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The two-level algorithm in the solution of the initial value problem for

partial differential equations

by

H.B. de Vries

ABSTRACT

An implicit linear multistep method is applied to semi-discretized (non-
linear) time-dependent partial differential equations. Using Newton iteration
the nonlinear implicit relations are replaced by a sequence of linear equa-
tions. These linear equations are solved by the iterative use of a two-level
algorithm. An iteration method based on incomplete LU-decomposition is chosen
as relaxation method (smoothing operator) in the two-level algorithm. Using
discrete Fourier analysis the convergence and smoothing properties of the
relaxation method are investigated for a model problem. The numerical exper-
iments illustrate the choice of some suitable operators and parameters in the

two-level algorithm.

KEY WORDS & PHRASES: Numerical analysis, method of lines, initial-boundary
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1. INTRODUCTION
Consider a system of ODE's of the form
d
(1.1) Yo f(t,y) , v=1,2,

obtained from the semi-discretization of a time-dependent 2-dimensional
(non-linear) hyperbolic (v=2) or parabolic (v=1) partial differential equa-
tion (PDE). Suppose that we decide to integrate this initial value problem
by an implicit linear multistep method. This leads us to the problem to

solve in each integration step the system of equations

k
v \Y
(1.2) y = byt £(t__,y) =£Zlfagyn+1-z LT AT AV RE

where Y, denotes the numerical solution at t = tT =t t_ and {aﬁ’bﬁ}

are real coefficients. The (approximate) solution of thgzleqﬁation is iden-
tified with Yoer®

In [6] the PCGC-method (Preconditioning and Coarse Grid Corrections)
has been described to solve the system (1.2). In view of the implementation
we will present and formulate this method in a different manner (see section
2), which shows also more clearly the inner and outer iteration in the method
and the resemblance with two-level algorithms as described in [2].

In section 3 we discuss three possible choices of Zncomplete LU-decom—
position (ILU-decomposition) and give some arguments why the ILU-decomposi-
tion) defined in [6] has been chosen.

The computational work of the PCGC-method based on arithmetic opera-
tions is considered in section 4.

Finally, in section 5 we apply the PCGC-method to two parabolic PDE's

and illustrate several choices of the operators and parameters in the PCGC-

method.
2. THE TWO-LEVEL ALGORITHM

In the PCGC method an iteration scheme is defined, which consists of
an inner and outer iteration. In our present approach we shall separate

these iterations.



Using the modified Newton-Raphson process we replace the system of equa-—

tions (1.2) by a sequence (m) of systems of linear equations:

y(0) y(pred) ,

(G-1)

[I-bOTVJ] y =0 , j=1,...,m,
(2.1)
_ af (0)
J - ay (tn+l,y ) E]
Gg-1) _ v 1o
) Zn + bOT [f(tn+],y) Jy]l ,

where Zn denotes the right-hand side of equation (1.2), y(o)

is obtained by
some predictor formula, y is the solution of the preceding system of linear
equations with y = y(o) for j = 0.

In the outer iteration (2.1) each of the systems of linear equations are
solved by the iterative use of a two-level algorithm [2] (inner iteration).

The two-level algorithm uses two computational grids (viz. the fine grid Qh

with grid parameter h and the coarse grid QH with grid parameter H = 2h) and
the corresponding sets of gridfunctions on Qh and QH s Uh and UH, respectively.
The convergence of the iteration process for solving on Qh

(2.2) [I-b,t 3] y = (371

(for each j € {1,...,m}) will be accelerated by using defect corrections,

which are obtained by solving on Q_ the approximate problem

H

-y 7V = )
(2.3) [I-byt Il yy =¥y »

where H refers to the grid QH' The Jacobian matrix J_, and w(%) will be de-

H
fined later.

Before we describe the two-level algorithm (TLA) we introduce the re-

striction operator Ry, and the prolongation operator Pyt



(2.4a) RHh: Uh - UH ,

H h
(2.4b) PhH' U ~>-U .

The Znjection IHh (or 1-point restriction [9] )

. b H
(2.4¢) IHh' U ->U
copies only in the corresponding grid points of Qh and QH the function values
of the grid function on Qh to a grid function on QH. In the numerical exper-

iments we used the weighted restriction RHh and the linear interpolation P

as defined in [6].

hH

The Jacobian matrix J, is defined by

H
of
- _H (0)
(2-5) JH - ayH (tn+]’y H ) s
0)_ 0)

where Yy = Ith AN Ith and fH denotes the right-hand side function
of (1.1) corresponding to QH.
Finally, we introduce an iteration method based on Zncomplete LU-decom-—
position. The matrix I - bOTvJ is decomposed (see section 3) as follows:
AY) *_ %
(2.6) I-bgt J = LU -R,
where R is the residual matrix and L*,U* are a lower and upper triangular

matrix, respectively.
The iterative method based on (2.6) reads
*__ % _ (j—l)
(2.7) LU X < in+ ¢ .
In section 3 three forms of this ILU-relaxation method will be considered.
In the two-level algorithm the problem (2.3) on Q. will not be solved

H
directly, but iteratively by means of an iteration method based on incomplete

LU-decomposition of I - bOTvJH , i.e.,



= Xyl ()
(2.8a) zq = (LHpH) LA
* % ~ (j) . _
(2.8b) LHUII Zigq = RHzi + P g » 1 f 0,...,0—1,
where L:I U;; - EH =[I —borv JH].

One coarse grid correction step in the two-level algorithm reads
(2.9a) X =%+ c
where the correction term h [6] is defined by

- _n Vo)
(2.9b) c, = PhH [I-b,T JH] Y o

h 0

(2.9¢) w(g) = RHh(¢(j_1)— [I—bOTvJ] x).

On QH the coarse grid problem (2.3) with ¢(%) defined by (2.9c) is solved
after p iterations with (2.8a)-(2.8b).
The two-level algorithm (TLA) can be described in quasi-Algol as follows:

proc TLA = (vec y, ¢(J—l)) veec:

begin
vec X, ¢(%), Z;
X: = y; '
for i top do x: = (L*U*)_1 (R x + ¢(J_l)] od ;

¢(%) 1= RHh(¢(j—1) - [I"bOTVJ] X)3
L * __x =1 (j).
z: = (LH UH) w H ’

for £ to p - 1 do z:= (L;;U:I)_][Tlﬂz + \p(g):l od ;

¥i= x + PhH A

for i to s do x:= (LU

[R x + ¢(j—l)] od ;
X
end;

One step in the two-level algorithm TLA consists of p ILU-relaxations
(2.7), a coarse grid correction step (2.9a)-(2.9c) and again s ILU-relax—

ations (2.7). In order to describe exactly what particular TLA algorithm is



used we introduce the following notations (cf.[6]):
I iteration step defined by (2.7)

