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Predictor-corrector methods with improved absolute stability regions*) 

by 

P.J. van der Houwen & B.P. Sonnneijer 

ABSTRACT 

Generalized predictor-corrector methods are studied with extended 

region of absolute stability. Choosing an extrapolation-predictor and 

a backward-differentiation-corrector methods are constructed of orders 

up to 6, the real stabi~ity boundaries of which are of magnitude m2, 

where mis the number of right-hand side evaluations per integration 

step. The coefficients of the method can be generated during the 

computation for arbitrary values of m. The storage requirements are 

limited and independent of m. The method is particularly suited for the 

integration of semi-discrete parabolic differential equations in more 

space dimensions. 

KEY WORDS & PHRASES: predictor-corrector methods; parabolic diffential 

equations; stability 

*) This report will be submitted for publication elsewhere. 





I • INTRODUCTION 

The conventional predictor-corrector methods for solving the initial­

value problem 

(I.I) prescribed for i = 0,1, ••• ,v-J; v ~ 

have rather restricted regions of stability (cf. [7, 10]). In order to 

improve the region of absolute stability, Stetter [II] proposed a 

generalization of these methods and showed by a few examples for first 

order equations (v=I) that the stability region can be extended 

considerably. These generalized methods fit into a still more general 

framework of "hybrid" explicit multistep methods introduced by Gear [3] 

and by Butcher [I]. Within this class of methods, Verwer [12] studied 

a family of m-stage three-step Runge-Kut ta methods of orders p = I and 

with a real stability boundary s 2 = CID p ' where C p is slowly 

varying with m. For these methods Verwer found values cl = 5. I 5 and 

• The code based on this family is rather robust in 

practice and particularly suited for the integration of semi-discrete 

parabolic problems in more space dimensions [13]. However, for large 

values of m (m~J2) the method becomes unstable because of the 
2 development of internal instabilities. As a consequence, them 

behaviour of~ cannot fully be expoited. In order to overcome this 

difficulty the present authors [5] derived m-stage (one-step) Runge­

Kutta methods of order p=2 with stability boundary S = 0.66 m2 

which are internally stable for arbitrary high m. This derivation is 

based on recursions of Chebyshev type. Verwer [14] followed this 

approach and constructed first and second order, three-step methods 

with c 1 = 5.17 and c2 = 2.32 which also remain stable for 

arbitrarily large values of m. A further extension to k-step methods 

with k arbitrary was given in [6]. 

The order of accuracy of the multistage methods mentioned above 

does not exceed p=2. In this paper, a family of higher order predictor­

corrector type methods with enlarged stability interval is constructed. 

The local error analysis (section 3) and the (linear)stability analysis 

(section 4) are given for (I.I) with v arbitrary. In section 5 

implementational details are given. 

2 
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The general theory is applied to an extrapolation-predictor and backward­

differentiation-corrector pair for fist-order systems of differential 

equations 
2 

S = C m , p 

(section 6). Examples are given of methods up to order 6 with 

where c 2 = 1.37, c3 = 1.01; c4 = 0.73, c5 = 0.54 and c6 = 0.37. 

The methods have restricted storage requirements and are internally stable 

for all m. lBy means of numerical experiments it is shown that the higher 

order methods are more efficient than the lower order ones even in the 

range of low accuracies. The paper is concluded with an application to 

second-order differential equations (section 7). 

2. PRELIMINARIES 

Consider a linear k-step method for the numerical solution of the 

initial-value problem (I. I), then the numerical approximation to y(tn+l) 

is the solution of the equation 

(2. I a) I ' n 

where T denotes the integration step tn+l - tn and In 1.s a sum of known 

terms, i.e. 

k 

(2. I b) I = I [ a: y o + b: T v f ( tn+ 1 _ o , Yu+ 1 _ o) J n £71 ~ n+I-~ ~ ~ ~ 

with Yn+J-•l denoting the numerical solution at tn+J-f.. The exact 

solution of (2.la) will be denoted by n. 

In order to solve (2.la) we consider the following m-point iteration 

method 

(O) 
Yn+l = some initial approximation ton, 

y (j) 
m 

[ Cl- I) \) (l--1), 
(2.2) = I + µjl T f(tn+l'Yn+l )] +. >.. ~ n+l µjl Yn+I 

- J n' 
l=I 

J = 1,2, ••• ,m, 

Yn+I = (m) 
Yn+l' 
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where m I\'I 

I µjl = 1 - A.' I µjl = bo A., j = 1,2, ••• ,m 
l=1 J l=1 J 

(2.3) 
µjl = µjl = o, l = j+1, ••. ,m. 

This scheme is a special case of the general "hybrid" explicit multistep 

method introduced by Butcher [1] (see also Gear [3] and Stetter [II]). 

From (2.3) it follows that the iteration method (2.2) is (i) consistent 

with equation (2.1a) and ii) self-starting provided that 

given by some predictor formula. 

(0) 
Yn+1 

The result after m iterations is accepted as the numerical 

approximation y I to,y(t 1). 
n+. • n+ · 

is 

In the analysis of the method (2.2) we will need the polynomials 

P.(z) defined by the recurrence relation 
J 

m 
(2.4) P0 (z) = I, P.(z) = l [µJ.l + µJ.lz] P.e._ 1(z), j = 1,2, ••• ,m. 

J l=1 

Evidently, P.(z) is a polynomial of degrees j in z. Furthermore, by virtue 
J 

of (2.3) we have 

(2. 5) * Pj(1/b0 ) = 1, j = 0,1, ••• ,m. 

These polynomials will be ~alled the iteration polynomials. 

In addition to the polynomials P.(z) we define the first and second 
J 

characteristic polynomials of the corrector formula (2.1) by 

(2. 6) * p (z;;) 
k k-l 

= - l al z;; 
l=d 

* 0 (z;;) = 
. k * k-l 
l bl z;; ' 

l==O 

where a*= -1. Furthermore, it will be assumed that y(O) is obtained 
0 ~] 

by a linear multistep method with characteristic polynomials ~(z;;) 

and o(z;;) where a.0 = -1 and b0 = O. The orders of accuracy of the predictor 

formula { p , o} and the corrector formula { p* ,a*} are denoted by p 
and p*, respectively. The order of the resulting predictor-corrector 

method (2.2) is denoted by p. 
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The method (2.2) contains a number of well-known integration formulas 

as special cases. In order to characterize these cases it is convenient 

to introduce the mxm triangular matrices 

(2. 7) 

Suppose that the predictor { P, o } and the generating method (2. I) are 

given and let 

- * (2.8) M = 0, M = b 0 I. 

