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On a formula for the direction of Hopf bifurcation*) 

by 

S.A. van Gils 

ABSTRACT 

In this paper we derive a formula determining generically the direction 

of Hopf bifurcation for a large class of evolution equations including 

o.d.e.'s, retarded functional differential equations, Volterra integral 

equations and parabolic differential equations. The result is an algorithm 

which in the case of o.d.e. 'sand retarded functional differential equations 

resolves into the inversion of two matrices. 

KEY WORDS ,~ PHRASES: retarded functional, differential equations, dynamical 

system, variation-of-constants formula, center mani

fold, Hopf bifurcation 

This report will be submitted for publication elsewhere. 





I . INTRODUCTION. 

In recent years several methods to compute the direction of Hopf bifur-

cation have been developed The main motivation for all this labour is giv-

en by the "Principle of Exchange of Stability", which implies that the sta

bility of the bifurcating solutions is determined by the direction. Chow 

and Mallet-Paret [3]dealwith the method of averaging. Hassard and Wan [II] 

use the center manifold and a reduction to the Poincare normal form. This 

yields explicit formulae which however do not have a very clear structure. 

See also [4,-12,13,14,16,18]. Iooss and Joseph [15] advocate a method based 

on the Fredholm alternative which enormously shortens the length of the com

putations. Unfortunately, the use of the Fredholm alternative may be diffi

cult, if not impossible, for equations in abstract spaces. 

Here we like to point out that one can combine the center manifold the

ory and the economic use of the Fredholm alternative in ]Rn to arrive, with-

out too many computations, at a bifurcation formula with a clear structure 

and applicable to many evolution equations. It is in fact and algorithm. In 

the case of o.d.e.'s in JR n, retarded functional differential equations 

(r.f.d.e.'s) and Volterra integral equations two matrices have to be invert

ed. In [17] Stech derives this formula in the case of r.f.d.e's with infi

nite delay using center manifold theory and averaging techniques. The cru

cial quantity for the direction, c, involves derivatives of the nonlinear-

ity Nat the origin, the eigenvector p (p*) of the infinitesimal generator 

* A (A) at iw (-iw ), the point where an eigenvalue crosses the imaginary 
0 0 

axis, the resolvent of A at O and 2iw and the projection operator P on 
0 0 

N(A-iw ) • 
0 

I 
Nxxx(O) 

2 - * 
C = 2< p (p ,p)' p > + 

0 

N (0) -1 - * < p (-A Nxx(O)(p,p),p), p > + 
0 XX. 

I N (0) -I 2 - * 
2 < p ((2iw -A) N (O)p ,p), p >. 

0 xx 0 xx 

To deal with an equation in a Banach Space it is sometimes, like for 

instance in the case of Volterra integral equations [8] or r.f.d.e.'s, more 

convenient to work with the variation-of-constants formula rather than with 
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the equation itself. In the above mentioned cases one needs to extend the 

action of the semigroups involved to a large space. 

In section 2 we start from. a quite. general variation-of-constants formu

la and impose conditions which are sufficient to guarantee the existence of 

a smooth center manifold, which we actually construct. Our approach differs 

somewhat from the usual one (see [2] and the references given there). On the 

center manifold the flow is governed by an o.d.e. We apply the results for 

Hopf bifurcation in the finite dimensional case. Initially this yields for

mulae, depending on the approximation of the center manifold, which can be 

further simplified. 

In section 3 we apply our result to the case of a r.f.d.e. 

c(r.f.d.e.) l 2 - * = -2 < r (O) (p ,p), p (O+) > + 
XXX 

< r (0) (fl(0,0)-lr (O)(p,p),p), p*(O+) > + 
xx 2· xx 

I 1000· -1 2 - * 
2 < r (0) (e 6(0,2iw) r (O)p ,p), p (O+) >. xx O XX 

See section 3 for the notation. In [7] the application to Vollterra integral 

equations has already been given. 

NOTATION 

n dimensional complex vector space with inner product 

n 
"?a.,b> = l 

i=l 
a: .. b.°" 

1 1 

n NBV([o,r];JR) Banach space of suitably normalized functions of bounded va-

Ben (JR;Z) 

< ' > 

T 

riation of the interval [o,r] into ]Rn. 