C coarse grid correction defined by (2.9b)-(2.9¢c), where p is the

p
number of iterations with (2.8a)-(2.8b) on the coarse grid QH.
One two-level iteration, i.e. one execution of TLA(y,¢(J—])),is now denoted
by
(2.10) Pc 1°
p
Let the evaluation of I—bO TVJ and I-bO TvJH be defined

by

EJAC = GENJAC (t,h,y),

EJACH = GENJAC (t,H,I.y) ,

respectively, and let the ILU-decomposition of these matrices be defined

by

LUR

ICLUDEC (EJAC,w) ,

1

LUH = ICLUDEC (EJACH,w) s

respectively, where w is a parameter which selects the particular ILU-decom
position to be chosen. In case of constant partial derivatives 3f/3y the
matrices I —b0 1 ’J and I-—b0 e JH and their ILU-decompositions are deter-
mined once; in all other cases they were updated every integration step. Then
the iteration scheme per integration step T for nonlinear PDE's, consisting
of the outer iteration (Newton) and the inner iteration (TLA algorithm), can
now be written in quasi-Algol as follows:

ti=t+1T; y = y(pred);
EJAC := GENJAC (t,h,y);
EJACH := GENJAC (t,H,I
LUR :
LUH :

Hhy);
ICLUDEC(EJAC,w) ;

ICLUDEC (EJACH,w);



for j to m do # outer iteration #

¢(J—l) := Zn +b. 1" [f(t,y) + EJAC » y-y 1

0
for i to k do # 1inner iteration #
y = 1ma 97Dy
od
od;
In order to describe the PCGC method [6] we introduce the notations:

evaluation of the function ¢(J_l) defined in (2.1)

(3-1)

m number of right-hand side evaluations ¢ per integration
step

k number of TLA iterations per Newton step

r number of coarse grid corrections (2.9a)-(2.9c) per integration
step

M number of fine grid iterations (2.7) per integration step.

A particular PCGC method with coarse grid corrections is now denoted by
(2.11) [E(Ipcpls)k]m with k = L.

REMARK. 2.1. Performing no coarse grid corrections (2.9a)-(2.9c), i.e. r = 0,
the method is denoted by (see [6])

(2.11") g W/mm

REMARK 2.2. When the ILU-relaxation (2.7) is used the residual

¢(J_]) - (I-b T\)J)xi can be computed as follows

0

1]

67D (1b "k, = L U k. - Rx, . - LUk, + Rx, :=
0 1 1 1 i 1

ROGeymxi ) s

where X, and x, are the (i-1) —and i - th iterand obtained by (2.7). Since

v .
T J, this

1

usually the error matrix R has less non-zero diagonals than I - b0



is a very cheap way to compute the residual. For p = 1 in TLA the residual

(J)

occurring in Y will be computed as follows:

oD _ (I—bOTvJ) x 1= R (x-y) ,

without using an extra array storage.

The amplification matrix MILU of the ILU-relaxation (2.7) on Qh is

given by

* % =1 * % =1
(2.13) MILU = (L U) R=1 (L'u) Ah R
where Ah =1 - bOTVJ. When in the coarse grid correction step (2.9) the sys-
tem of linear equations (2.3) is solved exactly on Q

tion matrix of (2.9) (cf. HEMKER [2]) M

o then the amplifica-

cgc 18 siven by

-1
(2.14) MCGC = [I —PhH AH RHh Ah],

where AH I - b T JH. From a straightforward calculation it follows that

the p - th 1terand of (2.8) is given by

—pZ][(L*’U*)—] ﬁ ]i L*'U* (J)
% "L oH g g Uy ¥

_ _ * *_ -1 (J)
-1 o-raunT R Ayl

where w(J)

Ry (6974 0.

Then it can be easily shown, that the amplification matrix ﬁCGC of (2.9),
where in the evaluation of the correction term (2.9b)-(2.9¢c) the equation
(2.3) is solved after p iterations with (2.8a)-(2.8b) is given by

~ _ _ * x =1~ p -1 _
(2.15) MCGC (1 PhH[I ((LHUH) RH) ] AH RHh Ah] =

_ * % =1~ .p -1
= Moo * Pog ((Lply)  Ryp)™ Ay Ry Ay

i ici I = | | [
If p is sufficiently large, we can expect that lMCGC" IMCGC[ where is

some suitable norm.



From (2.13) and (2.15) it follows that the amplification matrix MTLAOf one
step of the two-level algorithm TLA is given by (cf.HEMKER [2])

1 1

R1® M. [@wvu) ' RrIP.

(2.16) Mo, = [ ™)~ fooc

3. THE INCOMPLETE LU-DECOMPOSITION

3.1. Three possible choices of ILU-decompositions

Let J be a (KxK)-matrix, then writing A, = I - b TvJ and denoting the

elements of the matrices Ah,L*,U*and R by ai:, K*ij’ g*ij and rij’ 1 <1, <K,
the ILU-decomposition (2.6) is defined by
K*jj =1, 3 =1,...,K
* k_l * *
If (k,j) € P then ukj =0 =~rkj:= - (akj--iz1 Kkiuij)
N k-1 x %
(3.1) else ukj:= akj - izl Ekiuij for 'j = k,...,K;
* k-l * *
If (j,k) € P then zjk =0 =>rjk:= - (ajk - iZ] ﬂjillik)
* k-1 * * *.
else Kjk:= (ajk— izl !.jiuik)/u e For 3 =k + 1,..0,K,

where k = 1,..., K and P is a set of pairs of integers, which is a subset
of P = {G, | 143, 1<1i<K, 1<5j<K}

When the PDE does not contain mixed derivatives and is semi-discretized
by standard finite differences the components in f are coupled according to
the familiar five-point molecule.In this case the matrix Ah has a 5-diagonal

form and the places (i,j) with aij = 0 are given by the set
(3.2) Po= {(1,3) | 1i-j1 # 0,1,b 5 1 < i,j <K},

where b is the half-bandwidth of Ah; i.e., aij = 0 whenever |i-j | > b. The

matrix Ah is schematically shown in figure 3.1.



N

Fig. 3.1. Form of matrix Ah

Several well-known iterative methods (2.7) can be obtained by properly

choosing P c PK 77 :

P = PK results in the point Jacobi method,

{(i,j)] 1 < j} results in the point Gauss-Seidel method.

lae]
I

The ILU-decomposition based on
P, = {(i,i)]1i-j] # x,x = 0(1)b31 <i,j < K} ={(i>j)1i-jI>b;1 <i,j <K}

results in the (complete) LU~-decomposition of Ah.
Here we will consider three choices for P, which are suitable for
5-diagonal matrices (see fig. 3.1).

The first choice is the set PO defined by (3.2). The ILU-decomposition

based on PO is called in [9] ILU-5.

The second choice, already given in [6], is the set of pairs of integers

defined by
(3.3) P, = {,D[1i-31 #0,1,b-1,b 5 1 <i,j <K

The ILU-decomposition based on P, is called in [9] ILU-7.

1
The third choice is the set of pairs of integers defined by
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(3.4) P, = {G,j)|1i-j 1 # 0,1,b-2,b-1,b; 1<i,j < K}.