Then the scheme (2.5) reduces to a predictor-corrector (PC) method in 
m * j P( EC) E mode. The iteration polynomials are given by Pj (z) = (b Oz) 

for all j. As a second example, let 

* 0 0 0 bO 

(2.9) M M = 
* 

0 0 0 bO 

ll 1 ... µm 0 

m-1 Then the scheme (2. 5) becomes the P (EC) LE ,method of Stetter [II] with the 

iteration polynomials ~ (z)_= (b;z~, j=O, I, ... ,m-1 and Pm( z)= rj=J llj (b;z) j-l 

However, for semi-discrete parabolic equations this scheme is internal­

ly unstable unless m is restricted to small values. Such a 

restriction of m will limit the stability boundary and therefore we study 

alternative predictor-corrector schemes of the type (2.2) with limited 

storage requirements whatever the value of mis. Firstly however, the 

local error and the absolute stability of the general scheme (2.2) will 

be considered. 

3. THE LOCAL ERROR 

Suppose that until t the integration process has been exact, i.e. n 
y(t.),i:o::n 

l 
(localizing assumption [7]). Furthermore, let 

us define the iteration error 

(3. I) c- = Y (j) - n. 
c. j n+ I 
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Then the local error is given bij 

(3.2) 

that is the sum of the local error of the linear k-step method (2.1) 

and the final iteration error. From the theory of linear multistep 

methods (see e.g. [7]) we may derive estimates for the local error 

11 - Y (t n+l). Here, we consider the iteration error 

THEOREM 3.1 Let f(t,y) be differentiable with respect toy then 

where 

PROOF. 

yields 

(3. 3) 

Let us 

write 

(3 .4) 

2s+v 
£. = P.(Z)e + O(T ) as T + O, 

J J 0 

V of * ~ Z = T ay (tn+l'11), s ~ v + min{p ,p} D 

Substitution of y(j) = 
n+l 11 + £j into (2.2) and using (2.3) 

m 
I £• = J l=I 
m 

= I 
l=l 

m 
= I 

l=l 

assume that 

[µj.e.£.e.-1 + 
V 

iij.e_(f(tn+l 'n+e.e._ 1 )-f(tn+l '11))] T 

V af 
(tn+l'n)Je.e.-1+TvO(lle.e.-1112)} {[µjl + µj.e_T ay 

- 2 
µj.e_Z]el-l 

V 
{[µjl + + T µj.e.O<h.e._ 111 )}. 

lie.II = 
J 

O(Ts) as T + 0 for 

2s+v 
C.T 

J 

J = 0, 1, •.. ,m and 

where P. is the polynomial defined by (2.4). The representation (3.4) 
J 

for the iteration error is correct if the c. satisfy the relation 
J 

(substitute (3.4) into (3.3)) 

m 
c. = 2 {[µJ.l + µJ . .e_Z]cl-l + 0(1)} as T + 0 

J l=I 
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with c0 = 0. For finite J the c. will be bounded as T + 0 
J 

so that 

(3.4') 

By observing that 

E = (O) - .11 
0 Yn+l 

~ * (O) O( p+v p +v) = Yn+l - y(tn+l) +y(tn+l) ~ n = T +T ' 

~ * 
0 (Tp+V+TP +v) as T + 0. we deduce from (3.4') that all E, are at least of 

J 
Thuss:::: v + min{p,p*} which proves the theorem. D 

From this theorem the following corollary is immediate. 

COROLLARY 3. 1 The local error of y(j) in (2. 2) is given by 

(3. 5) 

(0) 2s+V 
+ Pj(Z)(yn+l-y(tn+l)) + O(T ) as T + 0, 

* ~ wheres:::: v + min{p ,p} D 

We now state the main results of this section. 

THEOREM 3.2 Let the iteration polynomial PJz) has a zero of multiplicity 

r at z = O. Then the method (2. 2) has the order 

p = min{p*,p+vr,2s}, s:::: v + p. 0 

PROOF. From the definition of the matrix Z it follows that 

Hence, 

P (Z) = O(Tvr) as T + O, 
m 



where r is the multiplicity of the zero z = 0 of P (z) • Using . m 
corollary 3.1, we obtain for T + 0 

7 

* (m) ( ) ( ) 0 (TP +v + T vr+p+v + T2s+~). 
Yn+l - y tn+l = Yn+l - y tn+l = 

From this expression the theorem is immediate D 

It should be remarked that in the case of the conventional predictor-

- * corrector methods where µ • .e.,= 0 and µ • .e., = b 0 the iteration error satisfies 
\) J J 

II e:. II :;; LT II e:. 1 II where L is a Lipschitz constant for f; 
J J- ~ 

consequently e:m = O(T vm lle: 0 II ) = 0 (Tp+v+vm) so that we obtain 

the familiar result p = min{p * ,p+vm}. 

The polynomial P. (z) will be called of order r if z = 0 is a zero of 
J 

multiplicity r. 

4. STABILITY 

4.1 The characteristic equation 

Applying the method (2.2) to the stability test equation 

( 4. I) 

we obtain the relations 

(4.2) y (j) 
n+l 

\) 
where we have written z = T o • Let us write 

(4.3) y (j) 
n+l 

1 , ••• ,m, 

It is straightforwardly verified that (4.3) satisfies (4.2) if the 

function Q. (z) 
J 

is defined by 

(4. 4) 
P.(z)-1 

Q. (z) = _,,,_J __ 

J 1-b * z 
0 
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Expressing E n 
* * in terms of the characteristic polynomials p and CJ 

arrive at the formula 

we 

(4.3') (0) * * * -k Yn+I = P~(z)yn+l - Qm(z)[ I - b0z -(p (E)-zo (E))E ]yn+l' 

where E denotes the shift operator defined by Yn+l = EYn• Finally, we 

use the fact that the predictor formula for y~~~ is of the linear 

multistep form, that is when applied to (4.1) 

(4.5) 
(0) 

Yn+l = 
- -k - -k 

[1 - p(E)E ]yn+l + zo(E)E Yn+l' 

where we put -1. From (4.3'), (4.4) and (4.5) the following theorem 

is now innnediate. 

THEOREM 4.1 The characteristic equation of the generalized predictoP­

corrector method is given by 

( 4. 6) * * p (r;;) - zo (r;;) = [t5' (r;;)-zo (r;;) J D 

If we substitute for P (z) the polynomial corresponding to the 
m 

conventional predictor-corrector method in P(EC)m E mode defined by 
- * * m M = 0 and M = b0I, that is we set Pm(z) = (b0z) , then 

we obtain the familiar characteristic equation [7, p.97] 

(4. 7) 

* * m * * (t-b0z)(b0z) 
p (7;;) - ZCJ (7;;) = ------

* m (b0z) -I 
[p ( r;; )-zo ( r;;) J. 