Banach space of continuous mappings f of· JR. into the ·Banach 

space z with the norm II 11n 

II Fun= sup {e-nlslllF(s)ll 2 Is E JR} 

Duality pairing, spaces should be clear from the context 

Transpose of a matrix 

Open subset of JR which contains zero 
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2. THE BIFURCATION FORMULA 

In this section we derive the bifurcation formula starting from the va

riation-of-constants formula (2.1) below. First of all we make the assump

tions which guarantee the existence of a finite dimensional invariant mani

fold on which we are allowed to differentiate the flow. 

H1: {T(s)} forms a strongly continuous semigroup of bounded linear operators 

on the Banach space X with infinitesimal generator A. 

H2: A has compact resolvept for >.. E: p (A). Only a finite number. of eigenval- , 

ues lie in a_ :right half plf!.ne containing_the·imaginary, axi~. For any 

£ > o there exists a K > o such that 

where 

~ Ke(y+-E)s llxH for s ~ o and x EX+ II T(s)xll 

II T(s)xll 

II T (s)xll 

~ Ke £-I s I II xii for - 00 < s < 00 and x E X 
0 

Ke(y_+E)s llxll for s <! o and x EX 

Y+ = inf{Re >.. A E o(A), Re >.. > 0} 

y_ = sup{Re >.. A E o(A), Re >.. > O} 

X = u N(A-U)k(>..), A = {;\ E o(A) Re >.. = O}, 
0 AE'A, 0 

0 

x+ = AEUA 
N(A-U)k(>..), A+ = {;\ E o(A) Re :>.. > O}, 

+ 

k(>..) is the Riesz index corresponding to>... 

H3 : X is embedded into the Banach space Y toiwhi_ch T(s) can be extep.deq. The 

projection operators P ,P ,P+ (projectiong X onto X ,X ,X respective-
- 0 - 0 + 

ly) can be extended_to-Y, summing again to identity, such that 

(ii) if f is a continuous mapping of the interval [o,s] into Y then 

/8'T(s-T)f(-r)d'r'is an element-of X and 
a 
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p JS T(s-.)f(.)dT =JS T(s-T)Pf(T)dT when pis either p ,P or P+, a · a - o 

(iii) Up_ J~ T(s-.)f(.)d.UX s K J~ (y_+E)(s-T)UP_f(.)UydT. 

k H4: Land N are C, k ~ 3, smooth mappings of n x X into Y. The k-th deriva-

tive is uniformly continuous. All derivaties are globally bounded. More

over, N and its first derivative with respect to x are bounded by some 

constant v that we choose to satisfy a suitable bound later on. Finally 

for all x EX,µ En: L(O,x) = N(µ,O) = 0 and N (O,O) = O. 
X 

REMARK 1. The global boundedness of Land N is not a serious requirement 

since we are interested in local results. It can be achieved by modifying 

Land N outside a neighbourhood of the origin. 

REMARK 2. At places where it does not lead to confusion we will write 

L(O),N (0) etc.instead of L(O,O), N (O,O). 
X X 

s 

(2. 1) x(s) = T(s-o)x(o) + I T(s-T){L(µ,x(T)) + 

a 

+ N(µ,x(T))}dT, - 00 <ass< oo. 

The assumptions are strong enough to state 

Th . . k +i • C C( ) • THEOREM 2.1. e eX'l-sts a un~qu~ C -Junct~on = µ,~ of n1 x X0 ~nto X 

(n 1 is a neighbourhood of zero contained inn) such that 

(i) * * C(µ,~) = X (µ,~)(O), where X (µ,~)(s) is the unique solution of (2.1) 

such that 

* a) P0 X (µ,~)(0) = ~, 

b) x*(µ,~) € BCn(JR;X), n E (O,min{-y ,Y }) 
- + 

For this function the following identities hold 

(ii) C(µ,O) = O, 

(iii) C~(µ,O) w = W, w E X0 (tangency property), 

(iv) c~~(O,O)(w1,W2) = I~ T(T)P_Nxx(O,O)(T(-T)W1),T(-T)W2)dT + 

f~ 00 T(T)P+Nxx(O,O)(T(~T)W 1,T(-T)W2)dT, 
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(v) * * C(µ,P x (µ,cp)(s)) = x (µ,cp)(s) (invariance). 
0 

PROOF. Our intention is to apply a contraction argument. Therefore we first 

study the inhomogeneous linear equation. For an arbitrary element 

n E (O,min{-y_,y+}) the expression 

s s 00 

(Kh)(s) = p I T (s--r )h (-r) d-r + p J T ( s--r) h ( -r) d-r + P + IT (s--r )h(-r) d-r - 0 
-oo 0 s 

defines a continuous linear operator K from BCn(:R;Y) into BC n (:JR; X) • 

We show this on basis of the first term. From H3 we have the estimate 
q q 

IIP_ J T(-r)h(s--r)d-rll :;:; Kllhlln enl sl J e(y_+e:+n) d-r 

p p 

which guarantees the existence of the improper integral since y_+e:+n < 0. 