The ILU-9 decomposition is based on the set P2.

REMARK 3.1.In the description of the iteration scheme in section 2 we have

defined the ILU-decomposition of Ah and AH by

LUR = ICLUDEC(EJAC,w) and LUH = ICLUDEC(EJACH,w), respectively.,

The ILU-5, ILU-7 and ILU-9 decomposition can be obtained by choosing w equal
to 0,1 and 2, respectively. The (complete) LU-decomposition of A can be ob-

h
tained by choosing w equal to b - 2.

For future reference we determine of each ILU-decomposition and relaxa-
tion sweep the number of arithmetic operations on a uniform grid Qh with N
inner points (see also [9]). An operation will be defined as an element from
the set { +, =, * ,/, sqrt}. In table 3.1 we give the number of operations
on a uniform grid with N inner points to perform the decomposition and one
relaxation step (2.7) for the three choices of P, viz. (3.2), (3.3) and (3.4).
The number of arrays of length N required for storage of the matrices occur-

ring in ILU-5, ILU-7 and ILU-9 are also given in table 3.1.

Table 3.1. Number of arithmetic operations and the number of storage ar-
rays of length N required for ILU-5, ILU-7 and ILU-9 on a uni-

form grid with N inner points.

Method Number of operations| Number of opera- | Number of storage
€ of the decomposition| tions of the ILU-| arrays
step (2.7)
ILU - 5 8 N 13 N 7
ILU - 7 17 N 17 N 9
ILU - 9 28 N 25 N 13




3.2. Convergence and smoothing-factors of the three ILU-relaxation methods

Consider the forms of L*,U* and R schematically shown in figure 3.2.

—

Fig. 3.2. The forms of LTU* and R

In figure 3.2 we have denoted the possible non-zero diagonals in

* . . * . . .
L by Zi’ 1 =1,...,5, in U by u,, 1= l1,...,5 , and in R by r., 1= 1,...,8.



. . . . . * %
For convenience we give below the non-zero diagonals occurring in L ,U

and R for each ILU-decomposition:

1 ILU - 5 with PO (3.2): r,,rg and Ki,uiv for i = 1,2,5.
ILU -7 with Pl (3.3): T, and Ki’ui for i = 1,2,4,5.

37 ILU-9 with P2 (3.4): r, for i = 3,4,5,6 and Ki,ui for i = 1,2,3,4,5.

Consider PDE's of the form

(3.5) —_— = a(uX L Yuy o ) + v(t,x],xz) , v=1,2 , 0 >0

=1 7272

defined on Q = {(xl,xz)l 0 < x,,x 1} and 0 < t < 1 with Dirichlet boundary

<
1272 7
conditions and initial conditions for u (and %%-)at t = 0. Let such problems

be semi-discretized on a uniform grid @, by standard symmetric differences.

h
. . v
In this case the matrix Ah = I - b.t J has constant elements.

Using a Fourier decompositionoof the errors at the internal grid points
(see also [1,10]) we can study separately the convergence rate of each
Fourier component, and in particular the convergence rate of high-frequency
components, which determines the rate of smoothing. In the multi-grid method
the role of relaxation is not to reduce the error but to reduce the high-fre-
quency components of the error and the lower frequencies being reduced by re-
laxation sweeps on coarser grids. For more details on the smoothing analysis
we refer to [1,3,4,10].

The Fourier mode analysis is only representative for the local behaviour
in the interior of the domain of the PDE, i.e., the boundary conditions are ne-
glected. Therefore we suppose that Ah,L*,U* and R are infinite Toeplitz ma-

trices [3,10]. In this case the matrix Ah can be given by the following dif-

ference molecule

a v
1 cho'r
(3.6) Ah= 1 3 3 > a = - h2 > 3y = 1 - 4a],
a

Using the notation of BRANDT [1] we obtain as convergence factor u(9)

with 6 = (61,62) for the ILU-5 relaxation:
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2r]cos(91—62) L r

a](—l+%/§)

3.7 8) =
(3.7) uS( )

a +2a](cose1+c0582)+2r]cos(6]—6

0 2)

and for the ILU-7 relaxation:
2T .,cos(26.-6.)
2 1 72 ~
(3.8) u7(9) = s T
a0+2a](cose1+cos92)+2r2cos(261-92)

and for the ILU-9 relaxation:

2 a](-0.11181)

2r3cos(361—62)+2r4cos 26]

+cosez)+2r3cos(3e1—62)+2r4cos 26

(3.9) ug(e) =

a +2al(cose

0 1

Ty = a](-0.03961) > T, = a](—0.03548).

The coefficient ?1 can be found analytically, whereas the coefficients

?2,?3 and ?4 are numerically derived. For the Poisson equation, i.e.

ag = 4 and a, =- 1, the factors p(6) of ILU-5 and ILU-7 are already given
in [8].
In a multigrid method we are interested in the smoothing factor [1,10],

which is defined by

(3.10) n o= max  |u(0) 1 ,
w/2 <]o]<m

where 6 = (61,62) and |6] = max(!ell,lezl). For the model problems (3.5)-

(3.6) with hZ <« 1 the smoothing factors 35,;7 and 59 of ILU-5, ILU-7 and
ILU-9, respectively, are listed in table 3.2. In order to compare the ef-
ficiency of the ILU-iteration methods we have also listed in table 3.2 the
number of operations per ILU-iteration step (ni,i=5,7,9) and the number of
operations per ILU-iteration step for ]0—l reduction of the high frequency
components of the error (ni/llog ;i|’ i=5,7,9) on a uniform grid Q,_ with

h
N inner points.
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Table 3.2. Smoothing factors ﬂi, the number of operations per ILU-step n,
and the number of operations for 10_1 reduction of the high
frequency components of the error ni/!log ﬁi] on a uniform grid

Qh with N inner points for problem (3.5)-(3.6).

Relaxation method My n; ni /Ilog ui]
ILU -5, 1=25 0. 2035 13N 18.80N
ILU - 7, 1 =17 0. 1259 17N 18.89N
ILU -9, i=29 0. 052 25N 19.47N

For the class of problems (3.5) ILU-5 has slightly better efficiency if we
take only the smoothing of the error into account.
However, in the two-level algorithm defined in section 2 the role of the

ILU-relaxation (2.8) on QH is to reduce the error. Therefore we will consider
also the low-frequency components of the error. b1V
7 > 1, i.e.

Assume —Tr<6i=wih'rr<7r ,wieZ\{O},i=l,2and N
we assume that a, = 1 - 4a] e 4a1.Then it can be numerically verified that
the convergence factors us(e), u7(6) and ug(e) reach their maxima ﬁ5,ﬁ7 and
ﬁg , respectively, in (91,62) = (mh,7h) (see also appendix A). In table 3.3
the convergence factors of the ILU-5, ILU-7 and ILU-9 relaxation are illus-
trated. On the basis of this table ILU-7 reduces the low frequency component
(6],62) = (vh,mh) of the error more efficient than ILU-5. The results listed
in the tables 3.1, 3.2 and 3.3 indicate that the ILU-7 relaxation seems to be
the best choice in the two—level algorithm for the class of problems (3.5).