It is well-known that the stability intervals for predictor-corrector 

methods are rather modest. For instance, a ·frequently cited predictor­

corrector method for first order equations is the fourth order PECE method 

of Crane and Klopfenstein [2] which has the relatively large interval of 

stability (-2.48,0). However, in many applications this interval is still 

unacceptably small. 

p (z) 
m 

In this section we will show that a suitable choice of the polynomial 

extends the stability interval considerably. Here, we will call 

the generalized predictor-corrector method stohle in a point z if (4.6) 

has for that point zits roots on the unit disk. 
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The set of all points z for which the method is stable will be called 

the stability region; the set of points of the stability region on the 

real axis form the stability interval and the length of the largest 

interval [- 8,0 J within the stability interval is called the stability 

bounda:ry $. The method is called zero-stable if for z = 0 . the 

equation (4.6) has its roots on the unit disk those on the unit circle 

being simple roots. furthermore, by writing 

(4.8) * z = P (z) 
m 

and by considering z* as an independent variable we may define in the 

* real (z,z) -plane a region where the generalized predictor-corrector 

method is stable. Since this region plays a central role in the 

subsequent analysis we give a formal definition. 

DEFINITION 4. 1 

equation 

* The region in the(z,z) -plane where all roots of the 

(4.6') * * p (~) - zcr (~) = 
* * (1-b0z)z 

* 
[p(~) - zcr(~)J 

z -1 

are on the unit disk will be called the stai.,ility domain V • 

Note that the points in V on the z -axis form the stability 

* * interval of the corrector formula {p ,cr }. Finally, we define the 

stability constant c = 8/m2 and the effective stability boundary 
1/v - -

8eff = [ 8 J /m, where m denotes the number of right-hand 

side evaluations per step. 

The stability domain V can be determined by applying the Routh­

Hurwitz criterion (see e.g. [7, p. 82]) which is more easy applicable 

by using a computer. A particularly straight forward derivation of V 

can be obtained in the case where o'(~) = 0, i.e. when extrapolation­

predictors are used (see appendix A). 

Presenting V in the form 
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where D1(z) and D2 (z) are functions completely determined by p,cr,p* 

and cr*, we conclude that the method with iteration polynomial Pm(z) 

has a stability interval [-8,0] if 

(4. 7) ::;; p (z) 
m 

for - 8::;; z::;; o. 

A typical example of a stability domain is given in figure 4.1. 

In the next subsection polynomials Pm(z) are constructed of 

arbitrarily large degree m which "remain" fairly long in the stability 

domain V • In this construction we will replace condition (4.7) by 

(4.7') 

where D1 and D2 denote the minimal values of D1(z) and D2 (z) in the 

interval [-8 ,OJ. It should be remarked, however, that in the case 

of lower degree polynomials P (z) (say m = 2 or m=3), the value of 
m 

8 obtained by using (4.7') instead of (4.7) is rather pessimistic, 

because for small m that part of V which is close to the origin is 

only relevant and it is just in this part where the simplification 

(4.7') is a rather rough approximation to (4.7). Thus, unnecessarily 

small estimates for 8 are obtained when using (4. 7') for small m 

(see figure 4.1). 

On the other hand, optimal stability intervals defined by (4.7) 

also mean that the corresponding integration method is rather sensitive 

to "imaginary noise", that is the method rapidly looses stability if 

eigenvalues with imaginary parts occur in the spectrum of af/ay. 

Figure 4.1 Stability domain V 

-D 
l 

z 



1 1 

4.2 Construction of polynomials P (z) for arbitrary m ________ __.___""-------m--------~-

We will construct polynomials P (z) satisfying (4.7') with the 
m 

maximal possible value for S • For large m these polynomials 

approximate the optimal polynomials satisfying ( 4. 7). We consider the 

case of zero- and first-order iteration polynomials of which the first 

order polynomials have slightly larger stability intervals. We did not 

succeed in constructing second order polynomials generating larger 

intervals of stability than those generated by the first order ones; 

moreover, only for D1=0 closed expressions can be derived (see appendix B). 

It will be assumed that D1 and D2 are non-negative. 

4.2.I Zero-order polynomials 

It is well known that those polynomials P (z) which alternatingly 
m 

* * * touches the lines z = -D 1 and z = D2 in the (z, z ) -plane are optimal 

in the sense that S is as large as possible (see figure 4.2). The 

polynomial P (z) is said to satisfy the equal ripple property [4]. 
m 

Consider the 

-s 

Figure 4.2 

* z 

1/b* 
-D 0 

1 

Optimal zero- order polynomial P (z) 
m 

shifted Chebyshev polynomial 

(4.8) 

z 
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where T (x)= cos(µ arccosx) if lxl ~ 1 and T (x) = cosh(µ arccoshx) 
µ µ 

if x > 1. Evidently, this polynomial satisfies the equal ripple 
* property with respect to -D 1 and n2 , and is such that Pm(l/bo) = 

as required by (2.5). 

It is of interest to derive the magnitude of S form+ 00 • 

From the expansion 

1 2 2 4 µ + O, lxl T (x) = - 2 µ [arccosx] + 0(µ) as µ 
(4. 9) 1 2 Fi 2 4 T (x) = + Z µ [fu(x+ X -})] + 0(µ) asµ+ O, x µ 

we derive that 

4m2 (1 + 0(1/m2)) (4. 10) S = ___ .:_ _ __,;____ as m + 00 • 

b*[,e_l~ + ri=n;-1]2 
0 n ~ _ ~ 

~ 

;?: 

1 2 
Thus, the stability boundary S shows an O(m2) behaviour and the 

order constant is just the stability constant. 

4.2.2 First order polynomials 

The optimal polynomials are of the form 

1 wO+l 
Pm(z) = 2 [Dz - DI + (D2+Dl)Tm(w0 + -S-z)], 

(4.11) 
D~-Dz w0+1 [ . 2+D 1-D2 ]-1 

wO = Tl (D +D ) ' S = -*- T 1 ( D +D ) - wO • 
I 2 b 0 - . 1 2 

m m * 
It is easily verified that Pm(O) = O,. pm(l/b 0) = I and that the equal ripple 

property is satisfied. From (4.11) it follows that 

(4. 12) as m + 00 • 
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4.2.3 Second order polynomials 

If n1 = 0 the optimal polynomials are of the form (see appendix B) 

(4.13) 
1 + cos~ 

ID s = 

ID 

It is easily verified that P (0) = p' (0) = O, P (1/b*0) = I and that the 
ID ID ID 

equal ripple property is satisfied. From (4.13) it follows that 

(4.14) s = as m + 00 

[ 2 2-D2+2/1-n; 2] 
b0 1r + (ln D ) 

2 
We observe that form= 2 (4.13) yields the conventional PECE method. 

5. IMPLEMENTATIONAL DETAILS 

In this section the computational scheme is defined based on a 

* * predictor {p,cr} a corrector {p ,cr} and the first order iteration 

polynomial P (z) defined in (4.11). The scheme is organized in such a 
ID 

way that an arbitrary number of stages are allowed (in order to increase 

the effective stability boundary) without increasing the storage 

requirements and without the danger of internal instabilities. 

