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1ear multistep methods for Volterra integral equations of the second kind*) 

J. van der Houwen & H.J.J. te Riele 

iTRACT 

A general class of linear multistep methods for second kind Volterra inte­

~l equations is discribed which include the conventional direct quadrature 

thods. A convergence theorem is presented and stability is investigated with 

spect to the linear convolution equation. Examples are given of V0 -stable 

thods. The theory is illustrated by a few numerical examples. 

i WORDS & PHRASES: numerical analysis; Volterra integral equations of the 

second kind; linear rrrultistep methods; Vo-stability; 

convergenae 
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1 . INTRODUCTION 

The simplest linear multistep (LM) method for solving the 
Volterra integral equation of the second kind 

t 

y(t) = g(t) + J K(t,T,y(T))dT, t £ l:=[to,T], ( 1. 1) 

to 
is obtained by writing down this equation in a sequence of 
equidistant points 

tn := t O + nh, n = O(l)N (h fixed and tN = T) ( 1. 2) 

and by approximating the integral term by some suitably chosen 
quadrature formula. Such a method is called a direct quad:rature 
(DQ) method for (1.1). Recently, several other LM methods for 
solving (1.1) have been proposed (cf. the indirect backiua:Pd 
differentiation method in [5] and the rrrultilag and modified 
nrultilag methods in [9](see also[12]). 

In this paper a general class of linear multistep methods is 
presented which includes all these methods, and many others 
(Section 2). This enables us to give a uniform treatment of the 
problems of consistency (Section 3), of convergence (Section 4) 
and of stability (Section 6). Since the ordinary differential 
equation dy/dt = f(t,y), y(tO)=yO, is a special case of the 

differentiated version of (1.1), the relation with linear multi­
step methods for ODEs is analyzed and fixed terms recurrence 
relations are derived for a class of convolution kernels(Section 
5). Finally, two numerical experiments are reported (Section 7). 

Space prevents us to include the detailed proofs of 
the theorems presented here. These may be found in [6]. A number 
of additional numerical experiments which support and confirm 
the theory, may also be found in [6]. 

The work presented here can easily be extended to Volterra 
integral equations of the first kind, and to Volterra integro­
differential equations (cf.[6]). 
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2. A GENERAL CLASS OF LM METHODS FOR SOLVING (I.I) 

Let us associate with (1.1) the so-called lag term 

Y(t,s) := g(t) + r K(t,r,y(T))dT (2.1) 

to 
for (t,s) Es:= {(t,s): t 0~sst~T}. Note that Y(t,t)=y(t). Let 

y and Y (t) denote numerical approximations to y(t) and to 
n n n 

Y(t,t ), respectively, and let 
n 

K (t) := K(t,t ,Y ), n ~ 0. 
n n n 

(2.2) 

Usually, Y (t) will be computed by a quadrature formula of the 
form n 

n 
Y (t) = g(t) + h I w .K.(t), n ~ no , (2.3) 

n j=O n,J J 

where thew . are given weights and n 0 is sufficiently large to 
n.J 

ensure the required order of accuracy. We assume that this quad-

rature formula is 
t 

E (h; t) := 
n 

I n 

of order r, i.e., 

K(t,,,y(,))d, - h 
n 

I 
j=O 

w .K(t,t.,y(t.)) = 
n,J J J 

(2.4) 

ash • 0, n • 00 , with 

(i.1) consists of the 

k k 

tn=t0+nh fixed. Our general LM method for 

quadrature for>rnula (2. 3) and the LM formula 

k 
I a.y · + I 

i=O 1 n-i i=O 
I i3 .. Y .(t .) = 

j=-k lJ n-1 n+J 

k k 
(2.5) 

= h I I 
i=O j=-k 

y .. K . ( t . ) , n = k ( 1 ) N, k fixed, 
1J n-1 n+J 

where the parameters a., i3 •• and y .. , i=O(l)k, 
1 lJ lJ 

j=-k(l)k, are to 

be prescribed. From this scheme the quantities Yk, Yk+1••••,YN 
can be computed successively. The quantities y 1, •.• ,yk-l and 