This is justified by numerical experiments in section 5.3.

v
bOT a

REMARK 3.2. Suppose that a, = - + = o, as t,h > 0 , then the rate of

1 2 ’
convergence ﬁi of ILU - 5, ILU-7Iénd ILU -9 relaxation is asymptotically

B, o= 1 - —IT— n?
(1-4v2)
2
Bo= o - " W’ and
0.11181
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2

9 =~ 1 - ———E———-hz, respectively.

0.07509

=)

Table 3.3. The convergence factor ﬁi = ui(wh,wh) for i = 5,7,9 and the num-
ber of operations for 0.1 reduction of the low frequency com-—

ponent (6,,8,) = (wh,7h) of the error (n./llog ﬁ.]for i=5,7,9) on
1272 vy & i

b
Q, for problem (3.5)-(3.6) with 0 > 1,
ILU -5 ILU -7 ILU-9
h ~ -~ -~ ~ ~ ~
Hs "5/{log¥s 1| Hy n7/llog iyl By 1%9/]10g ol

1/10 0.7495 103.8N 0.5207 60N 0.3829 60N
1/12 0.8112 143, 1IN 0.6131 80N 0.4883 80.3N
1/16 0.884 242 .8N 0.7405 130.3N 0.6435 130.6N
1/20 0.9224 370.6N 0.8177 194.5N 0.7436 194.3N
1/24 0.9448 527.2N 0.8663 272.7N 0.8091 271.7N
1/32 0.9682 926.3N 0.9203 471.3N 0.8844 468.6N
1/40 0.9794 1438. 1IN 0.9476 727.3N 0.9233 721.4N
1/48 0.9856 2063.7N 0.963 1038.3N 0.9456 | 1029. 1IN

4. THE COMPUTATIONAL WORK OF THE PCGC METHOD

In this section an estimate will be derived for the computational work
of the PCGC method. An operation will be defined as an element from the set

{+,-,%,/,8qrt}. Let the uniform fine grid 9, have N inner points, and the

h

uniform coarse grid QH (H=2h) have NH o % inner points.
4.1. The computational work of one TLA-iteration

Here we derive an estimate of the computational work WT to perform

LA
one TLA-iteration. In table 4.1 several notations are introduced for the
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number of operations for the different parts of the algorithm TLA (see

section 2).

Table 4.1. Notations for the number of operations for the different parts

of TLA in IpCpIS mode .

Part of procedure TLA number of operations on Qh
x = U7 R+ 37D n,
v 3= v U0 f1on Va0 n,
o= ™ V) "
z := (L;U;)_l [EH z+ w(%)] oy
X = x + PhH z ne

The number of operations for one TLA-iteration in IpCpIS mode is given

by the following formula

W, = (p+s)na + n

TLA T oo, * (p—l)nd * R

b
The number of operations for the weighted restriction RHh(Q—point restric—
tZon in [9])defined in [6] is:2.75N.

In the injection I, the function values of the fine grid function are only

Hh
copied.

. N
N hH g Vith 7
inner points-7r new points, the number of operations for the linear inter-
2N.

When the residual ¢(J—1) - (I-bOTvJ)X is determined by means of the

Observing that the prolongator P, . adds to the coarse grid Q

polation P, defined in [6] (9-point prolongation in [9]) is :
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matrix I - bOTVJ, the number of operations is : 10N. However, when the re-

sidual is determined by means of the matrix R, the number of operations is:

using ILU -5 or ILU-7 relaxation in TLA: 4N,

using ILU-9 relaxation in TLA : 8N.

In table 4.2 the number of operations for the different parts of
TLA in IPCpIS mode are listed, when ILU -5, ILU -7 and ILU -9 relaxation has
been used (see also table 3.1). It is assumed that the residual is determined

by means of the residual matrix R.

Table 4.2. Specification of the number of operations for each different part

of TLA in IpCpIS mode with ILU -5, ILU -7 and ILU-9.

Part of TLA TLA with ILU -5 TLA with ILU -7 TLA with ILU -9
n_ 13N 17N . 25N
o, 6.75N 6.75 N 10.75 N
n, 2.25N 3.25N 4.25 N
n, 3.25N 4 ,25N 6.25N
n, 3N 3N 3N

From table 4.2 it follows that the computational work to perform one TLA

iteration, 1i.e. w&LA , with ILU-5, ILU-7 and ILU -9 relaxation in TLA is
[p+s+( 2] « 13 N+12N, [p+s+ ()] 17N+ 13N and

[p+s+( 9219] * 25N + 18N, respectively.

For example the number of operations wTLA of one two-level iteration

TLA in IC4I mode with ILU -7 relaxation, which is frequently used in our

numerical experiments [6], is : 59.75N,

4.2. The decomposition on Qh and QH

Let us denote the number of operations to perform the incomplete LU-

decomposition on Q. and QH by (L*U*)h + (L*U*)H. The number of operations

h
to perform each particular decomposition on Qh and QH is given in table 4.3.
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Table 4.3. The number of operations to perform the ILU-decomposition on

Qh and QH for ILU-5, ILU -7 and ILU-9.

. . . * * *_ %
Particular ILU-decomposition (LU )h-F(L U )H
ILU -5 10N
ILU -7 21.25N

ILU -9 35N
(-1

4.3. The evaluation of the function ¢

Suppose one f-evaluation f (the right—-hand side of (1.1)) is equal to
A N operations on Qh(k>0) and one Zn—evaluation (the right-hand side of

(1.2)) is equal to 8 N operations on §
(j-

h(<S>0). Then the number of operations

to perform the evaluation of ¢ D (denoted by E,see section 2) occurring

in (2.1) is : (A+8+13)N.

4.4. The computational work per integration step

Let the evaluation of the matrices I - boer and I - boerH be denoted

by Jac,, . Then for a nonlinear problem the number of operations per inte-

Hh

gration step of the PCGC method, denoted by W

pcee® ©an be given by the fol-

lowing expression

*__* *__ %
wPCGC = JacHh + (LU )h + (LU )H +m*E+ r % wTLA .
* % *_ % . . .
where wTLA’ (LU )h-+ (LU )H and E are defined in the sections 4.1, 4.2 and

4.3, respectively and the parameters r and m are both defined in section 2.
In [6] the PCGC method has been compared with some other integration methods
on the basis of computational units. For two parabolic PDE's in appendix B
the number of operations per integration step is specified for these methods

and the PCGC method.
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5. NUMERICAL EXPERIMENTS

5.1. The test examples

All initial-boundary value problems chosen for our numerical experiments

are defined on 0 £ t £ 1 and

Q = {(XI’XZ)I 0 < X 5%, < 1},
and semi-discretized on a uniform grid Qh with mesh width h by standard sym—
metric differences and the coarse grid QH has grid parameter H = 2h.