Our starting point is the assumption that the stability domain 

defined by the predictor-corrector pair (see definition 4.1) contains 

the set of points 

( 5. 1) 

where n 1,n2 are positive and n3 is sufficiently large (to be specified 

below). For an example where this assumption is not satisfied see section 

7. 
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5.1 Construction of the scheme 

Consider the iteration polynomials 

(5.2) 

where w0 and S are defined as in (4. I I) and dm = 2/ (D 1 +D2). These 

polynomials satisfy condition (2.5) for all j. Furthermore, P (z) is. 
m 

identical to the first order polynomial (4 .11). 

The iteration polynomials (5.2) satisfy the recurrence relation 

(5.3) 

p O (z) 

d.P.(z) 
J J 

I ' 
w0+I * 

P 1 (z) = I - * (J-b 0 z), 

d I Sb O 

-
The matrices Mand M have the structure 

(5.4a) M = 

with 

WO+l 
µ I I - clS' µj 1 = 

I 

Al 
w0+I 

A. = --n, 2 
J I 

-
M = 

I -
d. I d. 2 wO+I 8J.-1 

2w ---1.:_ + ---1.:_ - 2-- --
0 d. d. Sb* d. ' 

J J O J 

d. 2 J-
- ~. J ;;: 3 ' 

J 

w0+J w0+J dj-l 
2d.S(8j-l-dj-l), µ .. = 2-s-~· j 

J JJ 
J 

w0+J 

8 . I ' 2, J ;;: 

* J-
dj Sb0 

J;;: 2, 

;;: 2, 
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* where ej = Tj(w0+(w0+t)/Bb0),d0 = O and d 1, ••• ,dm are still free 

parameters. A plausible choice for these parameters is such that the 

P.(z) have a first order zero at z=O, i.e. (use 5.2)) 
J 

(5.4b) d. = T/wo 
w0+t 

-Tj(w0). +--) 
J Bb* 

0 
Then y(j) has the order (by virtue of theorem 3.2) 

(5.5) p = . { * ~ } min p , p + v • 

However, for large values of B we obtain rather small values for the 

first few d.(d.~(w0+t)j 2/sb;for B>>l) and consequently relatively large 
- J J 
µ. 1 -values because e.-d. ~ I (note that all other parameters remain of 

J J J 
moderate size). Because problems possessing a large Lipschitz constant 

require relatively small values for the coefficients µjl if we want to 

integrate with large integrat•ion steps, we introduce an index m0 and 

only use. (5.4b) for j ~ m0 and set d. = dm for j < m0 • The index m0 is 
h . h h d. ;.,, J. O c osen 1.n sue a way t at m = I, 1. .e. 

:0 

d ~ wO+l m2 = wO+l (m0)2 ~ I, 
m0 b* 0 * m 

B O cpbO 
so that 

(5.4c) 

This choice implies that ii .. >ii. giving the most recent derivative 
J J J I 

evaluation the larger weight in the successive iteration steps. 

5.2 Internal stability for large m 

The stability condition for the scheme generated by (5.4) is given by 

(5.6) v B 
• :S -S....,.( d--f--/=a-y.,....) ' 

where S (af/ay) denotes the spectral radius of the Jacobian matrix af/ay, 

and where we have assumed that n3 ~ B. 
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This condition is not sufficient for a stable behaviour if many stages 

per integration step are used, i.e. if mis large. For a detailed 

discussion of the phenomenon of internal instability we refer to [ 6 J 

Such instabilities can be suppressed if we require that the homogeneous 

part of (5.3) is a stable recursion. If d- 1/d- and d. 2/d. J- J J- J are 

constant this is achieved by requiring that the roots of the characteristic 

equation 

are within or on the unit circle, those on the unit circle being simple 

roots, for all z in the spectrum of ,v3f/3y. We find 

(5.7) 2d. l - d. s d. 2 s d. , - S s z s O. 
J- J J- J 

It is easily verified that this condition is always satisfied if j s mO, 

that is if dj = dmO and if (5. 6) holds. For j > mO the coefficients dj 

slowly increase with j sothat d. 1/d. and d. 2/d. are also slowly 
J- J J- J 

changing. For instance, if S is large we have dj ~ 2j 2 /Sb; so that 

d. 1 J-
~ 

J 

(j-J. 1)2' dj-2 ~ (j-2)2 -\ ~-J,j2 
J 

Since these quantities are "almost11 constant as m large we may expect that 

(5. 7) ensures also stability if j 2 mO + 2. Evidently, this condition is 

satisfied for j 2 mO+2. 

6. EXTRAPOLATION-BACKWARD-DIFFERENTIATION ·METHODS 

In this section we apply the results obtained in preceding sections 

to the special case where the predictor formula is defined by extrapolation 

and the corrector formula by backward differentiation. The considerations 

are confined to first order differential equations (v= I). The resulting 

methods will be denoted by EP-BD methods. Notice that for these methods 

the P(EC)~ and the P(EC)m mode are identical. 

The characteristic polynomials are defined by 

( 6. 1) O; 



(3r,?-4r;,+ I) I 3 

(ltr;, 3-J8r;,2+9r;,-2)/II 

(6.2) p*(r;,) = (25r;,4-48r;, 3+36r;,2-16r;,+3)/25 

(137r;,5-300r;,4+300r;,3-2oor;, 2+75r;,-12)/137 

(147r;, 6-360r;,5+450r;,4-4QOr;, 3+225r;,2-72r;,+I0)/147 
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zr;, 2/3 

6r;,3/JI 

; a*cr;,) = 12r;,4 /25. 

60r;,5/137 

60r;,6/J47 

The order of accuracy of these predictor and corrector formulas are 
~ respectively p * and p. 

The stability domain V of these predictor-corrector pairs contain 

the set (5.1) with D3 = 00 and (D 1 ,D2) listed in table .6. I. 

Table 6. I (Di,D2)-values of EP-BD methods 

* ~ * ~ * ~ * p p = p -2 p = p -I p = p 

2 ( I , I) (1/3,1) (1/7, ½) 

3 (1/3,1) (1/7,½) (1/15, 1/5) 

4 (1/7,.4951) (I/ 15, • I 999) (1/31, 2/ (13+5 IS)) 

5 (I/ 15, • 1704) (1/31, ~0751) (1/63, 1/28) 

.6 (1/31,.0289) (1/63,.0147) (1/127,.01128) 

6.1 . EP-BD methods with only a few stages 

We start our discussion with the four-step, fourth order BD formula 

and the EP formulas of orders p = O, I, 2, 3. By virtue of theorem 3.2 

these predictor-corrector methods are at least of order 

(6. 3) p = min{4,p+r,2p+2}, 

where r is the multiplicity of the zero atz=Oof P (z). In the special case 
m 

of conventional PC methods we have of coarse 

(6.4) p = min{4,p+m}. 

Let us first consider the conventional predictor-corrector method 

generated by 
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(6.5) _ (12 )m Pm(z) = 25 z . 