To see the continuity ins choose EE (n,min{-y_,y+}). 

Then 
00 

llp J T(-r)(h(s 1--r)-h(s2--r))d-rll :;:; 

00 0 

K f e(y_+e:+E)-r(e-E•llh(s 1--r)-h(s2--r)lly)d-r, 

0 

which goes to zero when s 1 +_s 2• 

Finally, similar arguments show that Kh is indeed an element of BCn(:JR;X) 

and that 

(2.2) IIKhlln :;:; K {--- + - 1- + 
y+-e:-n n-e: 

1 }U hll n. 
-y_-e:-n 

Using the semigroup property of T(s) we deduce.that x(s) . .(Kh)(s) is a so

lution of 

(2. 3) 

s 

x(s) = T(s-cr)x(cr) + I T(s--r)h(-r)d-r, a:;;; s, 

a 

in BCn(:JR;X) and that any other solution of (2.3) that belongs to the same 

space is of the form x(s) = T(sH + (Kh) (s) for so.me cp E x0• From now on we 

fix n. 
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To apply a contraction argument we replace h by N(µ,x) + L(µ,x). Unfor

tunately the substition operator N (µ,.) from BCn (1R;X) into BCn (1R;Y), indi

cated by the same symbol, and defined by N(µ,x)(s) = N(µ,x(s)), in not dif

ferentiable although N itself as a mapping between X and Y is. However, 

seen as a mapping of BCn(1R;X) into BC8 (JR;Y), e > kn the mapping is k times 

continuously differentiable. This is the content of Lemma 4.1 in appendix 1. 
. d b 1 . k h n-o h s: • • • Motivate y t1is remar we c oose n 1 = T• were u ~s some positive num-

ber less than n and solve 

(2.4) x = T(.)¢ + K(N(µ,x)+L(µ,x)). 

From (2.2) we infer that norm of K as an element of L(BCn(1R;X)) is less than 

a constant C when n varies between n 1 and n. We suppose that v, mentioned in 

H4 , is so small that Cv < I. This implies that for small µ the right hand 

side defines for each¢ E x0 a contraction in BCn(1R;X). Because of the 

smoothness of N and L the mapping 

where x*(µ,¢) is the unique fixed point of the contraction in BCn(1R;X) is 

Ck with respect toµ and Lipschitz continuous with respect to¢. Moreover 
* nl x (µ,¢) is also the unique solution in the smaller space BC (1R;X). This 

* fact we exploit to prove by induction the k-times differentiability of x 

with respect to¢. For 1 s ls R let L(l)(µ,.) and N(l)(µ,.) be the map-
n 1 l ln I 

pings of [BC (1R;X)] into BC (JR;X) defined by 

l 
N(,f) (µ,h)g (s) 

al l 
TT N(µ,h(s)) g(s) (and similarly for L,). 

X 

For fixed but smallµ the right hand side of 

. * * y 1 T(.) + K((L(l)(µ,x (µ,¢))+N(l)(µ,x (µ,¢)))y) 

n I * defines a contraction in L(x0 ;BC (1R;X)). The fixed point y 1(µ,¢) is the 

derivative of¢ • x*(µ,¢) as mapping of x0 into BCn(1R;X). This is a 

straightforward consequence of Lemma 4.1. Thus having constructed 
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y;, ••• ,y;_ 1 we derive the equation for Yt by formal l times differentiation of 

equation (2.4) 

* * y l = K ( z ( µ) + (L ( I) ( µ , X ( µ, <p) ) + N ( 1 ) ( µ 'X ( µ ' <p) ) ) y l) , 

ln 
where z(µ) is an element of L(~;BC 1 (JR;X))involving y 1up to yl_ 1• A sim-

ilar reasoning shows that the fixed point yl(µ,<p) is the l-the derivative 

of <p + x* (µ,<p), as a mapping of_ X~ into Bc11 (lR;X). 