Y1 (t), ... ,Yk-l (t) are assumed to be precomputed by some starting 

method. Since the kernel K(t,,,y) is not necessarily defined 



outside S, we usually require (cf. Figure J) that B .. = y .. = O, 
1.J 1.J 

for j < -1.. 

t n-

_______ ,__ _ __,_ __ ,__ _ __,_ _____ i.__..,t 

tn-2 tn_ltn tn+I tn+2 

FIG. 1. Points in the (t,s)-plane needed 1.n (2.5) fork= 2 

Furthermore, it will be assumed that the points t. are equally 
J 

spaced (cf. (1.2)) although most of the analysis can be carried 
through for non-uniform spacing (compare a similar situation in 
the analysis of LM methods for ODEs). It is convenient to 
characterize the formula (2.5) by the matrices 

A= (a.), B = (S .. ), C = (y .. ) 
l. 1.J 1.J 

(2. 6) 

where the row index i assumes the values O(l)k and the column 
index j the values -k(l)k. We now describe four subclasses of 
(2.5) from which we will borrow several illustrating examples 1.n 
this paper. 

2.1 Direct quadrature methods 

Consider the LM formula defined b~ the (lxl) matrices 

A= I, B = -1, C = O, for which (2.5) reduces to 

y = y (t ). 
n n n 

(2. 7) 

Evidently, this is the direct quadrature (DQ) method, described 
in the introduction. 

2,2 Indirect linear mu.Ztistep methods 

We formally derive this subclass by applying a linear multi­
step method for ODEs with coefficients a. and y., i=O(l)k, to the 1. l. 

differentiated version of (1.1) (cf. [5] ) : 

3 
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y'(t) = K(t,t,y(t)) + Yt(t,t), (2.8) 

where Yt(t,t) denotes the partial derivative of Y(t,s) with 

respect to its first variable t, in the point (t,t). This yields 
the scheme 

k 
l a.y . = h 

. Q l n-1 1= 

k 

I 
i=O 

y.K .(t .) + h 
1 n-1 n-1 

k 

I 
i=O 

Y.Y (t .,t .) , 1 t n-1 n-1 

n ~ k. (2.9) 

Now we approximate the derivative Yt of Y by the k-step forward 

differentiation formula (cf. [1~ Table 25.2]) 

1 k 
Yt(t .,t .) F:::I - -h I o"Y(t O .,t .). (2.10) 

n-1 n-1 l=O ~ n+~-1 n-1 

Using 
k 

I 
i=O 

(2.3) we obtain 
k k-i 

a.y . + I I 
1 n-1 . 0 . . 1= J=-1 

y.o .. Y .(t .) = h 
1 1+J n-1 n+J 

or,equivalently, the generating matrices 

ao roao yOol Yock 
0 

al y 1 °0 Y1°1 Y1 ck 
A= . 'B= 

a.k Yk0O ykol ykok 
0 

, 

k 
'\y.K .(t .), 

.l 1 n-1 n-1 
1=0 
n~k, (2.lla) 

(2.llb) 
yl 

0 01 
YI I 

C= I 0 

0 I 
yk 

These matrices generate an indirect Zinear multistep (ILM) 
method. When the a.. and y. are the coefficients of a backward 

l 1 

. 

differentiation method, (2.11) represents the IBD (indirect 
backward differentiation) method, analyzed in [5]. We notice that 
for this IBD method we have y.=O, i=l(l)k, and yOo.=a., j=O(l)k. 

l J J 

2.3 MuZtilag methods 

In Wolkenfelt et.al. [ I 2] we find methods which can be 
characterized by the matrices 

ao 0 Yo 
0 al YI 

A= , B= 0 0 'C= f) 0 (2. 12) 

0 ak yk 

Here, the a. and y., i=O(l)k, may be the coefficients of any LM 
1 1 



method for ODEs, If the lag term Y (t) is computed by using a 
n 

quadrature rule which is (a,y)-reducible (see Section 2.5), then 
the resulting method turns out to be equivalent to a DQ method 
based on the same (a,y)-reducible quadrature rule (provided, of 
course, that the starting values are identical). Thus, a 
different implementation of the same method was used for 
the stability analysis of DQ methods. However, as was pointed 
out by Wolkenfelt [9], this implementation requires a lot of 
additional arithmetic operations and, although suitable for 
theorerical analysis, it is not recommendable in actual compu­
tations. In order to avoid this disadvantage, he proposed to 
compute the lag term simply by a quadrature rule of the form 
(2.3) to obtain the multifog (ML) methods. 