* It is easily verified that z = P (z) remains within the area ( 4. 7 1 ) if m 

·- z :s; B = 

25 D l/m form odd 
12 1 

25 D l/m form even 
12 2 

In table 6.2 the stability boundaries Beff are listed for a few values of 

m resulting in p = 4. 

Table 6.2 Effective stability boundaries for (6.5) 

p = 0 p p = p = 2 p = 3 p = 3 

m = 4 3 4 2 2 

p 4 4 4 4 4 4 

6e:i:f .52 .48 .52 .73 .14 .47 

Next we choosePm(z) optimal with respect to (4.7'). Consider the 

case m = 2 and p = 3, and require thatP2(z) behaves as indicated in 

figure 6.1. An elementary calculation yields 

(6.6) 

I 
I 

_I-----------------

* z 

Figure 6. 1 Optimal polynomials of first order 

z 
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with the stability boundary 13= 1/b~:::::2.08. According to theorem 3.2 this 

method is of fourth order. Comparison of this optimized method with the 

"best" method listed in table 6.2 (i.e. p = 2, m = 2), we conclude that 

we already gained a factor 1.4 in the effective stability boundary. In 

figure 6.2 the stability region is given in the complex z -plane (only 

half of the stability regions are given as the regions are synnnetric 

about the real axis). Notice that this region extends rather far into 

the imaginary direction. This is due to the fact that D1 = 1/15 is much 

smaller that the D1 (z)-value at the point where P2 (z) touches the line 

z* = -D1 = -1/15 (see figure 6.2). 

Similarly, we obtain form= p = 3 and for p 3 (z) behaving as in 

figure 6.1 the stability boundary s~ 5.7 which is effectively a factor 

2.6 larger than the maximal effective boundary of the conventional methods 

listed in table 6.2. In figure 6.3 the stability region is shown. The 

* narrowing of this region occurs when P3(z) touches the line z = D2 = 1/15. 

We again consider the fourth order EP-BD methods with k = 4, p = 3 

and m = 2 and 3. But now the polynomialsP (z)are chosen in such a way that 
* m * they approach the boundary curves. z = D2 (z) and z = -:D 1 (z) rather clo:se·but never 

that close that the characteristic roots (cf. (4.6)) become larger in 

·modulus than .975 in the interval -S(m) < z < O. The resulting regions are 

shown in the figures 6.2 and 6.3 (dotted lines). The 

Figure 6.2 
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improvement of the real stability interval of these "optimal" EP-BD methods 

* (indicated by EP-BD) is considerable whereas the extension of the stability 

region into the complex plane is still substantial. 

6.2 Comparison with conventional PECE methods 

Along the lines as indicated in the preceding subsection we can construct 

* EP-BD and EP-·BD methods of orders p = 5 and p = 6. In this subsection we 

compare the real stability boundaries S and 0 = S/m of various µeff 
predictor-corrector methods. In table 6.3 values are listed for the PECE 

mode of a few Adams-Bashforth-Moulton (ABM) methods, 

Table 6 .. 3 Stability boundaries for various predictor-corrector methods 

* * ABM CK KAM · EP-BD (m = 2) EP-BD (m 
order 

s seff s seff s seff 's seff DI s seff 

4 1. 3 .65 2.48 1.24 1.8 .9 3.88 1.94 .24 8.90 2.97 

5 1.0 .5 1.4 .7 3. 15 1.57 . 1 7 7.28 2.42 

6 .7 .35 1.0 .5 2.58 1.26 . 13 6.03 2.01 

the Crane-Klopfenstein (CK) method, the Krogh-Adams-Moulton (KAM) methods 

* and the two-and three-stage EP-BD methods. In the conventional 

= 

predictor-corrector methods the predictor and corrector are of the same order. 

In order to illustrate the enlarged stability intervals we have 

integrated the nonlinear problem 

3) 

DI 

.23 

. 16 

. 1 2 
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dy = ,- y4/3 + t32/9 + ~ t5/3 O ~ t ~ JO 
dt · 3 ' 

with initial conditiony(O)=O. The required starting values were taken from 

1 . y( ) 8/9 . . * the exact so ut1.on t =t . For the 1.mplementat1.on of the EP-BD methods 

we refer to the approach in section 5. In table 6.4 we have listed 

Table 6.4 Numerical results obtained by various predictor-corrector methods 

EP-BD*(m 
I 

EP-BD*(m ABM CK KAM = 2) I 
I 

order I 

l 1 l I l 1 1 • 1 1 1 1 1 I 
!T=I 

I 
T=- T=4 T=- T=- T=- T=- T=- T=4 T=- T=- T=- T=- T=-

2 8 t. 2 .4 8 2 8 2 4. 8 2 I 

I 
I 
I 

4 * I+• 2 7.2 * 4.3 7.2 * 0.8 7.0 I. 7 4.3 5.2 11.43.4 

5 * * 8.9 * * 8.2 1.5 6. I 7. I * 4.5 

6 * * 7. 1 I * * 7.3 0.4 7.9 8.7 * 4.3 

. the number of correct digits defined by 

(6. 7) 10 sd = - log E, E = absolute error 

obtained 1.n. the endpoint t 10. 

6.3 EP-BD methods with many stages 

Consider the EP-BD-method with the zero-order iteration polynomial 

given in (4.8). In particular we consider the methods of order p = 4,5 

and 6. In table 6.5 the stability constants cp determined by (4.10) are 

listed for a few values of m where we identified D1 and D2 with the values 

I 
T=-4 

4.2 

5.8 

7.3 

* of table 6. I and where p = p = p. This table shows the rapid convergence of 

c to the asymptotic value. We compare 

= 3) 

I T=-
8 

5.3 

7. 1 

8.7 
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Table 6.5 Stability constants for EP-BD methods of order p = 4, 5, 6 

p 

4 

5 

6 

m=l 

• 26 

• 12 

.047 

m = 2 

.52 

.33 

. 19 

m = 3 

.60 

.40 

.26 

m = 4 

.63 

.44 

.29 

m = 5 

.64 

.45 

• 31 

m + oo 

.67 

.48 

.34 

these values with the one-step stabilized Runge-Kutta methods of order 4. 

derived in [9, 4]. Here it was found that c4-;;,_ 0.24 for m = 5 and c4 ;: 0.34 

as m + 00 • Thus, apart from a faster convergence the present methods also 

possess substantially larger stability constants. 

In a similar way we obtain for EP-BD methods with the first order 

iteration polynomial (4.11) the stability constants listed in table 6.6. 

Table 6.6 Stability constants for EP-BD methods of order 

p = p* = p + l = 4 , 5 , 6 

p m = m = 2 m = 3 m = 4 m = 5 m + oo 

4 • l 39 .52 .63 .67 .69 .73 

5 .074 .34 .44 .48 .50 .54 

6 .039 .21 .29 .32 .34 .37 

These values are slightly larger than those obtained by zero-order iteration 

polynomials. We remark that for p = 4 and m = 2 the iteration polynomial is 

identical to (6.6). 

