stichting mathematisch centrum

AFDELING MATHEMATISCHE BESLISKUNDE
BW 166/82
AUGUSTUS
(DEPARTMENT OF OPERATIONS RESEARCH)
J. LABETOULLE, E.L. LAWLER,
J.K. LENSTRA, A.H.G. RINNOOY KAN

PREEMPTIVE SCHEDULING OF UNIFORM MACHINES
SUBJECT TO RELEASE DATES

Preprint

kruislaan 4131098 SJ amsterdam

Printed at the Mathematical Centre, 413 Kruislaan, Amsterdam.
The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

PREEMPTIVE SCHEDULING OF UNIFORM MACHINES SUBJECT TO RELEASE DATES

J. LABETOULLE
Centre National d'Études des Télécommunications, Issy les Moulineaux, France
E.L. LAWLER
University of California, Berkeley, U.S.A.
J.K. LENSTRA
Mathematisch Centrum, Amsterdam, The Netherlands

A.H.G. RINNOOY KAN

Erasmus University, Rotterdam, The Netherlands

ABSTRACT

We shall be concerned with finding optimal preemptive schedules on parallel machines, subject to release dates for the jobs. Two polynomial-time algorithms are presented. The first algorithm minimizes maximum completion time on an arbitrary number of uniform machines. The second algorithm minimizes maximum lateness with respect to due dates for the jobs on an arbitrary number of identical machines or on two uniform machines. A third algorithm for minimizing maximum lateness on an arbitrary number of uniform machines is briefly discussed. NP-hardness is established for the problem of minimizing total weighted completion time on a single machine.

KEY WORDS \& PHRASES: preemptive scheduling, uniform machines, identical machines, single machine, release dates, maximum completion time, maximum lateness, total weighted completion time, polynomial-time algorithm, NP-hardness.
NOTE: This is a revised and extended version of report BW 99/79. It has been submitted for publication.

1. INTRODUCTION

We consider scheduling problems in which n independent jobs J_{1}, \ldots, J_{n} have to be processed on m parallel machines M_{1}, \ldots, M_{m}. Each machine can handle at most one job at a time and each job can be executed on at most one machine at a time. Each job J_{j} becomes available for processing at its release date r_{j}. It has an execution requirement p_{j} and possibly also a due date or deadline d_{j} and a weight w_{j}. Unlimited preemption is allowed: the processing of any job may arbitrarily often be interrupted and resumed at the same time on a different machine or at a later time on any machine. The machines are assumed to be uniform, i.e., each machine M_{i} has a speed s_{i}, and complete execution of J_{j} on M_{i} would require p_{j} / s_{i} time units. If all speeds are equal, the machines are identical; if $m=1$, we have a single machine. We assume that all numerical data $r_{j}, p_{j}, d_{j}, w_{j}, s_{i}$ are integers.

A feasible schedule defines a completion time C_{j} and a lateness L_{j} $=C_{j}-d_{j}$ for each J_{j}. We may choose to minimize the maximum completion time $C_{\text {max }}=\max _{1 \leq j \leq n}\left\{C_{j}\right\}$, the maximum lateness $L_{\text {max }}=\max _{1 \leq j \leq n}\left\{L_{j}\right\}$, the total completion time $\sum c_{j}=\sum_{j=1}^{n} C_{j}$, or the total weighted completion time $\sum w_{j} C_{j}=$ $\sum_{j=1}^{n} w_{j} C_{j}$.

When scheduling jobs subject to release dates, one can distinguish between three types of algorithms. An algorithm is on-line if at any time only information about the available jobs is required. It is nearly on-line if in addition the next release date has to be known. It is off-line if all information is available in advance.

In Section 2 we consider the minimization of $C_{\max }$ on m uniform machines. For the case that all release dates are equal, Horvath, Lam and Sethi [8] derived a closed form expression for the optimum value of $C_{\text {max }}$. Gonzalez and Sahni [6] proposed an $O(m \log m+n)$ algorithm which produces a schedule meeting this value and containing at most $2(\mathrm{~m}-1)$ preemptions. For the case that the release dates are arbitrary, Sahni and Cho [18] gave an $O(n \log n+m n$) off-line algorithm to determine if there exists a schedule in which no job is completed after a common deadline. We will present an $O\left(n^{2}\right)$ nearly on-line algorithm to minimize $C_{m a x}$; Sahni and Cho [17] independently developed an $O\left(m n \log n+m^{2} n\right.$) nearly on-line algorithm that is very similar to ours. We will indicate how to obtain an $O(n \log n+m n)$ off-line
implementation of our algorithm. These methods can also be used to minimize $L_{\text {max }}$ in the case of equal release dates.