The existence of x* satisfying (i) a and b has now been proved. If we 

define C(µ,<p) = x*(µ,<p)(O) then (ii)-(iv) follow from Lennna 4.1 (b). Unique

ness implies (v). D 

REMARK. The above shows that the k-th derivative is Lipschitz continuous 

with respect to <p. 

Standard arguments, see for instance Lennna 2.3 in [1] and section 9 in 

[8], imply that the center manifold has the property which is known as local 

attractivity. More precisely 

LEMMA 2.1. There e::cist positive constans µ, o, v, such that for I µI ~ µ ev

ery solution x of (2.1) that is bounded by o on the interval [O,s] satis

fies llx(s)- C(µ,P x(s))II ~Ke-vs, where K is a constant which depend only 
0 

on x(O) - P x(O). 
0 

REMARK 1. If X+ = {O} then solutions of (2.1) starting in a sufficient small 

neighbourhood of the origin are bounded by o for all time. In this case the 

center manifold is attractive. 

REMARK 2. All small periodic solutions lie on the center manifold. For those 

solutions (2.1) is reduced to an equation in a finite dimensional space, 

the dimension equals the dimension of X. 
0 

Since P maps X into V(A) we are allowed to differentiate the P pro-
o 0 

jected equation. So we define y = P x. 
0 

(2.5) dy = Ay(s) + P {L(µ,C(µ,y(s)) + N(µ,C(µ,y(s)))}. ds o 
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At this point we apply the results for Hopf bifurcation in the finite 

dimensional case. These are obtained most easily using·the parametrization 

as in [14, chapter VIII]. The following theorem is well known. For the sake 

of completeness we elaborate some formulae which can be found in [15] in ap

pendix 2. 

THEOREM 2.2. Let f 

(i) f(µ,u) = 0 

k n n = f(µ,u) EC (QxR ;JR), k ~ 3, satisfy 

(ii) iw0 is a simple eigenvalue of fu(O)(=fu(O,O)) with eigenvector s0 and 

± iw l i cr(f (0)) for l = 0,2,3, ••••• 
0 U 

* (iii) Re< f (O)s ,s >IO, uµ o o 

wheres* is the eigenvector of f*(o) at -iw, noPmalized such that 
0 ~ 0 

< s ,s* >=I. Then there exist C -I -functions w(E),µ(£) and u(E) with val
o 0 

ues in R, JR, c!,/R; 1Rn) respectively and defined for £ sufficiently smaU, 

such that w(O) = w, µ(0) = O, u(O) = 0 and satisfying. 
0 

(2.6) w(E) du(£)= f(µ(E),u(E)). 
ds 

In addition, w andµ are odd functions of£; 

2 
d µ(O) -2Rec 1 

= 
d£2 . * 

Re<f (O)s ,s > uµ o o 
* 

iw(O) 2Rec 1.Im<f (O)s ,s > 
= 2 Imc 1 -

uµ o o 

d£2 * Re<f (O)s ,s > uµ o o 

du(O) (s) is 
d£ =Re(e s ), 

0 

f (0)( 2 - ) * > + uuu so,so ,so 

(2. 7) 

__!_ < fu (0)((2iw -f (0))- 1s2,~ ),s* >. 
2 u O u O O 0 

In a small neighbourhood of the origin the solutions are the unique period-
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ic solutions modulo translation. 

Combination of the reduction to (2.5) and theorem 2.2 yields the follow

ing theorems. 

THEOREM 2. 3. Let H1 - H4 be satisfied. Asswne furthermore that: 

H5: 1w0 is a simple eigenvalue of A with eigenvector p0 and 

± iw l i a(A) for l = 0,2,3, •••• , 
0 

* Re< PL (0)p,p > # 0, 
o µx 

where p* is the eigenvector of A* at -iw, normalized such that <p,p*> = 1. 
k-1 ° Then there exist C -functions w(E), µ(E) and <P(E) with values in R,JR and 

X respectively, defined for E smaU enough, such that w(0) = w , µ (0) = 0, 
0 0 

~(0) = 0 and such that x*(µ(E),<P(E)) is a 21rw(E)- 1-periodic solution of 

equation (2. I). Moreover if xis a small periodic solution of this equation 
-1 - -with µ cZose to zero and period cZose to 21rw then µ = µ (E) for some E, 

0 

the period i'.s 21rw(£)-l and moduZo translation x*(µ(£),~(E)). The functions 

w and µ are odd. 

