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Order conditions for a class of Runge-Kutta-Rosenbrock methods
by

J.G. Blom

ABSTRACT

This report deals with the derivation of the order conditions for a
class of Runge-Kutta-Rosenbrock methods for stiff differential equations
that is described in [5]. Recurrence relations for the order conditions
are obtained by a technique similar to that used by WOLFBRANDT [6]. The

order conditions are generated by an ALGOL 68 program and are listed up

to order 6.

KEY WORDS & PHRASES: Numerical analysis, stiff systems of ordinary dif-

ferential equations, Runge—Kutta—Rosenbrock methods






1. INTRODUCTION

This report deals with the derivation of order conditions for a Runge-
Kutta-Rosenbrock (RKR) method which has been developed for the numerical
solution of the initial value problem for stiff systems of ordinary

differential equations

—
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(1.1) 5% = f(y) x2 Xy, ¥(x) = y5-

The RKR method has been discussed in [5] and is given by (cf. formula 2.3
in [5]):
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where aij’ Yij
In analogy to WOLFBRANDT [6] we expand the solution ;(xn+h) in a

> My and y are real parameters and n a non-positive integer.

Taylor series and compare term by term with the expansion of the approximate
-
n+l1°

conditions with parameters aij’ Yij’ Mes Y and n. For these expansions and
for the generation of the order conditions from the recurrence relations

solution In that way we obtain recurrence relations for the order

we make use of the theory of the elementary differentials formulated by
BUTCHER ([1] and [2]).

In Chapter 2 we will give some preliminaries on this theory that we
need for the evaluation of the recurrence relations and derive these rela-
tions themselves. For the generation of the order conditions from the
recurrence relations we did write a computer program that is based on the
correspondence between elementary differentials and rooted trees. An out-
line of this program will be discussed in Chapter 3. There we also list

the order conditions up to order 6.



2. RECURRENCE RELATIONS FOR THE ORDER CONDITIONS

2.1, Elementary differentials

The theory of elementary differentials has been formulated by BUTCHER
[1]. This section will contain some notations, a definition and a theorem
that are needed to understand the remainder of the chapter. For further

details and proofs we refer to BUTCHER [1].

DEFINITION 2.1.1. For a mapping'f: R > R the elementary differentials

—

F: RV> ®rY of given order and degree are recursively defined as:

T is the only elementary differential of order 1;

the degree is not defined.
T is an elementary differential of order r and degree s
if
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where Fij is the j-th component of an eiementary differential Fg of order

r. (i =1,2,...48) such that

. . . . . - =2 -
This elementary differential will be written as F = {FIFZ"'FS}'

Note that in general f',f ,...,Fh need not be distinct.
1°72 s N
Each elementary differential of f is denoted by a string of letters and

bracket symbols. As abbreviations will be used:

F..F=F, {{..{=1{_  and }}.}=1.
—— — ——

k k k



THEOREM 2.1.1. Let D be a differential operator defined by

g )
D= ) f.-—2,

=1 39

where T is defined by (1.1). Then D' 'F 4s a linear combination with

positive integer coefficients of the elementary differentials of order r.

pFE- ] «@®F.
v. v ord F=1
If'f = ffllfzz--- fgc} with'fl,fz,...,f; all distinect, then the coefficient
K of'f satisfies:
R o k@EONL
(2.1.1) k(F) = (xr=1)! 0 ——T( ; ) R
v, I\ !
1=1 "1 1
where r, 18 the order of'fi and K(f) = 1.

2.2. Taylor expansion of ;

If we expand the solution-;(xn+h) of (1.1) in a Taylor series about

the point X assuming that';(xn) = ;;, we find

r r—-1-2
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y(xn+h) =y, * |
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where EK]n denotesiz(§£). By application of Theorem 2.1.1 this can be writ-
ten as

r
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(2.2.1) y(xn+h) =y, * ]

o~ 8

r

where the coefficient k is given by (2.1.1).