In Section 3 we consider the minimization of $L_{\text {max }}$. For the case of equal release dates, Horn [7] proposed an $O\left(n^{2}\right)$ algorithm to minimize $L_{\text {max }}$ on m identical machines. For the case of arbitrary release dates, he gave an offline algorithm, based on a network flow computation, to determine if there exists a schedule in which no job is completed after its deadline. Bruno and Gonzalez [3] adapted this feasibility test to the case of two uniform machines. We will extend both methods by presenting polynomial-time algorithms to minimize $L_{\text {max }}$. Martel $[13,14]$ recently proposed a feasibility test for the case of m uniform machines, based on a polymatroidal network flow model, and used it to obtain a polynomial-time algorithm to minimize $L_{\max }$. We will discuss these results as well.

In Section 4 we consider the minimization of $\sum C_{j}$ and $\sum w_{j} C_{j}$. For the case of equal release dates, Bruno and Gonzalez [5] proposed an $O\left(n \log n+m n\right.$) algorithm to minimize $\sum C_{j}$ on m uniform machines. It is well known that in the case of identical machines allowing preemptions will not decrease the optimal value of $\sum \mathrm{w}_{j} \mathrm{C}_{j}$ [15]. It follows that $\sum \mathrm{w}_{j} \mathrm{C}_{j}$ is minimized on a single machine by scheduling the jobs in order of nonincreasing ratios w_{j} / p_{j} [19], and that the problem on two identical machines is already NP-hard [2;12]. For the case of arbitrary release dates, $\sum C_{j}$ is minimized on a single machine by an obvious on-line extension of the above ordering rule [1]; we will establish NP-hardness for the problem of minimizing $\sum w_{j} C_{j}$.

In Section 5 we conclude by indicating a major open problem and some important recent developments in the area of preemptive scheduling.

2. MAXIMUM COMPLETION TIME

We first consider the problem of minimizing the maximum completion time $C_{\text {max }}$ on m uniform machines. The jobs and the machines are assumed to be ordered in such a way that $r_{1} \leq \ldots \leq r_{n}$ and $s_{1} \geq \ldots \geq s_{m}$.

We will describe a nearly on-line algorithm that considers the time intervals $R_{k}=\left[r_{k}, r_{k+1}\right]$ in order of increasing k. For each successive interval $R_{k}(k=1, \ldots, n-1)$, denote the remaining execution requirement of J_{j} at r_{k} by $p_{j}^{(k)}(j=1, \ldots, k)$ and renumber the jobs so that $p_{1}^{(k)} \geq \ldots \geq p_{k}^{(k)}$. The subalgorithm to be applied in each interval determines the amounts by which the $F_{j}^{(k)}$ are to be decreased within r_{k}. At time r_{n}, all jobs are available, and it is well known [8] that the minimum time for their completion is given by (1) $\quad C_{\text {max }}^{*}=r_{n}+\max \left\{\max _{1 \leq \ell \leq m-1}\left\{\sum_{j=1}^{\ell} p_{j}^{(n)} / \sum_{i=1}^{\ell} s_{i}\right\}, \sum_{j=1}^{n} p_{j}^{(n)} / \sum_{i=1}^{m} s_{i}\right\}$.

The portion of an optimal schedule within any interval R_{k} can be constructed by applying the Gonzalez-Sahni algorithm [6] to the quantities $p_{j}^{(k)}-p_{j}^{(k+1)}$ determined by our subalgorithm. Similarly, a schedule for the final interval $\left[r_{n}, C_{m a x}^{*}\right]$ can be constructed by applying the same algorithm to the quantities $p_{j}^{(n)}$. Since both the subalgorithm and the schedule construction procedure require $O(n)$ time for each interval, the algorithm requires $O\left(n^{2}\right)$ time overall; it introduces $O(\mathrm{mn})$ preemptions into the optimal schedule.

Our algorithm has the property that the remaining execution requirements passed on to the next interval will be as evenly distributed as possible. More specifically, for each k there is no way to process the jobs before r_{k} that could lead to a smaller value for any of the partial sums $\sum_{j=1}^{\ell} p_{j}^{(k)}(\ell=1$,,k). This immediately implies the correctness of the algorithm, since each of these partial sums appearing in (1) is as small as it could possibly be.

Rather than giving an inductive proof of this property, we will settle for a simpler correctness proof of the entire algorithm. This proof will also serve to introduce algorithmic refinements, by which the optimum value $C_{\max }^{*}$ can be determined in $O(n \log n+m n)$ time. An actual schedule can be constructed by applying the Sahni-Cho algorithm [18], using $C_{\max }^{*}$ as a common deadline for the jobs. This off-line approach requires $O(n \log n+m n)$ time and introduces $O(\mathrm{mn})$ preemptions into the optimal schedule.

Let us consider an interval R_{k} for fixed k. Given the $p_{j}^{(k)}(j=1, \ldots, k)$, we have to determine the $p_{j}^{(k+1)}$ to be passed on to the next interval R_{k+1}.