OUR MAIN RESULT IS STATED IN 

THEOREM 2.4. Under the hypotheses of the previous theoremµ satisfies 

(2.8) 

I 
C = - < 

2 

-Rec 

* Re<P L (0)p,p > 
o µx 

2 - * P N (0)(p ,p),p 
0 XXX 

> + 

I -1 2 - * -2 < P N (0)((2iw -A) N (0)p ,p),p >. 
0 XX O xx 

As a by-product we also obtain the leading terms in the e::cpansion of 
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* w-w and x as funations of£. 
0 

THEOREM 2.5. Under the hypothesis of the Theorem 2.3 we have 

* Rec Im<P0L. (O)p,p > Imc - _____ µ_x ___ _ 

dx*(o) 
xl = d£ (s) = 

* Re<P L (O)p,p > 
o µx 

l.S Re(e p). 

PROOF OF THEOREM 2.3-2.5. We relate properties off in (2.5) to properties 

of A,L and N. Rather than writing (2.5) in its coordinates with respect to a 

basis in X we apply Theorem 2.2 directly to (2.5). Then all the assertions 
0 

are clear except for (2.8). Application of (2.7) using Theorem 2.1 (ii)-(iv) 
iw0 -r 

and the identity T(-r)p = e p yields 

I 2 - * c = -2 < P N (O)(p ,p),p > + 
0 XXX 

< P N (O) ( I T(-r)P N (0) (p,p) + I T(-r)P+N (0) (p,p) ,p) ,P * > + 
0 XX - xx xx 

0 oo Q-oo 

1 I -2iw T 2 I -2iw0 -r 2 _ * -2 < P N ( 0) ( e o P N ( 0) p + e P+N ( 0) p , p) , p > + 
0 XX xx xx 

0 0 
-1 - . * < P N (0)(-A P N (O)(p,p),p),p > + 

0 XX O xx 

1 -I 2 - * -2 < P N (O) ((2iw -A) P N (O)p ,p) ,p >. 
0 XX O O XX 

The simplification of this identity to the one in (2.8) follows from the ob

servation that for A on the imaginary axis the action of (A-Al)-I on ele

ments of Y is given by 

(2.9) -1 I -h -1 (A-Al) y = e T(-r)P y d-r + (A-Al) P0 y + 

0 0 

Compare [9, VIII 1.11, Theorem 11]. • 
REMARK 1. The expression for c does not chaI1.ge if we.replace P by the_pro

o 
jection of Y onto N(A-iw ). 

0 
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REMARK 2. Whether one deals with o.d.e'.s JR.n, r.f.d.e'.s, analytical semi

groups or parabolic differential equations, the formula that determines the 

direction of bifurcation is always the same. In all cases one has to know 

the resolvent at O and 2iw. In the case of o.d.e'.s in ]Rn or r.f.d.e'.s 
0 

this evolves into the inversion of two matrices. For parabolic equations 

one may have to invert infinitely many matrices! 

REMARK 3. If Re< PL (O)p,p* > is positive (which means that a branch of 
o µx 

eigenvalues of the linearized perturbed equation crosses the imaginary axis 

at iw with nonzero speed from the left to the right half plane) and c is 
0 

negative then the periodic solutions exist forµ positive. These are stable 

within the center manifold, which itself is local attractive (Lemma 2.1). 

Hence also in a full neighbourhood of the origin the solutions are attrac

tive provided X+ = {O}, see for instance [12, pag 274-276]. 

3. AUTONOMOUS RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS 

In this section we mainly follow the notation as used in [JO] but z;:(8) 

instead of --n(-8). Let C be the space of continuous functions defined on 

[-r,o] with range in JR.n. We assume that µ + z;;(µ,8), (µ,</>) + r(µ,<f>) µ E rt, 

8 E [-r,o], </>EC are Ck-smooth mappings of Q into NBV([-r,o];JR.nxn), Q x C 

into ]Rn respectively. The k-th derivative of r is uniformly continuous. Fur

thermore r(p,O) = 0, r</>(µ,O) = 0. Sometimes we write z;; instead of z;;(O,.). 