Our first example is a linear parabolic PDE (cf.[6]1):

_ _—t
Ut = oa(UX < +UX % ) e (4a+x

2, 2
1
(5.1) 171 272

+x5) , a = 1,100,

U(x],xz,t) = q e—t(x2

2
1+x2) + 1 .

The second example is a nonlinear parabolic PDE (cf.[6]):

2 2
- (a 2 5
Ye "( 7t 2 ) v

(5.2) ox; 3%,

. 4 1/4
U(XI’XZ’t) = [-§(2t+xl+x2)]

The initial and boundary conditions can be prescribed by providing the exact

solution.

5.2. The numerical scheme

For parabolic PDE's, i.e. v = 1 in (1.1), we integrate the initial value

problem (1.1) with the fourth order backward differentiation formula [11]

which results in

12 1
B c— Z = e— —_— —
(5-3) b0=25° "n =735 [48yn 36y,-1 * 169, 3yn—3]

in the iteration process (2.1).
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In order to apply (5.3) four starting values are required which were
obtained from the exact solution of the initial-boundary value problems.

Furthermore, J and J_, were obtained by analytical differentiation. The half-

H
bandwidth b defined in (3.2) is for J and JH equal to % - 1 and 5%—— 1, res-
pectively. In [6] the predictor formula starting the iteration process (2.1)
is
(5.4) yPred o o

In the sections(5.3),(5.4) and (5.5) we use only the predictor (5.4), where-
as in section (5.6) we will consider also two other predictor formulas. For
the PCGC method in [E(IpCpIS)r/m]m mode (see sections 2) the parameters
PsPp>s,r and m will be specified in the tables of results. In section 5.3 we
use the ILU-5, ILU-7 and ILU -9 relaxation in TLA. In the sections (5.4),
(5.5) and (5.6) the ILU -7 relaxation has only been used in TLA.

Furthermore, we use the notations:

A(t) the number of correct digits at t = 1, i.e.
(5.5) At = - Plog Iy - u(e ) |

‘ n n’ «?
where I I is the maximum norm and u(tn) denotes the exact solution of the
PDE on the grid Qh at t = tn.
r o the average reduction factor of the two-level algorithm, i.e.

k=1 \ 1, 1y D By

(5.6) rav=<‘nri> , T, ,i=1,...,k"1, k 2 2,

i=1 i Hv(i)—v(i‘”u2

where k is the number of TLA-iterations per Newton step (see section 2),

! "2 is the Euclidean norm, v(l) denotes the i-th iterand of TLA, v(o)

is the starting value for the TLA-iteration and r. is the reduction factor.
wTLA the number of operations of one TLA-iteration.

wlo—l the number of operations for 10—] reduction of the error by appli-

cation of one TLA-iteration, 1i.e.
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(5.7) w=l= W._, / llo

10 TLA log ravl'

In the experiments where the average reduction factor is considered the re-

duction factor r. converges more or less to a limit value (see appendic C).

5.3. Numerical results of TLA with the three different ILU-iteration methods

In table 5.1 the results obtained by TLA in IpCpIS mode with ILU -5,

ILU -7 and ILU -9 relaxation are given for problem (5.1) with o 100 on a

1 2
uniform grid Qh with h = 1/32. The number of inner points N = ( ?;—1) = 961.
Table 5.1, The average reduction factor rav(5.6), the number of operations

. . _ . P~ .S
of one TLA-iteration wTLA and w]O 1(5.7) obtained by I CpI for

problem (5.1) with o = 100, T = 1/4, h = 1/32, m =1 and k = 8.
TLA mode rav wTLA W]O—l
14c8 with ILU =5 0.288 86.75 160.47N
¢, with TLU-7 0.108 85.25 88.20N
tzc4 with TLU -9 0.116 86.75 92.73N
IC,T with TLU-5 0.489 47.75 153.69N
1C,T with ILU-7 0.216 59.75 89.78N
IC,T with TLU -9 0.115 8675 92.36N
Ic, with TLU -5 0.45 38N 109. 58N
I, with ILU -7 0.173 47N 61.68N
TC, with ILU-9 0.085 68N 63.52N

In the TLA-algorithm in 1Pc

2p

mode with p = 2,3,4 the number of oper-

ations of the ILU-5, ILU-7 and ILU-9 relaxation are approximately equal

on the fine grid Q

h

and the coarse grid Q

q°

Table 5.1 illustrates that the

I3C mode with ILU -7 relaxation is the most efficient one of the 1Pc

6

2p
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modes for this problem. When the same parameters p,p and s are used in TLA
for the three different ILU-relaxation methods, then téble 5.1 shows that the
ILU-7 relaxation is again preferable. Notice that for the ILU-9 relaxation
the preliminary work (decomposition) and the number of arrays to store

L0, R, LT, U;
we will use only the ILU -7 relaxation in the TLA algorithm.

and RH are considerably more. In the following sections

5.4. The effect of the parameters p,p and s in the TLA algorithm

In table 5.2 the results are given obtained by the two-level algorithm
in a particular mode with ILU -7 relaxation for problem (5.1) with a = 100
and h = 1/32. In order to compare the different TLA modes we have listed the
number of operations of the ILU-7 relaxation on Qh and QH. Note that the num—
ber of operations in the TLA modes is mainly determined by the ILU-7 relax-

ation on Qh and QH (see table 4.2).

Table 5.2, Results for problem (5.1) with a = 100, T = 1/4, h = 1/32 and

m= 1.
Nr. of operations of the

M PCGC method r A(174) ILU-7 relaxation on Qh and(lH
4 g M 0 -.89 68N
16 -.42 272N
32 .18 544N
2 1 -.37 50N
4 b E(ICAI)r 2 .25 100N
8 4 1.51 200N
2 ) 1 .19 67N
4 E(ICsl)r 2 1.32 134N

>

6 3 2.48 201N
8 ) 4 3.68 268N
1 1 -.13 50N
E(ICB)r 2 1.23 100N
4 3.48 200N
1 1 -.26 50N
13(c81)1r 2 1.18 100N

3.39 200N
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‘Additional experiments have shown that the accuracy gradually increases if
the number of coarse grid corrections r increases until the limit value
(A(1/4) = 4.7) is reached. Increasing the number of operations to solve the
coarse grid problem (2.3) (i.e. increasing p) improves the accuracy and the
computational efficiency. The ILU-7 relaxation before rather than before and
after the coarse grid correction is preferable. The results also show that
for the accuracy it is better to iterate (with ILU-7 relaxation) before
than after the coarse grid correction (cf.[4,10]).

The numerical results listed in table 5.3 show the dependence of the
average reduction factor r ., on the number of iterations p on £, in the eval-

H
uation of the coarse grid correction.