2.3. Expansion of the approximate solution

For the sake of simplicity we first restrict our attention to- the
scalar equation
dy

(2-3-]) '—}z = f(Y): X > xn’ Y(Xn) = yn°



The RKR method then reads
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If h is small enough, ki can be expanded in a power series:
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T h
(2.3.3)’ k, = z e
LEMMA 2.3.1. Let £ = f£(y) be analytic and let Yntn have an expansion of
the form

where, since n 18 a non-positive integer,

r r—1
z_ = I]—f—[D

r r. f]n'

Then the recurrence relation f'or*Ki . 18:
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PROOF. The identity K. o= [fJn is trivially satisfied. In order to get
b

H
ing power series (2.3.3) and expand step by step all terms of the equation

(2.3.2.a)

the recurrence relation for Ki . with r > 0 we replace kj by the correspond-

i-1 i-1 © T
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By using Taylor's theorem and the multinomial theorem we obtain the power

series for
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With these relations we can expand the right-hand side of equation (2;3;2.a).

Let
df
A=1=-yh dy(yn+n) =
r- k+1
d" f
= 1-v (y ) -y Z h' Z 7T S(r-1,k z)[ k+1]
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and
i-1
df
B=f +h k. J+h — .k, =
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1 d f
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Then using the relation for the quotient of two power series

o] (o]
T r
] Bx / ) ax = ) yx,
r=0 T r=0 * r=0
where
r—1

Y, = r ZO an r-q’ 1f o9 = 1,

we get for the right-hand side of (2.3.2.a):

r=0 r
with
by = L£1,
r : k
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From equations (2.3.3) and (2.3.2.a) it follows that

So the recurrence relation for Ki r for r > 0 becomes:
b ]

. K.
T k i-1 jor ~1r.k
1 m |df
ome{E 1 (B ey o
1,r 21 k! T oL tr T m=1 j=1 1] (rm 1) dyk n
i-1 K.
j,r-1 cdf
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AR T G = [
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r-2 K. r—-q-1 k k+1 K.
1,9 1 d f 1,r—1.df
eyl L g R L o s
q=0 q- k=1 ks r]+...+rk=r—q—l m=1 ‘m dyk+] n (r=1):"dy™n

which, after a little manipulation, is equal to (2.3.4). [

We next proof that Ki ,-] can be expressed as a linear combination of
, T

the elementary differentials of order r.

LEMMA 2.3.2. Under the conditions of Lemma 2.3.1, K, __, can be written as

9

(2.3.5) K, = 1 y®IF],

S 1,r-l ordF=r

where \pi(F) 18 a polynomial in ;5 Yij’ Yy and n that satisfies the

recurrence relation:

if order F is 1: wi(f) =

(2.3.6) v,

v
| ...F0°} with ¥, all distinct for

if order F 28 r and F = {F
i= 1,000,009, (F) =
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PROOF. We will proof this lemma by mathematical induction on r. If r = 1
then Ki 0= [f]n; when we take wi(f) = 1 then relation (2.3.5) is satisfied.
bl -— -—
Assume that (2.3.5) holds for r = 1,2,...,r-1, ¥ = 2. To prove the lemma
for r = r we firstly recall that
. nf
z, = _7lD £l =_& ) k(F)[F1
ordF=r
with k given by (2.1.1). When we substitute this in (2.3.4) and use the

induction hypothesis, we find for K. =

1,r-1
r-1
(2.3.7) R 71 = ) D ) Y
k=1 rr+...+rk=r—l ordF] =r, ordFk=rk
- k i-1 k
e R h P [
k. m=1 j=1I 1J (r -1)! k dyk 0

@D ] (Z iV ED v (F ))[ ﬂ]
ordF]=r—1 j=1

r-2 q 1)

+ 1) ) - D) Sus LY

q=1 k=1 T .. .tr=q ordF0 =r-q-1 ordF] =T, ordFk=rk

k  ‘m -1 tp.(F ) Vs (FQ) k+1
. ( m %—— K(Fm)>( Z Y 0 + v 0 \[ F eeoF E———E] .

m=1 m! j=1 i] (r-q-2)! (rhq—ZY/ k dyk+] n

After examination we find that the right-hand side of (2.3.7) is a sum of
the r—-th order elementary differentials of f. To prove that wi(F) has the
suggested form for all F of order r, we distinguish three different types

of elementary differentials of order r.

a) F = {FI} and order F1 = -1,

For these elementary differentials the right-hand side of (2.3.7) gives:



i-1 . (F,)
) (;_1)3(2 _J___1_>[F df] .
n

- *ij = 1 dy
ord F, =r-1 j=1 I (x-2)! y

_ ‘ i-1 af
+ @D ] (Z Yi¥; (F1)+Ywi(F1)>{Fl ——dy],
n

SO

i-1
- (c- 1
b, (F) = (r 1){J=1(aij+Yij)wj(Fl)-Fvwi(Fl)I.