Suppose that at time r_{k} the jobs $J_{1} \ldots . J_{v}$ are available and not yet completed, with $p_{1}^{(k)} \geq \ldots \geq p_{v}^{(k)}>0$. For ease of notation, we drop the superscripts. Thus, denote the given $p_{j}^{(k)}$ by p_{j} and the unknown $p_{j}^{(k+1)}$ by q_{j} ($j=1, \ldots, v$), and let $t=r_{k+1}-r_{k}$. For purposes of exposition, we assume for the time being that, if $m<v$, machines $M_{m+1} \ldots, M_{v}$ with $s_{m+1}=\ldots=s_{v}$ $=0$ are added to the model.

The p_{j} can be viewed as defining a staircase pattern as in Figure 1. The q_{j} will be chosen in such a way that they define a similar pattern. As

Figure 1 Staircase pattern at r_{k}. Figure 2 Staircase pattern at r_{k+1} 。
illustrated in Figure 2, such a staircase can be characterized by a sequence $\left(\left(h_{1}, \bar{q}_{1}\right), \ldots,\left(h_{u}, \bar{q}_{u}\right)\right)$, where $\bar{q}_{i}=q_{j}$ for each J_{j} with $h_{i-1}+1 \leq j \leq h_{i}$ (i= $1, \ldots, u_{0} h_{0} 0 ; h_{u}=v$). A first condition for feasibility is that
(2) $\bar{q}_{i}>\bar{q}_{i+1} \quad(i=1, \ldots, u-1)$.

The staircase $\left(\left(h_{1}, \bar{q}_{1}\right), \ldots,\left(h_{u}, \bar{q}_{u}\right)\right)$ will be constructed in such a way that, for $i=1, \ldots, u-1$, the capacity of $M_{h_{i-1}}+1, \ldots, M_{h_{i}}$ will be fully utilized to decrease $p_{h_{i-1}+1}, \ldots, p_{h_{i}}$ to \bar{q}_{i}. A second condition for feasibility is therefore that
(3) $\quad \sum_{j=h_{i-1}+1}^{\ell} q_{j}=\left(\ell-h_{i-1}\right) \bar{q}_{i} \geq \sum_{j=h_{i-1}+1}^{\ell} p_{j}-t \sum_{j=h_{i-1}+1}^{\ell} s_{j}$

$$
\left(\ell=h_{i-1}+1, \ldots, h_{i} ; i=1, \ldots, u\right),
$$

with the corners of the staircase, except possibly the last one, corresponding to strict equalities:

$$
(i=1, \ldots, u-1)
$$

A third condition for feasibility is of course that
(5) $0 \leq q_{j} \leq p_{j} \quad(j=1, \ldots, v)$.

We tentatively construct the first step of the staircase by setting

$$
\mathrm{h}_{1}=1, \overline{\mathrm{q}}_{1}=\mathrm{p}_{1}-\mathrm{ts}{ }_{1}
$$

Generally, having found i tentative steps $\left(h_{1}, \bar{q}_{1}\right), \ldots,\left(h_{i}, \bar{q}_{i}\right)$ with $h_{i} \leqslant v$ and $\bar{q}_{1}>\ldots>\bar{q}_{i}$, we construct the $(i+1)-$ st tentative step by setting
(6) $h_{i+1}=h_{i}+1, \bar{q}_{i+1}=p_{h_{i+1}}-t s_{h_{i+1}}$.

If $\bar{q}_{i}>\bar{q}_{i+1}$ and $\bar{q}_{i} \geq 0$, the staircase $\left(\left(h_{1}, \bar{q}_{1}\right), \ldots,\left(h_{i+1}, \bar{q}_{i+1}\right)\right)$ satisfies (2) and (4); we increment i by one and, if h_{i} is, still smaller than v, construct the next step.

Suppose now that $\bar{q}_{i} \leq \bar{q}_{i+1}$ or $\bar{q}_{i}<0$. In the latter situation, there is excess capacity on $M_{h_{i-1}}+1 \ldots, M_{h_{i}}$; in both cases, some of the capacity of these machines has to be devoted to processing $J_{h_{i}+1}$ if (2) and (4) are to be satisfied. We therefore reconstruct the i-th step so as to include $J_{h_{i}+1}$ as well: h_{i} is incremented by one, and \bar{q}_{i} is recalculated according to

$$
\begin{equation*}
\bar{q}_{i}=\left(\sum_{j}^{h_{j} \underline{=}_{i-1}+1} p_{j}-t \sum_{j}^{h_{i}}{ }_{h_{i-1}}+1 s_{j}\right) /\left(h_{i}-h_{i-1}\right) \tag{7}
\end{equation*}
$$

(cf. (4)). As a result, it may now be that $\bar{q}_{i-1} \leq \bar{q}_{i}\left(\bar{q}_{i-1}<0\right.$ cannot occur). In this case, we reconstruct the (i-1)-st step so as to include the current i-th step: h_{i-1} is increased to h_{i}, and \bar{q}_{i-1} is recalculated as in (7). We continue until once more $\bar{q}_{1}>\ldots>\bar{q}_{i}$; the adjusted staircase $\left(\left(h_{1}, \bar{q}_{1}\right), \ldots\right.$, $\left(h_{i}, \bar{q}_{i}\right)$) includes one more job and may have fewer steps than before. If h_{i} is still smaller than v, we construct the next step according to (6).