2.4 Modified multilag methods 

In [9] Wolkenfelt also introduced a modification of the ML 
methods, viz., the so-called modified multilag (MML) methods, 
characterized by the matrices 

ao 0 Yo 

al 0 -al al Y1 
A= 

' 
B= 0 , C= 0 0 . (2. 13) 

0 

ak -ak ak yk 
The a. and y. are, again, the coefficients of any LM method for 

l. 1. 

ODEs. 

2.5 The quadratUX'e weights of the lag term 

In order to define a specific LM method for (1. 1) we have 
not only to specify the generating matrices A, Band C, but also 
the quadrature weights w . in (2.3). An important family of 

n,J 
quadrature formulas, including the well-known Gregory quadrature 
formulas, are the so-called reducible quadratUX'e formulas [8]. 
The weights w . in such formulas are recursively defined by the 

n,J equations 

k* 0 if J = O(l)n-k*-1 
I a.w .. = { 

i=O 1 n-1.,J b . if J = n-k*(l)n 
n-J 

, n=k*,k*+l, ..• , 
(2.14) 

where the a. and b., i=O(l)k*, are the coefficients of some given 
l. l. 

LM method for ODEs. Here, we define w .=O for j>max(n,k*-1), and 
n,J 

the "starting weights" w ., Os n,j sk*-1 are assumed to be 
prescribed. n,J 

5 
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Defining the characteristic polynomials 

k* k* 
p(z):= I 

i=O 

k*-i a.z , cr(z):= I k*-i b.z , (2. 15) 
l i=O l 

the quadrature formulas generated by (2.14) are said to be 
(p,a)-reducible. We note that the characteristic polynomials of 
the Adams-Moulton methods generate the weights of the Gregory 
formulas. The backward differentiation methods generate rather 
unconventional quadrature rules, which were analysed in [11]. 

3. CONSISTENCY OF THE LM FORMULA (2.5) 

Let us associate with the LM formula (2.5) the difference­
differential operator L defined by 

n 

L (Y) : = 
n 

k 
I {a.Y(t .,t .) + 

i=O i n-i n-i 

k a } + I [s .. - y .. h -0 J Y(t . ,t .) , 
lJ lJ s n+J n-i 

(3. 1) 
j=-k 

where Y(t,s) is an arbitrary function, differentiable with 
respect to son t 0sssT. As in the case of LM methods for ODEs, 

the operator L is introduced in order to operate on test 
n 

functions Y of sufficient 
[7,p.23)). Unlike the ODE 

differentiability (cf. e.g. Lambert 
case, the relation of the operator L 

with the LM formula (2.5) is not immediate, and needs some 
explanation. Suppose that Y(t,s) is defined by (2.1) with y(t) 
the exact solution of (I.I). Observing that Y(t,t)=y(t) and 

n. 

ay 
3s(t,s)=K(t,s,y(s)), and using (2.4) we find, on substitution of 

y(t) into (2.5), the 
k 

I 
i=O 

{a. y(t . ) + 
l n-i 

equation 
k 
I [ s .. y . ( t . ) - hy •. K . ( t . ) ] } = 

j=-k lJ n-i n+J lJ n-i n+J 

k k 
= L (Y) - L l 8 .. E . (h ; t . ) . 

n . 0 . k lJ n-i n+J i= J=-

(3. 2) 

Thus, the exact solution of (I.I) satisfies the method {(2.3)­
(2.5)} apart from the residual terms in the right-hand side of 
(3. 2). In this section, we concentrate on the first residual term. 