\) —
b) F = {F]]}, v,r, = r-1 with v, > I and r, the order of F,.

For this type of elementary differentials the right-hand side of
(2.3.7) is:

G- (! v (Fp) )”1
{ ) R \J.Z] “j a-nr) T

ordF1=r1
- ) Virlicr o wL@®m) v (F) v, U1
(r-1)! (n A it 1d f
oy \r T KED L i e )T
ord F. =r 1 A j=1 1 : 1 : 1
171 dy
and
v.(F) = __Si:lli__{ iil a..r 9. (F,) v] +
i v, =1 ijt1vivl
1 1 -
vl.(rl.)
r] vl—l 1-1
v]_ Vo Vo o -
c) F = {F] F2 cee F0 1, 2i=1 VT, = r-1 with o > 1 and r. the order of

Fi' Then the right-hand side of (2.3.7) becomes:

. v
1\t o] 1-1 Y. (F) m
Bt ) D) T (7 o, 2

o . i (r_ -1
ﬂh=l vm! ordF1=r] ordF0=rouFl j=1 m ’°
% ; 5 o nrm ’m Y
B FCi L
q=1 ord F =r ordF =r m=1‘'m’ o rq
171 o C n
= k(F )
. q

q
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ist v E) ) "’(F)\U F\’adf]
: (J‘ 1Jir —l; Y ir -1)! }I[ dvan’
where
a
v= ] v,
i=1 *
[]e]
_ o 1 (1 \vm o /i—l \ Vm
by @ = Gor ek () (L e e) 0
o T vy @ vqr i-1
+ (o k(F))) ) T——-(Z Y IP(F)+Y1P (F))}
- T ey 3

We now can obtain the following result.

THEOREM 2.3.3. If the conditions of lemma 2.3.1 are fulfilled, the approx-
imate solution of (2.3.1) has the following expansion:

(2.3.8)  y_,, =y * N T Y $(E)FI,
r=1 ~° ord F=r
where
s
¢(F) = r 2 uiwi(F), where wi(F) is given by (2.3.6).

i=1

PROOF. When we substitute (2.3.3) in (2.3.2.b) we get:

s ©® Lr S
y =y, * h Z wk, =y_+ Z P Z u. r K.

n+l1 .
1

with lemma 2.3.2 we can write

h
!

s
Z U. T 2 V. (F)LF]
=1 1 ord F=r * n

which is identical to (2.3.8).

COROLLARY 2.3.4. To each elementary differential F corresponds an elementary
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weight ¢ = ¢ (F) that is defined by:

if order F is 1: ¢(f)

[l
e
Ho~>1wm
=
=

—

(2.3.9)

v
if order F is r and F {F l"'Fo 9} with Fi all distinct for

i=1,...,0:

. g 1 1 \)m r g 1-1 \)m
1 ui{r. n il ﬁ;ﬁ@ 1mﬁ ('Z o, . T wj(Fm))

m=]l m" "m’ =1 j=1 X

¢ (F) =

i

fl o~

9) r \) a v.r
ma®e@En ™ ] 44 (2 Yy by E) vy ))}}
m=1 g=1 n QK(F ) Mj=1

where wj(F) is given by (2.3.6) and x(F) by (2.1.1).

2.4. Taylor expansion of ¥

n+l

Consider the system of ordinary differential equations:

-
dy _ 2= - =
(2.4.1) Frl f(y), x > X s y(xn) =Y,

where

<l

_ T > T T
= (yl,...,yN) , £ (fl""’fN) and Y, = (yn’],...,yn’N) .

