. FURTHER DEVELOPMENTS AND BIBLICCRAPHICAL NOTES 

In the previous sections, for the 2-dimensional singular perturbation problem 

we only considered the Streamline-Upwind Petrov-Galerkin method by Hughes and Brooks. 

Further developments and applications of this method, including time dependent prob­

lems are considered by Johnson and Navert [36,43]. 

Two other approaches to 2-dimensional problems should be mentioned at least in a 

short survey, although an extensive discussion would be somewhat off the road. The 

first is the finite difference method as devised by S. Osher [38,44]. This method is 

based on one-sided schemes approximating a scalar conservation law 

au at= (f(u))x, 

and can be applied to non-linear problems of the form 

e:y" + a(y)y' + b(x,y) = f(x) 

and its more-dimensional analogues. It is particularly suited for shock modelling 

with strong shocks (interior layers and hyperbolic reduced equations). 

The other method is related to multigrid methods and is studied in [15,31,32]. 

Here unstable accurate and stable inaccurate discretizations (e.g. simple central -

and artificial diffusion discretization) are combined in an iterative process, to ob­

tain stable and accurate results. The advantage of this method over the above-mention­

ed Petrov-Galerkin and upwind methods is that there is no directional bias in the 

discretization (the discretization scheme is independent of the flow-direction b). 
However, the method is not easy to implement and further research is needed before 

its value is proved in practice. 

Bibliographiaal notes 

In the last few years a number of books have appeared in which the numerical 

solution of singular perturbation problems was the main subject. We mention [5,20,30, 

33,34,40]. The book [20] contains a bibliography of about 200 papers. A sequel to 

[40], the proceedings of the BAIL II conference, will appear in 1982. Research in the 

field is going on. A special issue of the journal Computer Methods in Applied Mecha­

nics and Engineering, devoted to the topic "Optimal Finite Element Methods for Fluid 

Mechanics and Nonsymmetric Operator Problems" is in preparation. Furthermore, in 1981 

a number of conferences was held at which the numerical treatment of singular pertur­

bation problems was not the central issue, but in which several contributions were 

devoted to the subject. The proceedings of these conferences [9,22,27] will appear 

in the near future. 
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