Definition 3.1 The operator (3.1) and the associated LM formula 
(2.5) are said to be consistent of order p if for all 

YECp+l[S], L (Y)=O(hp+l) as h-K) with nonvanishing error constant. 
n 

If Y corresponds to the theoretical solution of (I.I), then 
L (Y) will be called the local, truncation error of (2. 5). IX] n 



The following theorem provides the consistency conditions in 
terms of the parameters a., 8 .. and y ..• 

1 1J 1J 
Theorem 3. 1 The operator (3. 1) and the associated LM formula 
(2.5) are consistent of order p if 

k k 
I [(-i)qa. - I jq-£(-i) 1- 1(i8~- + £y .. )] =: C O = 0 (3.3) 

i=O i j=-k 1J iJ q.., 
for q = O(l)p and£= O(l)q (with (-i) 1- 1t:=O if t=i=O). ~ 
Corollary 3.1 Let p be the order of consistency of the LM method 

for ODEs defined by the coefficients {a.,y.} employed in thesec-
i 1 

tions 2.2, 2.3 and 2.4. Then the order of consistency p of the 
LM formula (2.5) for (I. 1) is given by p = 00 for the DQ method, 
p = min{k,p} for the ILM method, and p = p for both the ML meth­
od and the MML method. 00 

If the LM formula (2.5) is consistent of order p, then the 
local truncation error L (Y) can be expressed in terms of the 

n 
constants defined in (3.3) as follows: 

p+l 
L (Y) = hp+l I 
n £=0 

p+ 1 a p+ 1 - i a i I 
Cp+l,t( £ )(cft) (3s) Y(t,s) t=s=t + 

n 

+ O(hp+2) ash • O. 
(3. 4) 

It is of some interest now to compare the values of the error 
constants Cp+l,£' £=0(1)p+1, for the various subclasses given 

in Section 2. We have evaluated and simplified the expressions 
for these constants as much as possible: 
For the ILM meth£d Corollary 3.1 gives p=k, under the (reasonable) 
assumption that p~k. We then find 

P-1 k 
C = (-1) I [iP{ia. + (p+l)-y.} - R] , (3.5) 

p+ I,£ i=O i 1 

where R = k!y. if£= 0 and R = 0 if£= l(l)p+l. 
1 For both the ML and MML method we find 

{ o, 
Cp+l,£ = (-l)p-1 

k 

I 
i=O 

if £ = O(l)p, 

ip{ia. + (p+l)y.}, if£= p+l. 
1 1 

(3. 6) 

We have computed the numerical values of the error constants for 
k two usual choices of the coefficients {a.,y.}. 0 , viz., the 

1 1 i= ~ 
baakwa;r,d differentiation (BD) methodA.. for which p=k, and the 
Adams-Moulton (AM) method for which p=k+l. Table 1 gives the 
values of the relevant constants Cp+l,£ where pis prescribed by 

Corollary 3. I.Note that the (M)ML-AM methods have p=k+l, whereas 
the other methods have p=k. 

7 
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TABLE I 

Error constants in (3.4) for various choices of {a. ,y.} ~n (2.5) 
1. 1. 

method {a. ,y.} 
1. 1. 

k=l k=2 k=3 k=4 k=5 

-2 0 -72/ 11 0 -14400/137 

ILM { 

{ 
Ck+ I, 0 

BD 
- - - c~+!.J>.Q 

-] -4/3 -36/11 -288/25 -7200/137 
- ----------------

AM { :k+ I ,0 
-I 2 -6 24 -120 

k+ I , >O 
0 

- - - -c- - ---:-
BD f k+ I , <k+ l . 

l. Ck+ I , k+ I : - I 
- - -c- - - : o 
AM { k+2,<k+2_ 

Ck+2 k+2 ·-l/2 
' 

0 

0 

-I 

0 

0 

-36/ I I 

0 

-19/6 

0 

0 

-288/25 

0 

-27/2 

0 

0 

-7200/137 

0 

-863/12 

The order of convergence of the LM method is dictated not 
only by its order of consistency, but also, of course, by the 
quadrature error (2.4) and by the errors in the starting values 
y 1 , ••• ,yk-J" In the next Section we shall analyze the convergence 

of the LM method {(2.3)-(2.5)}. 

4. CONVERGENCE 

Similarly as with LM methods for ODEs, a necessary condition 
for convergence of the LM method {(2.3)-(2.5)} is that the 
characteristic polynomial 

~ k-i 
a.(z) := l a.z (4. la) 

i=0 1 

satisfies the root condition, i.e., its roots are on the unit 
disk, those on the unit circle being simple. 