In this section we will derive in an analogous way as in section 2.3,

an expansion similar to (2.3.8) of the approximate solution y n+1 of (2.4.1)
that is obtained by the s-stage RKR-method:

I_'Yh_(y )]k fy +h Q. k)+h n+) Y i=l,...,s

ay " i j=1 137 2y "= E
(2.4.2) 5
S
- - —
| Yn+1 ~ Yn * hizl Hikys

where denotes the Jacobian matrix.

QQ |
S48 4
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To simplify the derivation we will adopt from WOLFBRANDT [6] the follow-

. a2
ing definition for vector functions vi(y):

k
SN o 0
V. VeV =

1°2 k

N N
Z cee ) Vis Voi eoeVps R
PRI RRPC R B 11 432 '

4
I ~2

12
In order to obtain a similarity with (2.3.2.a) we write for the v-th

-
component of ki:

of

V) _ oV 2 -1
(2.4.3)
{f G +h ) a,.k)+h) — G . )Y vy.,.k. 7 +
v 'n j=1 1] 3] 2=1 Byz n+n =1 1] ]
N of
v )
+vh ) — (v, Jk.7}.
g=1 g M
L#v
We now proceed as in section 2.3.
Expand i& in a power series
o r ’
2 _ h™ = 2 _ (D (N)\T
(2.4.4) ki = Z ?T'Ki,r’ where Ki,r = (Ki,r""’Ki,r) .

The analogous result of lemma 2.3.1 is:

LEMMA 2.4.1. Let T ='f(?) be analytic and let §;+n have an expansion of the

form

.Y -
y =y *

=, where z_ = DT{Dr—lfj .
h 'z r .
n+n n r

| ~1 8

=1

Then the recurrence relation for the v-th component of'f; . 182
5
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) _
Ki,O = [fv]n
(2.4.5)
- § o ; [k igl f% - \{akfv]
K. = - m a.. 2 ; +
LTy ke T teootr =T \a=1 P R G N a?kjn
(T x® L ® \raf] .
2=1%321 Yij 1,r 1 i, r-1 /[ayﬂ
N r-1 ¢ ' k’_\
1l LE 1 (nE ).
£=1 q=1 k=1 ° r to.tr =q ‘mel Tm
. (K) @)
(F vy - e G v
\j=l ij (r—q-1)! (rbq DT =k \Byz ’ 2Tac e

PROOF. The proof of K(\)) = [f\)]n for v = 1,2,,..,N is trivial,

Following the approach described in the proof of lemma 2.3.1 we find:

i-1 w R g jzi i N €2
= 2
bl ovigkyt o DnT Lo T et 1 owte
j=1 r=1 = r=1
) ) ' 2
RN i-1 = N T r 1ol ,r—1 v -
yn + h jz] aijkj = yn + Z h jz lJ W not, rZ]h ai’r

Using Taylor's theorem for multiple variables and the multinomial theorem we

obtain the powerseries for:

i-1

o r
1
£ (y +h ] o k y=[£1 + ¥ n° § = _
=1 vn r=1 k=1 k. r1+...+rk-—r
' k- aKg
( n a )[’ v]
m=1 “*'m a;r\k-'n

and for
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va {afv] E r f 1 2
5—(y =55 * h T
e §+n Wpln =1 k=1k L
]
(‘,f, LGS
m=1 rm}La§k \ayﬂjjn
Let
va
A=1=-xh 5;;'(Yn+n)
o -1
I-va] . 1
=1 -yhz—{ -y ] h | )
lavan r=2 = ryteeotr, =r-l
(}% s (3&)1
m=1 rmjléAk ayv Jn
and
i-1 N of i-1 @
= h k. —_— .k,
B=f (v + jzl a;k;) +h Z an(ynm’jzl vigki
N of
v oa )
Yhﬂzl 7
L#v
<] r 1 k
=[fv:1+zhr{z.k_,_ ) /nz‘ir)
=] k=1 % r +,..+r =r ‘m= >"m
1 k
L @1 (3 1 (n
oy i,r k! \
£=1 £n 2 1 ‘k=1 rite..tr, =q ‘m=l
@)
N of .
B ERGEN YR e 1 (] S,
= gl Nesra)) * 7 L Us,, 6D
L#v
r—l(le | ; (k_\ 35 BF N7 \/K
oL GG
q=1 ‘k=1 k r]+ +r. =q =1 m Ay Byz n