{T(s)} is the strongly continuous semigroup of bounded operators on C de

fined by T(s)</>(8) = y (8) = y(s+8), e E [-r,o] where 
s 

r 

(3. I) { 

Y(t) = I ds(0,0)y(t-0) t , o 

y(t) = </>(t) -r ~ t ~ 0. 

If xis the solution 0£ 

r 

(3. 2) 

( x(t) = I dz;;(µ,8)x(t-8) + r(µ,xt) 

l XO (0) = °. (0) 
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then 

(3. 3) 

Here 

s_ r 

x6 = T(s-o)x0 + J T(s-.)X0 _{ f (ds(µ,8)-ds(O,S))x(T-8) + 

cr 0 

+ r(µ,x.)} dT, - 00 < cr $ s < oo. 

{ 
Id 8 = 0 

X (8) = , 
0 0 -r $ 8 < 0 

see [10, section 6.2]. 

Although X does not belong to C the action of T(s) is well defined on X 
0 0 

by T(s) X (8) = U(s+S) where 
0 

t 

(
:~ = J ds(O,e)u(t-e) t ~ o 

O I 8 = 0 
U(S) = { , 

O, -r $ 8 < 0. 

T(s)X is continuous excep.t at 8 + s = 0. If f is a continuous mapping of 
0 

[cr,s] into ]Rn then Js T(s-T)X f(.)dT EC. To bring (3.3) in the right form cr o 
we define N(µ,(j,) = X r(µ,<j,), L(µ,(j,) = X f0r (ds(µ,8)-ds(0,8))<j,(-8), with do-

o 0 

main n x C and range in Y = L (-r,O) xRn. T(s) can be extended to a semi-
oo 

group on Y [5]. Here we deviate a little bit from the general theory in sec-

tion 2, since C is not a subpase of Y. However, obviously <P •- <Pl(-r,o)x <j,(O) 

maps C into a subspace of Y. As a matter of fact all we need is the exten

sion of T(s 1) to T(s 2)X0 (s 1,s2-,~0), which is given by 

T(s 1)T(s2)X0 (8) = U(s 1+s 2+e), -r $ 8 $ O. The infinitesimal generator of 

{T(s)} is described by 

I 

A(j,=(j, 

r 

V(A) = {<PE c1 I J (O) = J ds(O,e)<P(-e)}. 

0 

A has compact resolvent, cr(A) = {A det 6(0;A) = O}, where 

r 

6(µ,A) = Al - I e-ASds(µ,8). 

0 

For the construction of the projection operators one can make use of 

the formal adjoint and the bilinear form as in [9]. We advocate an alterna-
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tive approach using the true adjoint as is briefly pointed out in [6]. It 

appears that if one chooses as a realization of c* the space NEV, i.e. the 

space of bounded variation functions in lR such that (i) f(O) = O; (ii) f 
-+ 

is constant fort~ r; (iii) f is continuous from the right on (O,r) with 

the pairing given by 

r 

< $,f > = f $(-t)df(t) 

0 
* .....___, then the action of T (s) on a forcing function f E NBV is given by 

* T (s)f(t) 
={ O,t=O 

X (t) - ~T * X (t),t > 0, 
s s 

where xis the solution of the Volterra convolution equation 

x=sT*x+f. 

t 

V(A*) 
r"--J f ijJ' (-r)d-r, 

I 
= {1/J E NBV ijJ(t) = 1/J (O+) + t > 0, 1jJ E 

0 

A*i/J (t) = ijJ 1 (t) + 7,;T(t)ijJ(O+), t > o. 

,___,. 
NBV} 

Using these fact the construction of projection operators corresponding to 

the decomposition of C is standard. 

On our way to a Hopf bifurcation we state two lemmas relating proper

ties of A. The proofs are elementary and are therefore omitted. 

LEMMA 3.1. The following two assertions are equivalent: 

(i) there exist p(O),p*(o+) E tn such that 

(a) ~(O,iw) v = 0 implies v = cp(O) for some c E £, 
0 

(S) 

(y) 

~T (O,-iw .) V·= O implies v = cp*(o+) for some c E £, 
.o 

< .;,-. ~ (O,iw )p(O),p*(O+) > = 1. 
oµ 0 

moreover ~(O,±i£.w) is nonsingular for l = 0,2,3, •••• 
0 

(ii) iw is a simple eigenvalue of A, with eigenvector 
0 

iw e 
() () o h. * * . p e = p O e , -r ~ e ~ O. Te e~genvector p of A at -iw sat~sfy-o 
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* ing < p,p > = 1 is suah that 

d * -iwot Jr iwoT T * l dt p (t! = e . t e. dr; (1:)p (O+). For l = 0,2,3, ••• : ±iw0 l'l o(A). 