In the sufficient conditions for convergence the parameters 
S .. and y .. are also involved. We define 

1.J 1.J 

k k-i k 
S(z) := l B.z $. ,- l s. • 

1. 1. 1.J i=0 j=-k 
k k-i k 

y(z) := l y.z , Yi := l Y· · • 
i=0 1 j =-k 1.J 

Furthermore, we will use the notation 

.6K (t) = K(t,t ,y(t )) - K(t,t ,y ), 
n n n n n 

~E (h) = max !E.(h;t. 0 ) - E.(h;t.)I, 
n . . i J+x, l. J 

1.:o;JSU 

t::;k 

(4.lb) 

(4. le) 



E (h) = max jE. (h;t.)j, 
n • • 1. J 

1.SJSn 

T (h) = max jL. (Y)j and o(h) = max jy(t.) - y. j. 
n isn 1. jsk-1 J J 

E (h) is the maximal error arising in the approximation of the n 
lag terms Y(t,t) by Y (t) (cf. (2.4)). T (h) may be considered n n n 
as the maximal local truncation error of the LM formula, 
and o(h) is the maximal starting error. We now formulate a 
general convergence theorem which provides an estimate for the 
g foba i error 

E = y(t ) - Yn· (4.2) n n 

We assume that K satisfies the Lipschitz conditions 

jAK£(t)j s L1 js£1 and IM£(t) - AK£(t*)I s 1 2 1t-t*I Is£!, 

where LI and 1 2 are the Lipschitz constants. 

Theorem 4.1 Let a(z) satisfy the root condition. 
k (i) If a(z) = a0z then there exists a constant C > 0 such that 

(4. 3a) 

(ii) If S(z) = 0 then there exists a constant C > 0 such that 

lsnl s C [o(h) + h- 1{6EN(h) + TN(h)}], n=k(l)N. (4.3b) 

00 
Now it is easy to derive the following 

Corollary 4.1 Let o(h) = O(hq), EN(h) = O(hr) (as in (2.4)), 

6EN(h) = O(hr+l) ash • 0 and let {a. ,y.} in (2.5) be the 
1. 1. 

coefficients of a p - th order consistent LM method for ODEs. 
Then the order of convergence p* of the LM method for 
(I.I) is given by: p* = min(q+l,r) for the DQ method, p* = 
min(q,r,p) for the ILM method, p* = rnin(q+l,r,p+l) for the ML 
method and p* = min(q,r,p) for the MML method, where pis the 
order of consistency of (2.5), given by Corollary 3.1. 00 

5. RELATION WITH LM METHODS FOR ODEs 

The Volterra equation (1. I) contains the classes of ordinary 
differential equations as special cases. For example, if in (I.I) 
g(t) = constant then 

K(t,L,y) = f(T,y) 
dy -

• dt - f(t,y) (5. 1 a) 

K(t,-r,y) = ( t --r ) f ( T , y) 
ct2 

• ---1.. = 
dt2 

, etc. 
f(t,y) (5. 1 b) 

9 
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Therefore, it is natural to ask to what method the LM formula 
(2.5) reduces when it is applied to the special cases (5.1). 
Furthermore, one may ask for the relationship with LM methods for 
ODEs of the form(5. I). In order to formulate this relationship 
we introduce, in addition to the polynomials a(z), S(z) and y(z) 
(cf. (4.1)), the polynomials 

k 
S(z) := I s.zk-i 

i=O 1. 

k 
y(z) .- l y.zk-i 

i=O 1. 

k s. := I jS .. 
i j =-k l.J 

k 
y. := I jy .. 

1. • k l.J J=-

(5. 2a) 

(5. 2b) 

We shall also employ the shift operator E defined by Eyn = Yn+l. 

Theorem 5.1 Let g(t) = constant. 
(i) If K(t,T,y) = f(T,y) then theformula (2.5) reduces to 

a(E)y + S(E)Y (t) = hy(E)f(t ,y ), n ~ 0. (5.3a) n n n n n 

(ii) If K(t,T,y) = (t-,)f(,,y), S(z) = 0, and if the weights w . 
n ,J 

in(2.3) are (p,cr)-reducible, then theformula (2.5) reduces to 

a(E)p(E)y + h2 [cr(E)S(E) - p(E)y(E) (5.3b) 
n 

- kp(E)y(E) + p(E)y'(E)E]f(t ,y) = 0 
n n 

where y' denotes the derivative of y. 