Then we get for the right hand side of (2.4.3):




r=0
where
b, = [f ]n’
and
k
r k \ 9 fv'l
b= T ) <n a, [ R
T k=l T<—rr]+ +r =r m=1 *° m} B;k-ln
N of r-1 q k k ,of
@) (v 1 (= Va7
1 {5 (1w 1 (ne EH)
E=l\ ayl’.J L,r q=1 \q=1 ke r+ +rk=q\m=1 Tm la§k ay!Z/Jnj
&)
/ (2) \\ N ( af\)] K.]._’:r:_1 r-1 (q 1
’ 'c1 r—q}} _z_ [ByZ n (r-1): * qzl kzl kT r1+.z.+rk=q
Z#v
I ENNGENY )/ i r-q-l\\
\ue1 /Loy \avg/ L \G=-DT)) *
r-2 r—-q-1 k k /,3f \1
I by ) ) (n 2 )2 Gy
q=0 4 k=1 KT r,+ +rk=r—q1 m=1 'm ayk \ay\)”n
of
“v]
r-lY[ Yy ln
From (2.4.3) and (2.4.4) it follows that
)
rZO rE T rZO " by
so
. = k
) {§ 1y (11—? T Sher -1>f3 fv]
Lt k=1 ke Tyte.otr =T m=1 j=1 *J (-1 [a"k n
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)
J,r—]

afv]
Yij (-7

£=1
L#v d
N
,[sk /afv)1 VoL g
=k \ay, /] \( r-q-n7)) *
v)
r-2 K r-q-1
1,9 1
vl L ow
(v) 3F
¥ Ki, -1 [__3]
@-D7 3y ]

for v =

-2 4+
ayﬂjn

)

r]+..

1,2,...,N, which is equivalent to (2.4.5).

@)
Kj,r_q_] \_,_
lJ (r-q-1)'/)

k
(mﬁ z } :
*1,=q =1 m

O

The result of this lemma is identical to that of lemma 2.3.1 with

vector functions instead of scalars.

That lemma 2.3.2, theorem 2.3.3 and corollary 2.3.4 also hold for

systems of ordinary differential equatlons (when the scalars f,F,y and Y,

are replaced by the vectors f F,y and y ) can now be verified in the same

way as in section 2.3.

2.5, Conditions for the coefficients,

In the preceding sections we have shown that the exact and the approx-—

imate solution of the initial value problem (2.4.1) at the point xn+h can

be expanded in powers of h about the point X

hr
o

—_ +h _5+
y(xn ) = Y, _

No~18

where «(F) is given by (2.1.1) and

. §
K(F)EFJn,

—
ord F=r



17

S S It h o -
Yoo =9 * ) = ) $(FIF,
r=1 -

ord F=r

where ¢(f) is given by (2.3.9).

The two expressions agree up to terms in WP if
= = . ; 2
(2.5.1) ¢(F) = «(F) when r < p and r is the order of F

while the error is given by:

© r
(2.5.2) T, -V = I L] G@®-<@)IF
r=p+1 ~° =
ord F=r

3. GENERATION OF THE ORDER CONDITIONS

3.1. Elementary differentials and trees

The generation of the order conditions is based on the fact that there
is a one-to-one correspondence between the elementary differentials of T of
order r and the rooted trees with r nodes (see HAIRER & WANNER [4], and
BUTCHER [2]).

A rooted tree t, often simply called a tree, is defined as a connected
graph without cycles with one unique specified node, the root.

The notation
t = [t],...,tm]

means that the trees tl""’tm remain after the root of t and the adjacent
arcs have been removed.

The tree consisting of only one node (the root) is denoted by T.

The correspondence between the elementary differentials of T of order

r and the set of trees with r nodes can be recursively defined by:

(1) T corresponds to T

N A -A . - .
(ii) {F...Fm} corresponds to [t],...,tm] if the elementary differentials
P Y
Fi’ i=1,...,m, correspond to the trees ti'
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As an example we give for the elementary differentials up to order 4
the corresponding trees in their formal form and represented as a graph. For
the formal notation of a tree we use similar conventions as for the elemen-

tary differentials (see section 2,1), e.g. [[T,71,T1]1] = [2T3]2
-
f T .