The process is terminated as soon as $h_{i}=v$. If $\bar{q}_{i}<0$, we reset $\bar{q}_{i}=0$ and note that only in this situation the last corner of the staircase does
not correspond to a strict equality.
We have to verify that the resulting staircase ($\left(h_{1}, \bar{q}_{1}\right), \ldots,\left(h_{u}, \bar{q}_{u}\right)$) and the corresponding remaining execution requirements q_{1}, \ldots, q_{v} indeed satisfy the feasibility conditions (2)-(5). For (2) and (4), this is obvious. To see that (3) must be true, note that each $\overline{\mathrm{q}}_{\mathrm{i}}$ is initially defined by an equality constraint and can only increase thereafter. To verify (5), it is sufficient to show that $\bar{q}_{i} \leq \mathrm{P}_{h_{i}}$. Subtracting (3) for $\ell=h_{i}-1$ from (4), we find $\bar{q}_{i} \leq \mathrm{ph}_{\mathrm{i}}-\mathrm{ts}{h_{i}}$, which implies the desired result.

Let us now analyze the running time of the subalgorithm. The number of step constructions as in (6) is exactly v. The number of step reconstructions as in (7) is at most $v-1$, since during each adjustment two steps are collapsed into one. It follows that the process terminates in $O(v)$ time. This presupposes that the given values p_{j} are ordered; but since the relative order of the remaining execution requirements does not change, we can maintain an ordered list of these values and insert the value of the job that becomes available at r_{k} in $O(v)$ time. Hence the subalgorithm determines the values q_{j} for each interval in $O(v)$ time. As has been indicated above, the Gonzalez-Sahni algorithm [6] can be applied to construct an actual schedule in each interval in $O(v)$ time as well. We thus have arrived at a nearly on-line algorithm that requires $O\left(n^{2}\right)$ time overall.

We now intend to prove the correctness of the algorithm.
We note first that not only does the relative order of the remaining execution requirements remain invariant, but also the following stronger property holds: as soon as two remaining execution requirements become equal, they will remain equal. To see this, suppose that $p_{j}=p_{j+1}$ at time r_{k}, and let $h_{i}=j$. According to (6), we set $\bar{q}_{i+1}=p_{j+1}-t s_{j+1}$. But $\bar{q}_{i} \leq p_{j}-t s_{j} \leq$ $p_{j}-t s_{j+1}=\bar{q}_{i+1}$, and we have to reconstruct the $i-t h$ step so as to include J_{j+1} as well.

This leads us to define the rank of an available job J_{j} at time r_{k} as the value h_{i} for which $h_{i-1}+1 \leq j \leq h_{i}$. The rank of a job at time r_{n} is defined analogously as its step height that would be found if the subalgorithm were to be applied in the interval $\left[r_{n}, C_{\max }^{*}\right]$. A job will be called critical if its rank is at most $\mathrm{m}-1$ and noncritical otherwise. The rank of a job cannot decrease; in particular, once a job becomes noncritical, it never
becomes critical again. It follows from (4) that in any interval the fastest h_{i} machines are exclusively processing the longest h_{i} critical jobs. A critical job is processed continuously from its release date until it either is completed or becomes noncritical.

These observations suggest the following correctness proof for the algorithm. First, suppose that the schedule ends at $C_{\text {max }}^{*}$ with the simultaneous completion of ℓ critical jobs ($\ell<m$). At any time when ℓ ' of these jobs are available, they are processed by the fastest ℓ ' machines. In this case, the schedule is clearly optimal.

Alternatively, suppose that the schedule ends with the simultaneous completion of m noncritical jobs. Let r_{k} be the last release date just prior to which there is idle time on some machine. Ignoring the jobs that are available but noncritical at time r_{k-1}, we conclude that the portion of the schedule for the remaining jobs has a structure as illustrated in Figure 3.

Figure 3 Simultaneous completion of noncritical jobs.

Before r_{k}, the available critical jobs are processed by the fastest machines. Between r_{k} and $C_{\text {max }}^{*}$, there is no idle time. It follows that the schedule is optimal for the jobs under consideration and a fortiori that $C_{\max }^{*}$ is the minimum time to complete all the jobs.

Let us use the new terminology to describe a more efficient implementation of the subalgorithm. We will reduce the running time by dealing more care-
fully with the noncritical jobs, circumventing the need to introduce machines of speed zero.