6.4 Application to parabolic initial-boundary value problems 

Consider the EP-BD method with first order iteration polynomial (4.11) 

and implemented as described in section 5.1. 
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This EP-BD scheme was applied to the semi-discretized version of the para­

bolic initial-boundary value problem [6] 

(6. 8) 207f 

with Dirichlet-boundary conditions along the square O s xI' x2 s I. The 

initial and boundary values were taken from the exact solution 

(6.9) 

In the semi-discretization we used the conventional five-point molecule 

on a uniform grid with smesh spacing h = 1/20. 

The number of stages min the various EP-BD methods was determined 

by the stability condition (5.6), i.e. 

(6.10) m = m n 
s (af/'dy) 

where the factor I. I inS('df/'dy) is added to get a safe upperbound. 

The starting values y O, .•• ,yk- I were taken from the exact solution (6. 9). 

For a number of integration steps we defined the accuracy obtained 

1.n the endpoint T = 201r by means of the number of correct significant digits 

defined by (6. 7). Furthermore, we defined the computational effort by 

counting the total number of right-hand side evaluations needed 1.n the 

integration process including the function evaluations required if the 

starting values were to be computed from points sO instead of taking them 

from the exact solution. This number is given by N = r,n=T/-r m. Using 
n=I n 

(6.10), N c.an be expressed 1.n terms of p and T, and assuming that 

E = 0 (Tp) as T + 0, we can express N in terms of p and E or sd. 

We find that N and sd are related by the equation 

(6.11) log N sd = A(p) + 2P as T + 0 

where A(p) 1.s a constant only depending on the order p of the method. 
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Our numerical experiments show that this asymptotic relation is quite good 

satisfied for rather large integration steps (see appendix D). The 

constants a(p) and the maximal stable integration steps T for problem 
max 

(5.8) are 

A(p) 

T max 

p = 2 p = 3 

2. 72 2.86 

2 'IT/30 2 'IT/20 

p = 4 p = 5 p = 6 

2.89 2.99 3.04 

2 'IT/10 2 'IT/10 2 'IT/10 

In figure 6.1 the behaviour of log N as a function of pis illustrated for 

various values of sd. This figure clearly shows that the higher order 

methods 

log N 

3.5 
I 
I 
sd=5 3.4 

:sd=4 
3.3 sd=3 
3.2 I sd=2 
3. 1 sd=l 

I 

p 
2 3 4 5 6 

are the more efficient ones even in the range of low accuracies. The optimal 

order is clearly the order p for which log N is minimal. In this connection 

we remark that a lower bound for the optimal order p can be derived which 

is determined by (see appendix C) 

(6.12) pc' = c ln T, 
p p 

where c' denotes the derivative of c with respect top and where it is 
p p 

assumed that the order constant in the relation E=O(.P) is decreasing if p 

increases. From this relation it can be derived that the optimal order is 

larger than 3 as soon as T < 0.4 (see appendix C). 

Finally, we compare the results reported above with those obtained 

if the ADI method of Peaceman-Rachford [8] is applied. From these results 

it follows that N and sd satisfy the relation (see appendix D) 
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(6.13) I log N = B(i) + 2 sd, 

where i denotes the number of Newton iterations used for solving each 

implicit relation in the algorithm. The constants B(i) and maximal 

stable integration step are given by 

B(i) 

T max 

i = I 

1.99 

21r/80 

i = 2 

1. 67 

21r/80 

From (6.11) and (6.13) it follows that the generalized predictor-corrector 

methods are cheaper than the ADI method in the accuracy range 

(6.14) sd > ~ [A(p)-B(i)]. 
p-1 

For instance, the 4-th order method is cheaper than the ADI method using 

two Newton interations if more than 3.25 correct digits are required. 

7. A METHOD FOR SECOND ORDER EQUATIONS 

We conclude this paper with the derivation of a generalized predictor­

corrector method for second oPdeP ODEs (v = 2). We will use the extrapolation 

predictor and the Stormer-Cowell corrector with k = 2, i.e. 

(7.1) 

(7.2) 

which have the respective orders p = 0 and p * ~ 2 (if b~ = 1 ~ then (7. 2) 

defines the fourth-order Numerov corrector). 

The stability domain V of this predictor-corrector pair is given by 

* (4b0-I)z-4 
DI (z) = ---z--

Thus, if b~ ~ ¼ we have n1 * = 4b -I 
0 



26 

Using the first order iteration polynomial (4.11) we obtain a second 

order method with the stability boundary 8 given in (4.1 I). For m large 

we have 

0 ~ 4m 2 * I 
.., * 2 ' bO ;?: -4 • 

(7 .3) 2b -1 
b*0 farccos · -0 ] 

L 2bo 
The stability boundary increases withb~ but is bounded above by 4 m2 • 

In view of (3.5) we require, however, jPm(z) I ~ I, i.e. D1 ~ I which 

yields a stability boundary bounded bij 32 m2/TI2 

* Finally, consider the Numerov corrector which arises for b0 = 1/12. 

Using the second order iteration polynomial (4.13) we obtain a fourth order 

method. Since nowD 1<0, it is no use to employ large values of m. Form= 2 

we find back the conventional P(EC) 2E method based on (7.1) and (7.2) the 

stability boundary of which equals 12. Form= 3 the stability boundary 

is determined by the equation 

(7.4) 1/12, 

where 8 is defined in (4.13). Note that here form odd 8 is not the stability 

boundary of the method because D1 < 0 (see figure 7. 1). Solving equation (7 .4) 

yields a stability boundary~ 32.4. 

In order to compare the efficiency of the methods with regard to stability 

we compute the effective stability boundaries defined in section 4.1. Taking 

into account that the number of right-hand side evaluations per step 

m = m + I (here the P(EC)~ mode is different from the P(EC)mmode), we 

arrive at the values listed in table 7.1. 

Table 7. 1 Effective stability boundari~s 

* 
bO r m p 8eff 

1/2 111·~·1 2 mm/(m+l)TI ~ 1. 8 m/ (m+ I) 

1/12 2 2 4 /Jz/3 ~ 1. 15 

1/12 2 3 4 132.4/4 ~ 1.42 

1/12 m;?: 2 4 ~ill/ (m+l) ~ 3.46/(m+l) m 

1/12 m m+oo 4 /6/ (m+l) ~ 2.45/(m+l) 
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We remark that in the three-stage extrapolation-Numerov method the 

iteration polynomial P3(z) takes advantage of the special form of the 

stability domain V (see figure 7 .1) resulting in a stability boundary 

which is more than 5 times as large as the stability boundary of the 

Numerov-corrector. 