From part (i) of this theorem it follows that the LM 
formula (2.5), when applied to the integrated form of the first 
order equation dy/dt=f(t,y),reduces to a linear multistep method 
{a,y} for this equation, provided that S(z)=O, This statement 
holds, irrespective of the weights w . used in the definition 

n,J 
of the lag term Y (t). In other words, if the matrix Bis chosen 

n 
such that the row sums vanish (S.=0) then our linear method is in 

1. 

fact an LM method for ODEs whenever the Volterra equation (1.1) 
is a (first order) ODE. Such linear methods will be called 
(a,y)-reducible. The recurrence relation (5.3a) plays an important 
role in the stability analysis of Volterra equations with (5. 1 a) 
as test kernel. In particular, for (a,y)-reducible methods, the 
ODE-stability theory directly applies and may suggest suitable 
polynomials a and y for the construction of stable numerical 
methods for solving equation (1.1). 

Example 5.1 The ILM and the MML methods are (a,y)-reducible, 
whereas the DQ and the ML methods are not. 00 

Part (ii) of Theorem 5.1 provides us with further information 
about how we should choose the weights w . and the matrices A, 

n,J 
Band C in order to construct a suitable integration method. 
Observe, that here the structure of the matrices Band C is such, 



that the same set of polynomials {p,a,a,y} may lead to different 
recurrence relations. 

Example 5.2 Let both {a~y} and {p,a} be the trapezoidal rule, 
i.e., a(z)=p(z)=z-1 and y(z)=a(z)=½(z+l). Now it is a simple cal­
culation to find that (5.3b) reduces to a LM method {p*,a*} for 

second order ODEs with p*(z)=(z-1) 2 both for the ILM and the MML 

method, but with a*(z)=i(z+I) 2 for the ILM and a*(z)=z for the 
MML method, respectively. (Note that both methods have order 2 
(cf. [7, p.253]), with error constant -1/6 for the ILM and 1/12 
for the MML method, respectively.) 00 

For an extension of Theorem 5.1 totthe case of a general con­
volution kernel K(t,T,y) = I~=O (t-T) fi(T,y), the reader is re­
ferred to [6]. 

6. v0-STABILITY 

Definition 6.1 A discretization method for (I. 1) is said 
to be v0-stable if y • 0 as n + oo whenever it is applied, 
with fixed n stepsize h > 0, to the test equation 

t 
y(t) =Yo+ f {;\ + µ(t-T)}y(,)dT, (6.1) 

0 
with arbitrary(;\,µ) E Q, := {(;\,µ): A< O, µ ~ 0}. 00 

/\,µ 

Wolkenfelt[lO] has shown that the DQ method (2.7) can not be v0-
stable when the quadrature weights in (2.3) are (p,a)-reducible. 
This negative result raised the question of whether v0-stable 
methods for (1. I) do exist at all. Brunner, N~rsett and Wol-
kenfelt[4] answered this question affirmatively for a certain 
class of so-called one-stage implicit Runge-Kutta methods. In the 
class of LM methods analysed in the present paper, v0-stable 
methods do also exist. In particular, they occur in the sub­
class of ILM methods. To see this, we observe that for the ILM 
methods we have 

B(z) = -y(z), y(z) = -ky(z) + zy'(z), (6.2) 

and from Theorem 5.1 we derive the following result. 

Theorem 6. I Let the conditions of Theorem 5.1 part (ii) be satis­
fied, then the LM method, when applied to the test equation 
(6.1), assumes the form 

{p(E)[a(E) - h;\y(E)] + 

+ h2µ[a(E)S(E) - p(E)(y(E)+ky(E)-Ey'(E))]}yn = O. 

In the ILM case this equation reduces to 

{p(E)[a(E) - h;\y(E)] - h2µa(E)y(E)}yn = O. 