REMARK. The 

* P<I> = <<l>,P > 

a shorthand 

LEMMA 3.2. 

projection operator on N(A-iw ),P, is explicitly given by 
0 

p. To satisfy H3 we are led to define PX0 = p*(o+)p, which is 
. * 1 -* n for the nxn matrix (p (O+) p, •••• ,p (O+) p). Hence we have 

a * < aµ PL (O)p,p > = < ~ 8(O,iw )p(O),p*(O+) >. 
aµ 0 

The remainder of this section we devote to the verification of the hy

potheses H1- H6 • Once this is done the obvious theorems corresponding to 

Theorem 2.3-2.5 hold. We do not state them explicitly but we state the eleb

oration of (2.8). 

We already noticed that H1 is fulfilled. C can be decomposed according 

to the spectrum of A. T(s) is compact for s ~ r. Hence H2 is fulfilled 

[7, section 7.4]. With respect to H3 we remark that T(s)P_X0 is an element 

of P_C for s ~rand bounded on [O,r]. This together with H2 shows that H3 
(i)-(iii) hold. In order to satisfy H4 we modify Land N outside some 

neighbourhood of zero in Y. (Because of the linearity of Lin y we are even 
00 

allowed to omit the modification of L). S.o let E;; JR+ + m. be a C function 

such that (i) E;(y) = 1 for O ~ y ~ 1; (ii) 0 ~ E;(y) ~ 1 for 1 ~ y ~ 2; (iii) 

E;(y) = 0 for y ~ 2. Define for-positive o ~0 (µ,<j>) = X0 r(µ,<j>) f; (llr(µo'<j>)U). 

For o small enough H4 is satisfied. The small periodic solutions that we 

are interested in are not affected by this midification. We suppress the 
"/\ " symbols , 0 • H5 - H6 are satisfied an account of Lemma 3.1-3.2 under the 

Assumptions: (i) 8(O,iw) has zero as a simple eigenvalue and 8(O,±ilw) 
0 0 

is nonsingular for l = 0,2,3, .• , 
(3.4) 

(ii) Re< -J- 8(O,iw )p(O),p*(o+) > j o. 
aµ O 

Finally we prove 



THEOREM 3. I.. 

c(r.f.d.e) I 2 - * = -2 < r (O)(p ,p),p (O+) 
XXX 

> + 

-I - * < r (O)(~(O,O) r (O)(p,p),p),p (O+) > + xx xx 

I 2iw · -1 2 - * -2 < r (O)(e o ~(0,2iw) r (O)p ,p),p (O+) >. 
XX O xx 

PROOF. This is an elaboration of (2.8). The identity 

00 

f e-ATT(T)X
0

dT = e-A,~(A)-I 

0 

which hold for Re A sufficiently large (confert [IO, chapter I]) implies 

hat for Re A sufficiently large 

00 

I e-ATT(T)P X dT = e-A.~(A)-I - (A-Al)-l(P +P )X. 
- 0 0 + 0 

0 
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Because the left hand side is analytic for Re A~ 0 the identity also holds 

for these values of A. Using 

-oo 

f e-ATT(T)P+X0 dT = (A-Al)- 1P+X0 Re A~ 0 

0 

and (2. 9) we conclude that 

Finally we use the remark below Lemma 3.1. D 

REMARK. While finishing this paper the authors attention was drawn to a pre

print of St1=ch containing formula (3. 5). [ I 7, formula (2. IO) J. 

Of course one is able to apply this result to a special kind of nonli

nearity. If we consider 

(3. 6) x(t) 

r I ds(µ,8)g(µ,x(t-8)) 

0 
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g(µ,x) = x + r(µ,x),r(µ,x) = o(lxl), 

then the following formula is an elaboratio.n of (3.5) (confert Theorem 11.5 

in [8]). 