Table 5.3, The average reduction factor rav(5.6), the number of operations

. . _ . P~ S
of one TLA-iteration wTLA and w]O 1(5.7) obtained by I CpI for

problem (5.1) with a = 100, T = 1/4, k = 8, m = 1 and ILU-7 re-

laxation.
h = 1/20 h = 1/32
TLA-mode Ty wTLA W]O—l TLA-mode T WTLA wlo—l
IC]I 0.284 47N 85.97N 1041 0.216 59.75 N (89.78N
ICZI 0.14 51.25N| 60.02N ICSI 0.159 64N 80. 14N
IC3I 0.072 55.50N| 48.57N IC8I 0.064 76-75 N |64.29N
IC4I 0.04 59.75 N| 42.74N IC]ZI 0.022 93.75 N |56.56N
ICSI 0.025 64N 39.95N IC]3I 0.018 98N 56.17N
IC6I 0.018 68.25 N| 39.12N IC5 0.173 47N 61.68N
ICgT 0.015 76-75 N| 42.08N Ic, 0.095 55.50 N |54.29N
IC]OI 0.015 85.25 N| 46.74N IC8 0.072 59.75 N |52.29N

By increasing p for h = 1/20, 1/32 the average reduction factor r, and Wldd

of I CpI decrease until their minimal values are reached. Table 5.3 illus-

trates also that it is better to iterate before than before and after the
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coarse grid correction.

In table 5.4 numerical results for the non—lineaf problem (5.2) obtained
by [EIC4I]m and [EICSI]m are listed. In order to compare both methods the
A(t) - values, the total number of evaluations of ¢(j_1)(ZE,see section 4.3)
and the total number of operations of the TLA iterations

1 . .
T wTLA(EwTLA:z(?-—B)* m * wTLA , see section 4.1) are listed.

Table 5.4, Results for problem (5.2) with h = 1/32, t = 1/10 obtained by
[EIC4I]m and [EICSI]m.

‘m m
[EIC4I] [EICSI]
m A(t) TE EWTLA m A(T) IE ZWTLA
1 2.07 7 418.25N 1 2.89 -7 537.25N
2 2.94 14 836.5N 2 3.8 14 1C74.5N
3 3.75 21 1254 .75N 3 4.78 21 1611.75N
4 4.56 28 1673N 4 5.76 28 2149N

From the results listed in table 5.4 it follows that increasing the number of
operations to solve the coarse grid problem (2.3) improves the accuracy and

the computational efficiency for this problem.

5.5. The effect of grid refinement

In table 5.5 we illustrate the dependence of L. and Wlo—l of a two-level

algorithm in ICpI mode on the grid parameter h. The average reduction fac-

tor r__ and wlO—l increase when finer grids are used.



Table 5.5. Results for problem (5.1) with a = 100, T = 1/4, m =
and ILU-7 relaxation.
. iC ICgI
rav wlO—1 rav WIO—I

1/20 0.04 42 .74N 0.015 42.08N
1/24 0.084 55.54N 0.018 43.99N
1/32 0.216 89.78N 0.064 64.29N
1/40 0. 347 129.98N 0.155 94 .79
1/48 0.448 171.34N 0.258 130. 44N

25

If p is sufficiently large chosen an upper-bound for the reduction factor

of TLA can be found which is strictly less than 1 for all mesh sizes

h = H/2 of the fine grid (see appendix C).

In table 5.6 the A(t) - values for problem (5.1) with a =

100 and T

are illustrated obtained by E(IC4I)4 and E(IC81)4 for a range of h-values.

Both methods lose accuracy when the grid parameter h decreases.

Table 5.6, A(t) - values for problem (5.1) with a

100, T = 1/4 obtained

by E(IC4I)4 and E(ICSI)4 with ILU-7 relaxation.

h E(1c, D) E(1cgT)"
1/20 4.83 4.70
1/24 3.19 4.71
1/32 1.51 3.68
1/40 .65 2.09
1/48 .16 1.19

1/4
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5.6. Comparison of three different predictor formulas

The predictor formula (5.4) has been compared with two other predictor
formulas. The first one is the third order'extrapolation Fformula

' (pred) _ _ a
(5.4) y Wn T 1t pep T Vs

The second formula is the third order Adams - Bashforth method

(5.4)" y(pred) _ y_ o+ T%-[23 (e ,y ) = 48 £(t 1,y ) + 5 £(t v _,)].
For the method of successive corrections the starting value y(pred) should
be asymptotically stable (cf.[5]). Therefore, the formulas (5.4) and (5.4)'
seem to be plausible choices and explicit linear multistep formulas are ex-
cluded as predictor formulas. The explicit formula (5.4)" introduces insta-
bilities for large values of the spectral radius of the Jacobian matrix
of/dy.

In table 5.7 the effect of the predictor formulas (5.4),(5.4)' and
(5.4)" is illustrated for the non-linear problem (5.2) in the PCGC method.

Instability is indicated by an asterisk.

Table 5.7. Values of A(T) obtained for problem (5.2) with h = 1/20 by
(EICAI)m with ILU - 7 relaxation and the predictor formulas
(5.4), (5.4)%and (5.4)".

x m |y PTe 5.4y |y PTed) s (5 4y |y (PTOD, (5 4y
1 2.36 2.32 0.11
2 2.71 4,17 3.21
\1/5 3 3.46 5.01 4.58
4 4.06 5.02 5.02
5 4.64 5.02 5.02

1 2.91 5.65 *

2 3.82 6.54 *
1/10 3 4.82 6.67 6.67

4 5.82 6.67 6.67

5 6.67 6.67 6.67
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The results listed in table 5.7 indicate that the third order extrapolation
formula (5.4)' seems to be a more suitable choice than the predictor formula
(5.4). Note that the number of operations per integration step to calculate

the predictor (5.4)' is 6 N on a uniform grid Q_ with N inner points. The

h
third order Adams-Bashforth formula (5.4)" should introduce instabilities

which is confirmed by the results in table 5.7.
6. CONCLUDING REMARKS

For the problems under consideration it is better to choose ILU-7 re-
laxation in the two-level algorithm than ILU-5 or ILU-9 relaxation. However,
the best choice of the parameters and operators in a two-level method and
a multi-grid method depends on the problem under consideration (cf.[9]).

The convergence rate of the two-level algorithm in a particular mode
depends on the number of iterations p on the coarse grid and the grid pa-
rameter h. Therefore, the PCGC method should be implemented as a multi-grid
method as described in [2,9]. Increasing the number of iterations p on the
coarse grid improves the accuracy and the computational efficiency until
the coarse grid problem (2.3) is solved with negligible error. The number
of iterations p to solve (2.3) with negligible error depends on the grid
parameter h.

For the accuracy it is better to iterate before than after the coarse
grid correction.

For the model problem (5.1) the discrete Fourier analysis gives quite
satisfactory results for small h (see appendix A and C).