Consider the situation after a typical application of the subalgorithm, as illustrated in Figure 4. The noncritical jobs of lowest rank, i.e.,

Figure 4 Staircase patterns at r_{k} and r_{k+1}.
$J_{h_{i-1}}+1, \ldots, J_{h_{i}}$ where $h_{i-1}+1 \leq m \leq h_{i}$, will be called active. In the interval R_{k}, their remaining execution requirements are reduced by machines $M_{h_{i-1}}+1$, \ldots, M_{m} to a common amount \bar{q}_{i}. The remaining noncritical jobs, i.e., $J_{h_{i}+1}$, $\ldots J_{v}$ will be called inactive. In R_{k}, their remaining execution requirements are not reduced at all, since $\bar{q}_{i}>\bar{q}_{i+1}=p_{h_{i+1}}\left(\right.$ note that $\left.s_{h_{i+1}}=0\right)$.

As a first refinement, the subalgorithm does not have to deal with the active noncritical jobs separately, since their remaining execution requirements will remain equal throughout. They can easily be handled simultaneously by straightforward generalizations of (6) and (7). As a second refinement, the subalgorithm can be terminated as soon as either $h_{i}=v$ or $h_{i} \geq m$ and $\bar{q}_{i}>\mathrm{Ph}_{\mathrm{i}}+1$.

Rather than maintaining an ordered list of all remaining execution requirements, we have to do so only for the largest $m-1$ of them. We simply
record the number of active noncritical jobs, their common remaining execution requirement, and the lowest index of any of them. Finally, we maintain a priority queue for the remaining execution requirements of the inactive noncritical jobs.

At each release date, the execution requirement of the job that becomes available is, depending on its size, inserted either in the ordered list in $O(m)$ time or in the priority queue in $O(\log n)$ time. The staircase computations for the longest $\mathrm{m}-1$ jobs and the active noncritical jobs require $O(m)$ time in each interval and $O(m n)$ time overall. The queue operations require $O(\log n)$ time in each interval and $O(n \log n)$ time overall, since once an inactive job becomes active and is withdrawn from the queue, it remains active throughout. Hence successive applications of the modified subalgorithm determine the value $C_{\max }^{*}$ in $O(n \log n+m n)$ time. As has been indicated above, the Sahni-Cho algorithm [18] can be applied to construct an actual schedule in the interval $\left[r_{1}, C_{\max }^{*}\right]$ in $O(n \log n+m n$) time as well. We thus have arrived at an off-line algorithm that requires $O(n \log n+m n)$ time overall.

3. MAXIMUM LATENESS

We now consider the problem of minimizing the maximum lateness $L_{\text {max }}$ on m identical machines.

A relaxed version of this problem is to test a trial value of $L_{\text {max }}$ for feasibility. That is, for a given value y, one has to determine whether or not there exists a schedule for which $L_{\text {max }} \leq y$. This condition is equivalent to the requirement that no job J_{j} is completed after an induced deadline $d_{j}+y$. Sahni [16] proposed an off-line algorithm for the case of equal deadlines that requires $O(n \log m n)$ time and introduces at most $n-2$ preemptions. He also showed that there can be no nearly on-line algorithm for the case of arbitrary deadlines. Horn [7] proposed a network flow algorithm for the latter case. He suggested that one might conduct a search for the optimum value of $L_{\text {max }}$, but offered no upper bound on the number of trial values that have to be tested. Our contribution here is to obtain such a bound and to show that it is polynomial in the problem size.

Horn's approach is as follows. Suppose y is a trial value for $L_{\text {max }}$. Let $\left\{e_{1}, \ldots, e_{2 n}\right\}\left(e_{1} \leq \ldots \leq e_{2 n}\right)$ be the ordered collection of release dates r_{j} and induced deadlines $d_{j}+y$; if a release date and a deadline are equal, the smaller index is to be assigned to the release date. Further, define the time interval $E_{k}=\left[e_{k}, e_{k+1}\right]$ for $k=1, \ldots, 2 n-1$.

A flow network is constructed with job vertices J_{1}, \ldots, J_{n}, interval vertices $E_{1}, \ldots, E_{2 n-1}$, a source vertex S and a sink vertex T. There is an $\operatorname{arc}\left(J_{j}, E_{k}\right.$) of capacity $e_{k+1}-e_{k}$ if and only if $r_{j} \leq e_{k}$ and $e_{k+1} \leq d_{j}+y$. In addition, there is an $\operatorname{arc}\left(S, J_{j}\right)$ of capacity p_{j} for $j=1, \ldots, n$ and an $\operatorname{arc}\left(E_{k}, T\right)$ of capacity $m\left(e_{k+1}-e_{k}\right)$ for $k=1, \ldots, 2 n-1$. Now, a maximum value flow is found in $O\left(n^{3}\right)$ time [9]. It should be evident that the trial value y is feasible if and only if the maximum flow value is $P=\sum_{j=1}^{n} p_{j}$. If the maximum flow value is indeed P, a feasible schedule is easily constructed: for each interval E_{k}, read off the flows through the arcs (J_{j}, E_{k}) and apply McNaughton's schedule-construction procedure [15]. The resulting schedule contains at most $O\left(n^{2}\right)$ preemptions.