() [] A

t0 I S BV LB, LT, S
1y U e,
2 2 RN

LEY, 0, Y Ghy Gy

3.2, Outline of the computer program

To get the order conditions from equation (2.5.1) we wrote a computer
program in ALGOL68 of which we will give a short outline. The program is
based on a slightly changed version of a formula manipulation package written
by DEKKER [3].

Suppose we wish to obtain the order conditions up to order r. We then
have to compute for each elementary differential T of order r < T the value
«(® (2.1.1) and the polynomial wi®(2.3.6).

In view of the correspondence between the set of elementary differen—
tials of'? of order r and the set of trees with r nodes we can represent
an elementary differential f'by its corresponding tree., We therefore build
up the set T of all trees with a number of nodes not exceeding r. An element
of this set will be denoted by Tr,k’ where r is the number of nodes (the
order) of the tree and k the number of the tree in the list of all trees of
order r (the order list). To each tree a list of elements (subtrees) is
linked. Each element contains the order of the subtree, the number of this
subtree in its order list and the number of times this subtree occurs in
the tree.

We now compute for each tree Tr k? starting with T1
2

> an integer value
S
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. i . .
Kr,k and a polynomial Tr,k' For instance, if the tree Tr,k =

-—
[T 1 ,...,TvU -] corresponds with the elementary differential F =
rl,k] ro’ko

PR RY] =V i
1 c = =
{Fl . e .For } then Kr,k k (F) and Wr,k wi(F). For each subtree T

the numbers rj, kj and vj have been stored in the list that is linked

Tiokj

Y A i
to T_,. Moreover k (F.), (K ), and ¢. (F.), (¥ ), have already been
r,k j rj’kj 1] rj’kj
computed for the tree T that corresponds with F..
| Tiokj ]
In this way we can build up the set K consisting of integer values and
the set ¥ consisting of polynomials. We next equate for r from | up to r

and for all possible k

From these relations we then obtain, after some manipulation, the desired

order conditions.

In table 1 we give the order conditions up to and including order 6.

The third columm contains the number by which the equation has been
divided. Hence to get the real error constant ¢(§) - K(f) in (2.5.2), one
has to multiply the difference between the left hand side and the right
hand side of the order equation with this number. Further we used the

following abbreviations in the table:

P15 7 %y T Y
1i] 1{1
o, = o, . B. = B..
1 =1 ij i 3=1 ij
= = 1 <
i3 YlJ 0 for i <3,
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24

112

24
60
60
60
120

20

120

60

120

120

1, =%-—n(l 25u,a,)
_ 1_ 2
ulBijBJ -E Y+y
1 2.3
2:uiml % (7 3Zu, 0Ll)
Zuoia B, = gy - nG- Iua B -y (1= Iun0,)) = n’ (F- a5 a.)
i17137] 8 3 6 ij j i1 4 277171
2 1 1
ulsij“j ——]-z--gv-n(g— ulﬁijOLJ“Y)
1
Zu.B..B.. B =L 3,2 3

1.1_]_]

1 1. 1.2
Tugo; B0 B =557+ 3 ¢+ TW(—" Zuso; ;B J"Y)-

n (—- Luo 1JBJ -—Y)

=
Q
[}

]

ij 3 iiij’]
3,1 2
n (—5 -3'211]-_0-1)
1 1 2

— ],— — — _l
Zy.a.a,.B.. B =30 ZY+3Y n(24 Zulaljsjksk 3Y+

2 3,1 1
Y7 (1=Zu.0.)) +n Y(j Iugas) =n Gz-gIne;

llJJ

1 5 1 2
a7 A ”"z‘z‘“'s“"" g
1

3 1 1
IuB, .07 = 55=Fy=n (—-3 U.B..0, = Y)
B i"ij ik k
2= BB, .0.) +¥2) ~n Gy 4 Tu B, .0 - 1
2 17133 12 2771 ij i 4
1 1 2 2
+ Y —n(12 ZZulleBJkk 3Y+Y)

1
=—-%Y-n (--— ZulalJ J—y(2 3211 a. ))-

3
n (Z-'fzuiai)

IY n(--uu —Y(—--ZZua))-n(—-Euu)