THEOREM 3.2. c(3.6) 1 2-- * = -2 < r (O)(p(O) ,p(O)),p (O+) 
XXX 

> + 
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4. APPENDIX 1 

LEMMA 4.1. Let f be a mapping between the Banach spaces X and Y such that 

(i) k f is C -smooth, k ~ O, 

(ii) all derivatives are bounded by a constant M, 

(iii) the k-th derivative is u~iformly continuous. 

n 
Let n1 and n2 be positive constants such that kn 1 < n2• For h E BC 1(JR;X) 

define f(h) by f(h)(s) = f(h(s)). Then 

(a) 

(b) 

(c) 

(d) 

- n1 n2 k 
f : BC (JR;X) + BC (JR:Y) is C -smooth, 

the derivatives off, Dlf satisfy: 

- l dlf l 
Dlf(h)g (s) = ---:--:l (h(s)) g(s) , O ~ l ~ k, 

dx 
all derivatives are bounded by M 

the j-th derivative is uniformly continuous 

-PROOF. Leto= n2 - kn 1 and Dl~ be defined as in (b). We show that this is 

indeed the l-th derivative off. 



1 l 1 n 
sup l II f(h+e:g) - L ::-r D f(h) (e:g)mll 2 = 
nl e: m=O m. m 

II gll =1 

-n2 Is I 1 l 1 dmf 
sup sup e l Uf(h(s)+e:g(s)) - I -, - (h(s)(e:g(s))mll :S 

11 gll nl=l sElR e: m=O m. dxm 

-olsl dlf lf 
sup sup e II --:--l" (h(s)+-re:g(s)) - ½ (h(s))II. 

llgn•=• SE:R. l! dx dx 

We show that the last term goes to zero when e: > 0. Choose~> 0. Let 
2M -oA A= A(n) be a number such that,,, e <~-On the interval [-A,A] is 
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A .(..; 
II g(s)II bounded by en • Therefore the uniformly continuity of f implies the 

existence of e: = e:(~) such that 

sup sup sup e-olsl lldlf(h(s)+-re:g(s)) - dlf(h(s))D :S ~ 
II gU nl=l sd.:..A,AJ -rdO, I J l! dxl dxl 

for all O :Se: :Se:(~). This together with the choise of A shows that the last 

inequality is also valid when we replaces E [-A,A] bys E:R.. Hence f has 

continuous derivatives up to order k, which are bounded by the same constant 

M. Along the same lines one can prove that the k-th derivative is uniformly 

continuous. D 

5. APPENDIX 2 

PROOF OF THEOREM 2.2 [15]. The existence of functions f,µ,w satisfying (2.6) 

has been proved at many places, see for instance [SJ. Here we only derive 

the Taylor series up to and including order three using the parametrization 

defined below. 

1 n n 
Jo: c21r (:R; 1R ) + c21r (:R.; 1R ) 

du 
J 'l!l = -w - + f (O)u. 
o o ds u 

Then 

N(J) 
0 

= {cz+~~ I c E t,z is = e Z"; }, 
0 
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21r 
n I * I ( is * R(J 0 ) = {x E c21r (JR; 1R ) [x,z J = 21r j <x(s) ,e 1;; 0 > ds = 0}. 

0 

In fact this is an equivalent formulation of the Fredholm alternative. The 

parametrization is choosen such that 

(5. 1) * s = [u,z] 

To satisfy equation (2.6) it is necessary that: 

(5. 2) Jr ul = 0 
() 

(5.3) 
du 1 

µlfu/0)ul 
1 2 

JOu2 - WI --+ + 2 fuu(0)ul ds 

Therefore, using (5. l) and the Fredholm alternative, 

(5. 4) u 1 = z + z, 

* -iw 1 + µ 1 <f (0)s ,s > = 0. uµ o o 

The transversality condition results in 

(5.5) 

(5. 6) 

-1 -
(-f (0)) f (0) (1;; ,s ) + 

U uu O 0 

In the third order we get: 

(5. 7) 

= 0. 

we infer that 

* The inproduct of the right hand side with z must vanish. Therefore 



19 

(5. 8) 
Rec 1 

* , 
Re<f (O)r;; ,s > uµ o o 

Rec 1 * 
w2 = Imc 1 - ------- Im<f (O)r;; ,r;; >. 

Re<f (O)r;; ,r;;*> uµ 0 0 
uµ o o 

(5. 9) 

-1 - * <fuu(O)(-f (0) f (O)(r;; ,r;; ),r;; ),r;; > + 
. U uu O O O 0 

I -1 2 - * - <f (0)((2iw -f (O)) f (O)r;; ,r;; ),r;; >. 0 2 uu O u uu O O 0 
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