( 6. 3) 

(6.3 1 ) 

00 
Since equation (6.3 1 ) is identical to the one obtained by 

Brunner and Lambert ([3]) in their stability analysis of 

1 l 
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numerical methods for the test integro-differential equation 
d t 
d ~ ( t) = ,\y ( t) + 1-1 f y ( T) d,, ( 6. 4) 

0 
we may find examples of v0-stable ILM methods just by inspecting 
the stability regions given by Brunner and Lambert. In this way, 
we immediately conclude from [3] that the four combinations, 
with {a,y} and {p,cr} defining either the trapezoidal rule or the 
backward Euler rule, are v0-stable methods. It turns out that 
the MML versions of these methods are not v0-stable. (In fact, 
as connnunicated to us by S. Amini, no MML methods can be 
v0-stable.) In Figure 2 the stability regions of both the IML 
and the MML methods are given. Evidently, the ILM methods have 
considerably larger regions of stability. 

{p,a} 

,...., 
;,-

O'\ 

c:l 
c.,.., 

+ 
N 
?j 

"tj 
·s-i 
Cl 
1:-:/ 
~ 
~ 
?j 
~ 
~ 

• trapezoidal 

h2µ 

h::\ 

back.ward Euler 

h2µ 

h>.. 

FlG. 2. Stability regions for MML(/ / /) and ILM('\ '\ '\) methods 



7. NUMERICAL EXPERIMENTS 

In this Section we illustrate by a few numerical experiments 
the convergence theorem 4. land the improved stability behaviour 
of the ILM and the MML methods. In the tables of results we list 
the accuracy obtained, by 

A(h) := - log 10 (jrelative error at the end point!), (7. 1) 

i.e., the number of correct digits in the numerical solution. 
The pair {p,0} used for computing the lag term will always define 
a Gregory formula of order r; the pair {a,y} defines either an~ 
Adams-Moulton or a backward differentiation formula of order p. 
Methods are denoted by, e.g., ILM(G -BD~). 

r p 

7.1 Order of convergence 

In the first experiment we integrated the equation 
t 

y(t) = 1 + sin(t) - cos(t) - f y(1)dT, 0 ~ t 5 2. 
0 

(7.2) 

The starting values were taken from the exact solution y(t) = 
sin(t). The generating characteristic polynomials {p,0,a,y} were 
chosen such that, according to Corollary 4.1, all methods listed 
in Table 2 are just of order p*= 5. In this Table the values of 
A(h) and the corresponding effective m>der p:ff are presented, 

where p* = 
eff 

[A(h) - A(2h)] / log 102 • 

TABLE 2 

Tests of order of convergence 

h 
-I 

DQ(G5) ILM(G5-AM6) ML(G5-AM4 ) MML(G5-AM5) 

I+ 5.0 3.8 4.7 5.3 
)5.7 )5.0 )5.5 )5.1 

8 6.7 5.3 6.3 6.8 
)5.4 )5.2 )5.3 )5.1 

16 8.3 6.9 7.9 8.4 
)5.2 ) 5 .1 )5.2 )5.1 

32 9.9 8.5 9.5 9.9 

From the results we see that the effective order tends to the 
asymptotic order ash decreases. We also see that the ILM method 
is less accurate than the other methods, which may be explained 
by its larger error constants (cf. Table 1). 

7. 2 Stability 

In the second experiment we chose an example in which the 

13 
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kernel has a large Lipschitz constant (obtained by modifying an 
example given by Bownds[2]): 

y(t) = 50(1-t2)tn(l+t) + 75t2-5lt+l -
t 

IOOf tn(l+t-,)y(,)d,, 
0 

(7. 3) 

0 ~ t ~ 4. 
Again, the starting values were taken from the exact solution 
y(t) = 1-t. The results listed in Table 3 clearly show the better 
stability properties of the ILM method (a negative A(h)-value 
may be interpreted as an unstable behaviour). In particular, we 
observe the only marginally better performance of the MML methods 
when compared with the ML methods. 

-I 
DQ(G5) ILM h G5-Bn5 

4 -4.3 +2.5 
8 -6.5 +2.2 

16 +2.3 +2.6 

TABLE 3 

Stability tests 

ML 
G5-AM6 G5-Bn4 G5-AM4 

+1.2 -2.8 -4.3 
+2.2 -6.2 -5.6 
+4.4 -6.9 +3.7 

-2.6 -2.8 
-2.7 -4.9 
-2.4 +5.6 
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