Using the third order extrapolation formula (5.4)' as predictor for-
mula in the PCGC method instead of the zero order extrapolation formula
(5.4) is worthwhile for the problems here considered.
1tJ, I-bTJ

0 0 n’
and Y o41-L for £ = 0(1) 4, when the fourth

The PCGC method requires the storage of I — b

*__* * * o~ (-1
L,U, R, L H’IJH ’RH s ¢
order backward differentiation formula (5.3) is chosen as the implicit

formula (1.2). Then to implement the PCGC method with ILU-7 relaxation we

need 23} arrays of length N, where N is the number of interior grid points

on Qh.
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APPENDIX
A. THE CONVERGENCE RATE OF ILU-5, ILU-7 AND ILU-9 RELAXATION

For a range of h-values problem (5.1) with o = 100 is discretized with
respect to its space variables which results in systems of ODE's. In order
to integrate these systems we choose again the fourth order backward dif-

ferentiation formula (5.3) and we put T = 1/4. The linear equations are

solved with ILU-5, ILU-7 and ILU-9 relaxation. The coefficient a in (3.6)
assumes the form - ]2/h2.
For - 7 < ei = w, hm < w, w, € Z \{0} ,i = 1,2 it can be numerically

veryfied that for this range of h values the convergence factors us(e),u7(6)
and ug(e)(see section 3.2) reach their maxima ﬁs,ﬁ7 and ﬁg, respectively,

in (61,62) = (th,7h). The graphs of the functions ﬁs ,ﬁ7 and ﬁg are given
in figure A.l.

Experimentally the reduction factor of the ILU-iteration, i.e. the spec-

tralradius A of (L*U*)_IR, is calculated for problem (5.1) with o = 100 and
T=1/4 by

lx., -x.l
(A.1) A= . irl 12 i 1,

ﬂxi—xi_]“2

where H.H2 is the Euclidean norm and . is the i-th iterand of (2.7) for
ILU-5, ILU-7 and ILU-9, respectively. These numerical values for the spec-
tral radius of (L*U*)_IR in ILU-5, ILU-7 and ILU-9 are obtained after per-
forming a sufficient number of iterations steps with (2.7), i.e. the ratio
(A.1) has more or less converged to a limit value. In figure A.l the re-
duction factors (A.1) for the ILU-5, ILU-7 and ILU-9 iteration are denoted

by x, o and ®, respectively.
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Figure A.l, The curves of the maximal convergence factors ﬁs, ﬁ7 and ﬁg of
ILU-5, ILU-7 and ILU-9 relaxation,respectively. The reduction
factors (A.1) of ILU-5, ILU-7 and ILU-9 relaxation are denoted

by x, oand @, respectively.

The Fourier analysis gives quite satisfactory results for h < 1/16.
For h > 1/16 figure A.l shows that for increasing values of h the conver-
gence rate predicted by the theory differs still more from the experimental

values, which is due to the boundary conditions. It should be noted that for

a, =- l%- << = 1 the same conclusions can be drawn by considering the
Poisson equation [8,10], i.e. ag = 4,31 =-1.
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B. COMPARISON OF THE EFFICIENCY OF THE PCGC METHOD, THE RKC METHOD AND THE
PR METHOD ‘

In [6] the PCGC method with the predictor (5.4) in (E(IC4I)r/m)m mode
has been compared with the second order one-step Runge-Kutta—-Chebyshev method
(RKC method [12]) and the Preconditioned Richardson method (PR method). In
[13] the numerical results with the RKC method are given for the test exam-—
ples (5.1) with a = 1 and (5.2). The computational effort is measured by com-
putational units, which are defined differently for each method. Here we
give a more detailed discussion of these computational units, i.e. we com—
pare the 3 methods on the basis of arithmetic operations (see also section
4) .

The PR method is also based on the same Newton iteration (2.1). However,
for the PR method the inner iteration is defined differently (see [6]) and
the ILU-decomposition and the evaluation of the Jacobian matrix are only

performed on the fine grid Q.. The PR method will be denoted by (E Iq)m

where q is the number of ite?ation steps to solve each linear system to be
specified for each problem.

Although in the numerical experiments with the PR and the PCGC method
the number of integration steps is (1—1-3), we assume that in the comparison
of the three methods the number of integration steps in the PR and the PCGC
method 1is T—]. The tables in [6], which illustrated the A(t)-values and the
corresponding computational work of the three methods, are based on the
above assumption.

We suppose that one f-evaluation (denoted by f) is equal to A N opera-
tions on , (see section 4.3). From (5.3) it follows that one Zn—evaluation

h

(see section 4.3) is equal to 7 N operations on Qh.

B.1, The RKC method

The number of operations in (almost)each stage of the RKC-formula [12]

is : (A+9) N.
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B.2. The PR method

B.2.1. The decomposition

In the incomplete LU-decomposition based on P0(3.2) of T - bOT J on
Qh the residual matrix R is not computed. Therefore it is convenient to write
the incomplete decomposition in the form LDU, where D is a diagonal matrix
(see MEIJERINK & VAN DER VORST [7]). In this case we need only compute and
store the matrix D. On Q, the number of operations of this decomposition

h
(denoted by (L*U*)h) is ¢+ 6N.

B.2.2, The evaluation of the function ¢(J_l)

The number of operations to perform the evaluation of ¢(J—1)(denoted

by E) occurring in (2.1) is (cf.section 4.3) : (A+20) N.

B.2.3. The iteration step

The number of operations on Qh for one iteration step I is : 25N.

B.3. Specification of the computational units

For the linear problem (5.1) with a = 1 and the non-linear problem (5.2)
we assume that one f-evaluation f is equal to 12 N and 11 N operations on
Qh’ respectively. In the PR method and the PCGC method the computational
work for the evaluation of the Jacobian matrices and the incomplete decom-
positions are not taken into account for the liZnear problem (5.1), because
for this problem these calculations are required only one. In the RKC method
the evaluation of the spectral radius of the Jacobian matrix is neglected
and in the PR method all initial work for estimating the iteration parameters
is not taken into account.

For the non—linear problem we assume that for the evaluation of the
Jacobian matrices in the PR and the PCGC method the number of operations per
integration step is 7 N and 8.75 N, respectively.

In order to define the computational units we introduce the following

notations (cf.[6]):
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matvec a matrix-vector multiplication on Q

h
sol the solution of L'U" y = b on Qh.

In table B.l the number of operations per stage in the RKC method, the
number of operations per integration step in the PR and the PCGC method and

the computational units defined in [6] are listed for both problems.

Table B.l, The number of operations per stage in the RKC method and per in-
tegration step in the PR and the PCGC method for problem (5.1)
with o = 1 and (5.2). The computational units are defined dif-

ferently for each method in [6].