-32. 4 -2 • 4 

* z 

D =l 
2 

2 
-D =-

1 3 

Figure 7.2 Extrapolation- Numerov method with b~=-fi, r=2, m=3. 
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APPENDIX A 

In this appendix we derive explicit expressions for the boundary curves 

of the stability domain V associated with the characteristic equation (4.6') 

in the special case O(~) = O. The derivation will be along the lines of a 

particular application of the boundary locus method des·eribed in [6]. 

A.I The boundary locus method 

If cr(s) = 0 we can write (4.6') in the form 

(A. 1) 
* * z (l-b0z) 

* 1-z 

Let us substitute s = iiJJ to obtain for z and z the relation 

(A. 2) 

where 

A+ iB * i·'· = a (e o/), C + iD 

with 11/JI :Sn. Let ·z=Z(i/J) and z=Z(i/J) be the solution of the boundary locus 

equation (AZ). Then the stability domain is bounded by the curves 

(A. 3) Z(iµ), * z (1/J) 
11/J I z = z = :;; 1T. 

~ * ' Z (1/J)+b0Z(iµ)-l 

(i) For those values of 1/J for which 

(A.4) AD - CB = ED - CF = AF - EB = 0 

the solution of (A.3) degenerates to a straight line given by 

(A.5) * * ~ ( *) A (1/J )z + C(i/J) z = E 1/J , 
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* where iJJ is a root of (A.4). In terms of z and z* we find the hyperbolas 

(A.3a') 
~, 

z = 
* * E (ijJ ) - A(ijJ ) z 

* * * * * -C(ijJ )+E(ijJ )-[A(ijJ )-b0C(ijJ )Jz 

(ii) All values of iJJ for which AD - CB "f O yield the regular solution 

(A. 3b') 

z = ED- CF 
AD- CB 

-J< AF-EB 
z =-----*--------

(AF-EB)+bo(ED-CF)-(AD-CB) 

~ ·-;Y, ..J. ,,,* • Let ijJ denote a solution of AD - CB= O. Choose a o/, o/ Then it is of 

interest to know how the solution (A. 3b') behaves as ijJ • ijJ . If ijJ is also 

* a zero of AF - EB then (z,z ) • (± 00 ,0) as ijJ • ijJ. If ijJ is also a zero of 

* ED - CF then (z,z) • (z,l) as ijJ • ijJ. Finally, if ijJ is neither a zero 

of AF - EB or ED - CF (which is the usual situation) then it is easily 

shown that 

~ 
(A.3b") (z,z*) • (±oo, A(ijJ) ) 

~ * ~ A(iµ)-b 0C(ijJ) 
as ijJ • ijJ. 

* * ~ For given formulas {p ,cr Lmd {p,Ohhe regular curve (A.3b') is easily 

determined in the (z,z*)-plane. The determination of the hyperbolas (A.3a') 

requires the solution of (A.4). Evidently, these three equations have the 
. * * . connnon solution ijJ =O and ijJ = TT, Thus, we find 

(A. 6) * z 
* * p (±1)-cr (±l)z 

~ * * *N -p(±l)+p (±1)-[cr (±l)-b0p(±l)]z 

In most cases there will be no more solutions ijJ*. Since the functions 
~ Z(ijJ) and Z(ijJ) are even functions, our considerations will be restricted 

to the interval O ~ ijJ ~ TT, 

A.2 EP - BD methods 

Let the predictor formula be defined by the extrapolation formula (6.1) 

and let the corrector be of the backward differentiation type, i.e. 



(A. 7) 

Then 

(A. 8) 

where we 

(A. 9) 

i.e. 

(A. 9') 

* * ,;;k, CJ (,;;) = bO V = 1. 

A(i/i) = * b0 .cos ki/i., B(i/i) = * 
bO sin kip 

C(iµ) p+I ~ ~ = [R(iµ)] cos[(p+l)a(iµ)+(k-p-1)1/i] , 

D(i/i) = [R(iµ)]p+I sin[(p+l)a(iµ)+(k-p-1)1/i] 

have written 

iiµ I Ria O ,,, e - = e, :s;.,, :s; 1T 

a= 1r+arctan siniµ R = ✓2(1-cosiµ)', 0 :s; 1/J :s; 1r. 
cosiµ-1' 

The determinant AD-CB is given by 

r (A. 10) AD-CB 

which vanishes if 

(A. IO') R(iµ) 

= b*[R(iµ)]p+ 1 sin[(p+l)(a(iµ)-iµ)] 
0 

= 0 or "'(''')-•1•+j1r -= O, J = 0 +1 "" .,, .,, p+ I ' - ' • • • • 
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An elementary calculation yields that the roots of (A.JO') are given by 

(A. 1 1) w = 2i1r; 1/i = 2j P:1 + (2l+1)1r; i,j,l = ±1,±2, ••• 

The regular curve (A.3b') can now be computed by excluding~ from [0,1r]. 

In order to compute the hyperbolas (A.3a') we have to solve (A.4). The 

solutions { in the interval [0,1r] are included in the set (A. 11) •. Thus, by 

substituting~ into (A.4) it can be checked which one is a iµ* -solution. 
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It can be verified that 

(A. 12) ip* = 0,1T 

are the only values in the set (A.II) which satisfy (A.4). We are now in 

a position to compute the boundary curves of the stability domain V. 
We conclude this appendix with the asymptotic behaviour of the 

stab i1 i ty domain V as, z + -co. From (A. 3a' ) and (A. 3b ' ) it follows that the 

* * boundary functions z =""D1(z)and z = D2(z) are of the form 

(A. 13) * z 
A(~) 

= -~--'~*--~- as z + -co, 
A(ijJ)-b0C(ijJ) 

where ijJ is given by those values in the set (A.II) for which (A.13) is closest 

to zero. Substitution of (A.II) into (A.8) and (A.8) into (A.13) yields 

* z = 1 

(A. I 4) * I ~ _ 2j 
z = ---. .----.,,.,~,-- = ---------p+ 1 , ijJ - <~p+ 1 + U+ I) 1r, 

1-(-l)J[R(~)Jp+l · . · 2 
l-(-l)J[2(1-cos~)] 

where O ~ J}1 + 2l + ~ 1. Evidently, we may restrict l to l=O to obtain 

(A. 15) * * I z = 1,· z = --------. . p-+-1' 
1-(-l)J[2cos't:t] 

- _!_(p+I) ~ J ~ O. 
2 

The two minimal asymptotic values we are looking for are listed in table A.I. 

Table A.I Asymptotic values for EP-BD methods 

z + -co 

* z + 

* z • -1 .:..1/3 

p=2 p=3 

1/2 

-1/7 

1/5 

-1/15 

p=4 

2/ (13+5/§') 

-1/31 

* We observe that these values are independent of b0• 

p=5 

1/28 

-1/63 

p=6 

.01595 

-1/127 
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APPENDIX B 

In this appendix we consider the construction of second order iteration 

polynomials. It is not possible to find optimal polynomials of second order 

in the form a + bTm(w0+wiz) unless DI = O. Of course, we can just 

put D = O, but then we restrict the stability domain considerably (cf table 
I 

4.2) and consequently we get unnecessarily small stability boundaries. 