1 1 2
]—S——n(§-— Zuia. .0, = 2Tu.0.a..0.) +1 (3- ZZuiaijaJ

Y)
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1 1. 1.2, 2 1. _
Tugos0sB0be S 25T Y Y v 200,08,

3 31
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2 2 1 1. 21 2
Iujegas.00 = gg= Nl - 20n 000, 00) = nT(qr - Tugag cag) 4
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1 1
1 1. 1.2 2,1 1
Tugojor Baby Sg5 = 5Y ¥y TN GGz Iwgos BTyt
Y2(§~ 2%u.0 ))+n3v(1-22u a )—n4(l-—1—2u a.)
2 1% 1% 5~ MY

1 : 1 2
Y= n("']"G‘_ Zzuiaijajaiksk—Y(g— Zuiaijaj)) -
2

15
(_]__-_l_z:p.a..a + Y(l- 2%y.a. .0.)) +
24 2 ij7] 3 11] ]

2
T8~ IM1% 5% T3 I 458 73T
2 3.2 13 ]
TSY Y ~3Y gt Inge; iR by
20 2,1 1
a..B.) + vy )=n (Z's' 'z'z“iaijgjkﬁk
3

1 1 1

11 ) )
Zug0;0;c00 B = 728 TS Y T NG IH % %% kP T T %% %k Pk

1 2,1
Y- Iug0s0,000) - (ggt Inga, o B -

1 1
ZIH 00550+ Vg Tuga, 00)) +
3,1 1 1 2
nTqg g iugag e -y ine)) +
bl 1o
N 28T 25 4%
aa8a2=~L——l—-(-—l——2aBa2—22 0.0..B. O =
i%1%3%5k% T 7275 T 97 T Hi% 5Pk T P Mi% %R 5k %k
T 2 1 1
4171
n Y(-3- —3-Zuiai) + 7 (§-Zzuiai)
-1 1. .32 13 1 _
Tuso0siBalPrefe " T2z "0 8y T3 Tn(am I 585k Puefe
1 3 223 3
1 1 41 1

Y G-y Iuges) -0 (g Ty 2yey)
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4 _ 1 1. 3.2
2 1 3 1 2
3601 TusBi305%5kP “ 50 20 *EY O (24 = BlJ JkBk
2 _1

1 1 1.2 13

& < ¢

360) zu, BlJ JkBk JKBK “T20"T0YT3IY T3Y +nY(12 2Tu; B13 JkBk
%Y +y )--nz(zl4 Zulsljajkek-gv +§Y %)

360| Zu, BlJJJki_%_JISY n(15 ZuB 0ka 2118 Jkak_
3\()+n (12—2211 B; 5%5k% 3Y)
ns(é—-—zs-ZulﬁijaJ -3Y)

1
2 T e = — S -
720| Ing B1_] j JkBk«@BE 180 IZY-'3Y 3Y ~ (120 Ly B1_] JkBkEBZ

1
gY+ Y(—-Zus .0.) - Y)"‘

N
—
U.)

it157]
2.1 i
n Y(E Zuiﬁijaj——z-y)—
3,1 1 1
3_ 11,12 21 3 2
\*/ 120) Tu;B:sBsk® =120 10ty D ‘G 32“131333kk Y3y
1 1 7 2 1.3
20| = - —ayo-
720| TuiB;iBo%eBp = 325 TTSY TR Y 3Y n(120 THi By 5Bsorefe
(z-In ) +2y% -y
AR LI FLE N 6Y Y-
2,1 1. 11
N GET T IR 5B T 6Y+ZTY)
360| Tu;B, 8. 8,07 = g 7Y FEY - Y~ nlgo ~ 2TuB, B8
11;|Jkk,€£ 360 20 &Y~ 3Y ”60 Hi ke~
1
ZY+ Y =)
_ 1 _1_..52 5354 5
§ 720 1813 Jkskz@Bme— 720 24T 12Y T 3Y Ffzv oY

REMARK. If n is a non-positive real value the relation

L2
z_ = D—,—[D f]

r Tr.
n

is in general only satisfied for r < p-2, where p denotes the order of con-

sistency.
This restriction has no influence on the resulting order conditioms,

However, the formula for the error (2.5.2) is in that case not correct.
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