Notice that there are certain critical trial values of $L_{\text {max }}$. These are the n^{2} values y such that $d_{j}+y=r_{k}$ for some pair J_{j} and J_{k}. The vertex-arc structure of the network remains unchanged for all trial values between two
successive critical values.
We propose to find the optimum value of $L_{\text {max }}$ in two phases. In the first phase, the largest infeasible critical value $y_{0_{2}}$ is determined. A bisection search for y_{0} requires the testing of $\log _{2} n^{2}=O(\log n)$ trial values, or $O\left(n^{3} \log n\right)$ time overall.

In the second phase, a maximum value flow and a minimum capacity cut are found in the network with capacities induced by the value y_{0}. Next, a value $y_{1}>y_{0}$ is determined in such a way that the capacity of this cut is increased to exactly P. The procedure is then repeated in the network induced by Y_{1}. This process yields a sequence of increasing trial values y_{i}. It terminates when the minimum cut capacity is exactly P, i.e., at an iteration z where y_{z} is the first feasible trial value and therefore the optimum value of $I_{\max }$. We shall show that $z=O\left(\min \left\{n^{2}, \log n+\log p_{\max }\right\}\right)$, where $p_{\text {max }}=\max _{1 \leq j \leq n}\left\{p_{j}\right\}$. Hence the two phases require $O\left(n^{3} \min \left\{n^{2}, \log n\right.\right.$ $\left.\left.+\log p_{\max }\right\}\right)$ time overall.

Suppose a minimum cut with capacity $P_{0}<P$ is found in the network for y_{0}. Consider how the capacity of this cut is changed when y_{0} is increased by some positive amount δ. The capacity $e_{k+1}-e_{k}$ of an arc (J_{j}, E_{k})
(a) stays the same if e_{k} and e_{k+1} are both release dates or both deadines;
(b) increases by δ if e_{k} is a release date and e_{k+1} is a deadline;
(c) decreases by δ if e_{k} is a deadline and e_{k+1} is a release date.

A similar situation holds for the capacities of the arcs ($\mathrm{E}_{\mathrm{k}}, \mathrm{T}$), except that they change by $m \delta$ or $-m \delta$ rather than by δ or $-\delta$. It is not hard to establish that the capacity of the cut is increased by $\mu_{0} \delta$, where μ_{0} is an integer multiplier with $1 \leq \mu_{0} \leq 2 n^{2}$. Accordingly, we set $\delta=\left(P-P_{0}\right) / \mu_{0}$, $y_{1}=y_{0}+\delta$, and repeat.

Each cut in the network can be characterized by a pair (μ, P^{i}), where μ is its multiplier and P^{\prime} its capacity. When y_{i} is increased to Y_{i+1}, the multipliers of cuts do not change, although their capacities, of course, do. To obtain bounds on the number of iterations, suppose that the minimum cut found at iteration i has multiplier μ_{i} and capacity P_{i}, and consider the replacement of y_{i} by y_{i+1}.

Each cut with multiplier $\mu \geq \mu_{i}$ will have its capacity increased to at least P. Hence $\mu_{i+1}<\mu_{i}$, unless $z=i+1$. It follows that there can be at most $O\left(n^{2}\right)$ iterations.

Further, each cut with multiplier $\dot{\mu}<\mu_{i}$ and capacity $P^{\prime} \geq P-\left(P-P_{i}\right) \mu / \mu_{i}$ will have its capacity increased to at least P. It is not hard to verify that at each iteration the number of possible pairs (μ, P^{\prime}) with $P^{\prime} \leq P$ is decreased by a factor of at least two. It follows that there can be at most $\log _{2}\left(n^{2} P\right)=O\left(\log n+\log p_{\max }\right)$ iterations. We have arrived at the desired result.

Bruno and Gonzalez [3] showed that essentially the same feasibility test can be employed in the case of two uniform machines. Under the assumption that $s_{1} \geq s_{2}$, each $\operatorname{arc}\left(J_{j}, E_{k}\right)$ has capacity $s_{1}\left(e_{k+1}-e_{k}\right)$ and each arc ($\left.E_{k}, T\right)$ has capacity $\left(s_{1}+s_{2}\right)\left(e_{k+1}-e_{k}\right)$.