Linear problem (5.1) with o =1 and m = 1

Method Nr. of operations Computational unit
RKC 21 N 4f
E 14 (q=14) 382 N é-[f+matvec+q(matvec+sol)]
E(ICal)r(r=3,4) 32N+r*59. 75N %.[f+matvec]+C4+3matvec+2801
Nonlinear problem (5.2) withm =1,2,3, 4.
Method Nr. of operations Computational unit
RKC 20N 10f
(EIq)m(q=9) 13N +m*x256N 3 [£+(q+1)matvec+q sol +3;*
*
L0,
(e1C, D)™ 30N +m 90. 75N f+imatvect2sol+C + =
*__*x *__%*
(@0, + @0

The computational units for problem (5.1) are based on the assumption
that the number of operations in 4-stages with RKC, in 1/r integration step
with E(IC4I)r for r = 3,4 and in 1/5 integration step with E 114 is approx-
imately equal. In the definition of the units for problem (5.2) we assume
that the number of operations in 10 stages with RKC, in 1/2m integration

step with [E I9]m and in 1/m integration step with (EICAI)m for m = 1,2,3,4
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is approximately equal.
C. THE REDUCTION FACTOR OF TLA

In order to demonstrate that the reduction factor ri(cf.(5.6)) of TLA
.. * . .
converges to a limit value ri we choose the linear problem (5.1) with o = 100.
In table C.1 we give the reduction factor r,,the average reduction factor

(i) _  G-D) C(i)

L and the errors lv 9 where v denotes the i-th iterand of

TLA in ICSI mode. The numbers in the parentheses stand for exponents of 10.

Table C.l. The reduction factor o, the average reduction factor L. and the
errors Iv(" - v (321,2,...,8) for problem (5.1) with
a = 100, T = 1/4 obtained by E(ICBI)l with ILU-7 relaxation.

h = 1/32 h = 1/40 h = 1/48
(1)__(1-1) . ()= &)y~ . (iy_,(1-1)
"v -V " 2 ri 1 "V v "2 ri 1 "v avs ” 2 ri
1 2.41(+2) 0.044 1 2.93(+2) 0.097 1 3.37(+2) 0.148
2 1.07(+1) 0.067 2 2.85(+1) 0.167 2 5.0 (+1) 0.28
3 7.2 (-1) 0.069 3 4.75 0.168 3 1.4 (+1) 0.283
4 4.95(~2) 0.069 4 7.98(-1) 0.168 4 3.95 0.283
5 3.41(-3) 0.069 5 1.34(-1) 0.168 5 1.12 0.283
6 2.35(=4) 0.069] & 2:2(2 0.168 |° 3.17¢-1) 0.283
7 1.62(-5) 0.069 7 3.77(=3) 0.168 7 8.98(-2) 0.283
8 1.11(-6) 8 6.33(-4) 8  2.54(-2)
rav = 0.064 raV = 0.155 rav = (0.258

The reduction factor of the two-level algorithm IC_I converges for

h = 1/32, 1/40 and 1/48 to the limit values 0.069, 0.162 and 0.283, respec-
tively. When the number of iterations p on QH are not sufficient to solve
the coarse grid problem (2.3) with negligible error, then for small h the
convergence rate of TLA in IPCDIS mode 1is approximately equal to

[u7(ﬂh,ﬂh)]p+s [u7(2ﬂh,2ﬂh)]p (see section 2 and table 3.3), i.e. the
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convergence rate of TLA will be determined by the low frequency components
in the error. ' _
For example, using table 3.3 the estimated convergence rate of ICBI is
0.077, 0.179 and 0.294 for h = 1/32, 1/40 and 1/48, respectively. Comparing
these values with the limit values rz for h = 1/32, 1/40 and 1/48, we ob-
serve that we have overestimated the convergence rate with 11.6%, 6.77 and
3.9%7, respectively. In a similar way the estimated convergence rate of
IC,I is 0.255, 0.401 and 0.522 for h 1/32, 1/40 and 1/48, respectively,
41 tends to 0.235, 0.3863

and 0.512 for h = 1/32, 1/40 and 1/48, respectively. Thus in this case the

]

4
whereas experimentally the convergence rate of IC

convergence rate is overestimated with 8.5%, 3.87% and 27, respectively.

In section 3.2 we have derived the smoothing factor ﬂ7 of the ILU-7
iteration for a model problem. For the model problem (5.1) with a = 100 we
illustrate that the reduction factor r. (5.6) of the TLA algorithm in
IpCpIS mode converges more or less to the limit value (ﬁ7)p+S with ﬁ7 listed
in table 3.2, when the coarse grid problem (2.3) is solved with negligible
error after p iterations with (2.8).

In table C.2a and C.2b for problem (5.1) with oo = 100 the reduction
factor . and the errors Hv(i) - v(i—])ﬂz are listed for E(ICI6I)i and

E(ICI6)1’ respectively.

Table C.2a. The reduction factor r, and the error ﬂv(l) - v(l_l)ﬂz for

problem (5.1) with o = 100, T = 1/4 obtained by E(IC]6I)1 with

ILU-7 relaxation.

h = 1/20 h = 1/32
i . . . .
1y (1) V(l"l)]l2 r; Hv(l)—-v(l_l)ﬂz r;

1 1.5 (+2) 0.0118 2.48 (+2) 0.0112
2 1.76 0.0143 2.76 0.0132
3 2.51(-2) 0.015 3.65(-2) 0.0141
4 3.76(-4) 0.0155|  >-13(=4) 0.0149
5 5.85(=6) 0.0161 7.63(=6) 0.0157
6 9.39(-8) 0.0165 1.19¢=7) 0.0164
7 1.55(=9) 1.96(-9)
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The results invtable C.2a and table C.2b show that the reduction factor ri

of IC]6I and IC]6

respectively. It should be noted that the smoothing analysis (see section

converges more or less to (57)2 = 0.01585 and 57 = (0.1259,

3.2) applies to Toeplitz-matrices without considering the boundaries. From
the results listed in table C.2a and C.2b the average reduction factor

¥ov (5.6) of IC;gl and IC _ can be derived. The average reduction factor

16
L. of ICI6I is 0.0148 and 0.0141 for h = 1/20 and 1/32, respectively and

L of IC16 is 0.0792 and 0.0799 for h = 1/20 and 1/32, respectively. Notice
that L. of IC]6I and L. of IC]6 is smaller than (57)2 and ﬁ7, respectively.

Table C.2b, The reduction factor r, and the error ﬂv(l) -v(l_l)ll2 for
problem (5.1) with a = 100, t = 1/4 obtained by E(IC]6)1 with

ILU-7 relaxation.

i h= 1/20 h = 1/32

(B G G=1)y r. v Gy r,

2 1 2 1
1 .48 (+2) 0.0276 2.46 (+2) 0.0229
2 4.09 (+1) 0.0412 >. 64 0.0422
3 1.68 (=1) 0.0654 2.38 (-1) 0.0652
& Lt (=2) 0.0751 155 (=2) 0.0767
> 8.26 (-4) 0.0909 .19 (=3) 0.0927
6 7.51 (=5) 0.1 1.1 (-4) 0.1032
! 7.51 (=6) 0.105 .14 (=3) 0.1089
8 7.89 (-7) 0.1075 1.24 (-6) 0.1117
? 8.48 (-8) 0.1091 1.39 (-7 0.1133
10 9.25 (-9) 0.1102 1.57 (-8) 0.1144
11 1.02 (-9) 0.112 1.8 (-9) 0.1164

12 1.14 (-10) 2.09(-10)
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