Let us consider a slightly more complicated family of iteration 

polynomials defined by 

p (z) 
m 

(B. 1) 

where w0 and wI are free parameters. It is 

nomials have a double zero at z = o and 

interval -I S w0 + wI(I~c0z) S +l the 

values which are bounded by the functions 

(13.2) 

m ~ 2 

easily verified that these poly­

satisfy p (I/b*)=I. In the 
m 0 

polynomials Pm(z) assume 

We will assume that c0w1 < O. Then P (z) 
m 

is bounded by B±(z) if 

This inequality suggests putting 

B = 
(B.3) 
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. * * We now consider two cases b0/c02::1 an,d b0/c0s1. In the first case, 

condition (B.3) is satisfied if (see figure B.1) 

(B. 4a) 

* 

z ----------) 
Tm (w0 ) -• I 

I-

Tm(wO) -;mtO+wl) 

Tm (w0):,'I 

* l/bO 

Tm(w0)+1 

Tm(wO)-Tm(wO+wl) 

Tm(w0)+1 

Tm(wO)-Tm(wO+wl)" 

Figure B. 1 The polynomial P (z) of the family (B.I) 
m 

and in the second ~ase we find 

(B.4b) c' 0 

z 

* bO 

co 



For 

(B. 5) 

The equation (B.4) cannot be solved explicitly unless n1 = O. 

D = 0 we find the solution 1 

s = 

2.l+l l+cos (--TI) 
m * 

* 2 21.+1 ' co = bO 
b [T (-- 1)-cos(--TI)] 0 _!_ D2 m 

m 

0,±1, ••• 
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Evidently, one should choose l=O in order to maximize s . The resulting 

values for S are slightly smaller than those listed in table 4.5. 

For D1 > 0 we solved (B.4) numerically for various values of 

D1 and n2 . These experiments show that for values of n2 < ½ stability 

intervals are obtained which are hardly larger than those defined by (B.5). 

Therefore, we did not pursue the construction of second order iteration 

polynomials. 
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APPENDIX C 

In order to justify the use of higher order time integrators for 

parabolic equations we derive an equation for the optimal order of 

accuracy with respect to the minimization of the number of right-hand 

side evaluations. 

We assume that the integration interval [o,TJ, the spectral radius 

S = S(pf/dy), the stability constant c and the desired global error E p 
over the interval [0, TJ are given. Furthermore, we assume that E and 

T are related according to 

(C.1) E = C(p,T)TP, 

where C(p,T) 1s a function determined by the numerical method and the 

problem under consideration. This relation defines T. 

We now try to choose p such that the total number of right-hand 

side evaluations is minimized. This number is given by N = Tm/T, where 

m is the number of stages per integration step. According to 

stability condition, m should be at least as large as /TS/c'. 

• Expressing T 1n term of C(p,T) 
I 

(C.2) N2 = S T2 [C(p,T)]P 
1/p 

E C 
p 

and E we find 
p 

the 

This expression 1S minimized if p satisfies the equation dN2/dp = 
yields 

1 

(C. 3) p C' = C [ in <c (pE, T) i. + C1 (p,T)] 
p p C(p,T) ' 

0, which 

I where cp and C' (p,T) denote the derivatives with respect to p of the 

functions c and C(p,T). Using (C.l) this equation for the optimal order p 
can be written as 

(C.3') p CI = -c [in T + -~1 (p 'T)] 
p, C(p,T) . 
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Thus, the optimal combination of the order p and the integration 

step,· is determined ~y (C. 3'). In practice, we usually do not know the 

function C(p,T), 

the optimal order 

However, in general we have C'(p,T) s 0 

satisfies the inequality 

(C.4) p c.!, s c_ ln ,. 
p p 

so that 

From this inequality lower bounds can be derived for the optimal order p 
· as soon as the integration step Tis determined. In the following example 

it is shown that, rather surprisingly, this lower bound is relatively high 

even for large integration steps. 

Example C.1 Consider the EP-BD formulas with the first order iteration 

polynomial (4.11). The asymptotic stability constant cp 

by 

can be approximated 

2 
C = 2.3 - 0,53p + 0.0)5p, 2 Sp S 6. 

p 

Substitution into (C.4) yields the values listed in table C.1. 

Table C.1 Lower bounds for the optimal order 

for various values of 

T = 0.568 0.392 0.259 o. 180 

* p 2': 2 3 4 5 

o. 176 

6 

These values indicate that it is advantageous to use higher order EP-BD 

methods, even for rather large integration steps. 

We recall that the values listed in table C.l present lower bounds 

only if the error constant C(p,T) is decreasing with p Otherwise, 

the values of table C.1 should be considered as upper bounds 



38 

APPENDIX D 

In this appendix we briefly summarize the numerical results of the 

EP-BD methods and the ADI method applied to problem (6.8)-(6.9). In table 

D.l we list for the EP-BD methods the sd-values (cf. (6.7)) obtained, 

the required number N of right-hand side evaluations, as well as the 

functions C(p,T)(cf.(C.l)) and A(p) (cf. (6.11)). In table D.2 

results are listed for the ADI method of Peaceman and Rachford (denoted by 

PR(i), i being the number of Newton iterations) 

p 

2 

3 

4 

5 

6 

Table D. 1 Results of the EP-BD methods applied to problem (6.8)-(6.9) 

T/2'IT 

1/20 

1/30 

1/40 

1/60 

1/10 

1/20 

1/30 

1/40 

1/10 

1/20 

1/40 

1/10 

1/20 

1/40 

1/10 

1/20 

1/40 

N 

1725 

1971 

2416 

1649 

1969 

2249 

1472 

1920 

2612 

1702 

2220 

3016 

2043 

2656 

3587 

sd 

-co 

1.67 

2.23 

2.66 

-co 

2. 13 

2.60 

2.92 

1. 52 

2.89 

4. 19 

1. 94 

3.37 

4.86 

2. 13 

4.13 

6.21 

C(p,T)=lO-sd/1-p A(p)=logN- sd/2p 

0.49 

0.24 

0.20 

0.24 

0.27 

0.31 

0. 19 

0. 13 

0. 11 

0. 12 

O. 14 

o. 14 

0. 12 

0.08 

0.04 

2.82 

2.74 

2. 72 

2.86 

2.86 

2.86 

2.98 

2.92 

2.89 

3.04 

3.01 

2.99 

3. l 3 

3.08 

3.04 
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Table D. 2 Results for the ADI method applied to problem (6.8)-(6.9) 

PR(i) T N sd B(i) 

PR( 1) 2,r/80 1600 2.42 1. 994 

PR(2) 2,r/80 3200 3.67 1. 670 

PR( 1) 2,r/160 3200 3.03 1. 990 

PR(2) 2,r/160 6400 4.28 1. 666 



MC NR 

35245 

J s 