The first phase in our search for the optimum value of $L_{\max }$ is as before. In the second phase, the arc capacities change by $\pm s_{1} \delta$ and $\pm\left(s_{1}+s_{2}\right) \delta$, instead of $\pm \delta$ and \pm m δ. Since there are now $s_{1} n^{2}$ possible values for the multiplier μ, the first bound on the number of iterations is $O\left(s_{1} n^{2}\right)$. Since there are $s_{1} n^{2} P$ possible pairs (μ, P^{\prime}) with $P^{\prime} \leq P$, the second bound is $O\left(\log s_{1}+\log n+\log p_{\max }\right)$. Hence the algorithm requires $O\left(n^{3} \min \left\{s_{1} n^{2}\right.\right.$, $\left.\left.\log s_{1}+\log n+\log p_{\max }\right\}\right)$ time overall.

Martel $[13,14]$ recently developed an analogous approach to the minimal common generalization of the problems discussed so far, i.e., minimizing maximum lateness on m uniform machines.

To solve the feasibility problem with respect to induced deadlines, one constructs the same network as in the case of identical machines, with the flow through an arc (J_{j}, E_{k}) corresponding to the amount of processing of job J_{j} in interval E_{k}. The capacity constraints are to be modified as follows. Assume that $s_{1} \geq \ldots \geq s_{m}$. For each subset $\left\{J_{j} \mid j \in X\right\}$ and each vertex E_{k}, it is required that the total flow through the set of $\operatorname{arcs}\left\{\left(J_{j}, E_{k}\right) \mid j \in x\right\}$ is no more than $\rho(k,|x|)$, where

$$
\rho(k, \ell)=\left(e_{k+1}-e_{k}\right) \sum_{i=1}^{\min \{\ell, m\}} s_{i}
$$

Further, each arc ($\mathrm{E}_{\mathrm{k}}, \mathrm{T}$) has capacity $\rho(\mathrm{k}, \mathrm{m})$. This is a special case of the polymatroidal network flow model [11], in which the capacities are defined
by nonnegative and submodular functions, one for each set of arcs entering (or leaving) a specific vertex; the model derives its name from the fact that such a set function corresponds to the rank function of a polymatroid. Traditional notions such as augmenting paths and labeling techniques can be extended to find a maximum value flow for the scheduling model in $O\left(\left(m^{2} n^{3}+n^{4}\right)(m+\log n)\right)$ time $[13,14]$.

To determine the optimum value of $L_{\text {max }}$, one again uses the concept of critical trial values so as to arrive at a polynomial-time algorithm that requires $O\left(n^{2}+n \log s_{1}+\log \left(\max _{j}\left\{d_{j}\right\}+P\right)\right)$ calls to the feasibility routine [14]. Admittedly, the degree of the polynomial is on the high side. By way of compensation, we should add that the investigation of polymatroidal network flow models was inspired by this scheduling problem and has yielded a useful generalization and unification of classical network flow theory and much of the theory of matroid optimization [11].

We finally consider the problem of minimizing the total completion time $\sum \mathrm{C}_{\mathrm{j}}$ or the total weighted completion time $\sum w_{j} C_{j}$.

Let us first assume that all release dates are equal. Bruno and Gonzalez [5] proposed a simple algorithm to minimize $\sum C_{j}$ on m uniform machines: order the jobs according to nondecreasing execution requirements, and schedule each successive job preemptively so as to minimize its completion time. This algorithm is illustrated in Figure 5. Obviously, it requires $O(n \log n+m n)$ time and introduces at most $(m-1)\left(n-\frac{m}{2}\right)$ preemptions.
$m=3, s_{1}=3, s_{2}=2, s_{3}=1$
$n=4, p_{1}=3, p_{2}=8, p_{3}=8, p_{4}=10$
optimal schedule obtained by Bruno-Gonzalez algorithm:

M_{1}	J_{1}	J_{2}	J_{3}	J_{4}
M_{2}	J_{2}	J_{3}	J_{4}	
M_{3}	J_{3}	J_{4}		

Figure 5 Example with m uniform machines, all $r_{j}=0, \sum C_{j}$ criterion.
The Bruno-Gonzalez algorithm not only minimizes $\sum C_{j}$ but also $\sum_{j=1}^{\ell} C_{j}$ for $\ell=1, \ldots, n-1$. Further, it minimizes $\sum w_{j} C_{j}$ provided that the weights are agreeable, i.e., $p_{j}<p_{k}$ implies $w_{j} \geq w_{k}$ [5].

A characteristic feature of the algorithm is that at each point in time the fastest machines are working on the jobs with the shortest remaining execution requirements. One may consider a straightforward extension to the case of arbitrary release dates, in which at each subsequent release date the above rule is applied to the available jobs. In contrast to the algorithm described in Section 2, the resulting algorithm has the property that the remaining execution requirements passed on to the next interval will be as unevenly distributed as possible. Unfortunately, it may produce non-optimal schedules, as is illustrated in Figure 6. The example shows
in fact that no on-line algorithm will be able to minimize $\sum c_{j}$ even on two identical machines.

For the case of a single machine, it has been pointed out in Section 1 that when all release dates are equal $\sum w_{j} C_{j}$ is minimized in $O(n \log n)$ time by scheduling the jobs in order of nonincreasing ratios w_{j} / p_{j} [19]. Again,
$n=5, r_{1}=r_{2}=r_{3}=0, r_{4}=r_{5}=r$

$$
p_{1}=p_{2}=p_{3}=2, p_{4}=p_{5}=1
$$

(a) $r=2$
optimal schedule obtained by extended Bruno-Gonzalez algorithm:

M_{1}	J_{1}	J_{4}	J_{3}	$\Sigma C_{j}=15$
M_{2}	J_{2}	J_{5}		
		3		

(b) $r=3$
optimal schedule:

M_{1}	J_{1}	J_{2}	J_{4}
M_{2}	J_{2}	J_{3}	J_{5}
	J_{2}	1	2

non-optimal schedule obtained by extended Bruno-Gonzalez algorithm:

M_{1}	J_{1}	J_{3}	J_{3}	J_{5}
	J_{2}		J_{4}	

Figure 6 Example with two identical machines, $\sum C_{j}$ criterion.
an obvious extension to the case of arbitrary release dates is to apply the ratio rule at each release date to the remaining execution requirements of the available jobs. This on-line algorithm yields an optimal schedule when the weights are equal or agreeable [1]. Surprisingly [1,p.82], the problem is NP-hard when the weights are arbitrary, as will be shown below.

This result will be obtained by a reduction from the following NPcomplete problem [4]:

PARTITION: Given a set $T=\{1, \ldots, t\}$ and positive integers a_{1}, \ldots, a_{t}, b with $\sum_{j \in T} a_{j}=2 b$, does there exist a subset $S \subset T$ such that $\sum_{j \in S} a_{j}=b$?

Given any instance of PARTITION, we define a corresponding instance of the problem of minimizing $\sum w_{j} C_{j}$ on a single machine subject to arbitrary release dates as follows:

$$
\begin{aligned}
& n=t+1 ; \\
& r_{j}=0, p_{j}=w_{j}=a_{j} \quad(j \in T) ; \\
& r_{n}=b, p_{n}=1, w_{n}=2 .
\end{aligned}
$$

We claim that PARTITION has a solution if and only if there exists a schedule with value $\sum \mathrm{w}_{j} \mathrm{C}_{j} \leq \mathrm{y}$, where

$$
y=\sum_{1 \leq j \leq k \leq t} a_{j} a_{k}+3 b+2
$$

With respect to $\left\{J_{j} \mid j \in T\right\}$, any nonpreemptive schedule without machine idle time is optimal and has value $\sum_{1 \leq j \leq k \leq t} a_{j} a_{k}$. Inserting the unit-time job J_{n} in a schedule for $\left\{J_{j} \mid j \in T\right\}$ increases the contribution to $\sum_{j} C_{j}$ of the latter set by the total weight of all jobs completed after J_{n}. Denoting the index set of all jobs completed before J_{n} by S, we therefore have for any schedule that

$$
\begin{array}{ll}
c_{n}=b+c+1 & \text { for some } c \geq 0, \\
\sum_{j \in S} w_{j}=b+c-d & \text { for some } d \geq 0, \\
\sum_{j} w_{j} C_{j}=\sum_{1 \leq j \leq k \leq t} a_{j} a_{k}+2 b-\sum_{j \in S} w_{j}+2 C_{n}=y+c+d
\end{array}
$$

(cf. Figure 7). It follows that there exists a schedule with value y if and only if PARTITION has a solution.

Since PARTITION can be solved in $O(t b)$ time, the above reduction does not exclude the existence of a similar pseudopolynomial algorithm [4] for the single machine problem. However, the latter problem is NP-hard even with respect to a unary encoding [12] (NP-hard in the strong sense [4]), which implies that it cannot be solved in pseudopolynomial time unless $P=N P$.
schedule corresponding to solution of PARTITION:

arbitrary schedule:

Figure 7 Reduction from PARTITION to single machine problem, $\sum w_{j} C_{j}$ criterion.

This ștronger result can be obtained by a reduction from the following unary NP-complete problem [4]:

3-PARTITION: Given a set $T=\{1, \ldots, 3 t\}$ and positive integers $a_{1}, \ldots, a_{3 t}, b$ with $\frac{1}{4} b<a_{j}<\frac{1}{2} b(j \in T)$ and $\sum_{j \in T} a_{j}=t b$, do there exist t pairwise disjoint subsets $S_{i} \subset T$ such that $\sum_{j \in S_{i}} a_{j}=b$ for $i=1, \ldots, t$?

The reduction is as follows:

$$
\begin{array}{ll}
n & =4 t-1 ; \\
r_{j} & =0, p_{j}=w_{j}=a_{j} \\
r_{j} & =(j-3 t)(b+1)-1, p_{j}=1, w_{j}=2 \quad(j \in T) ; \\
y & =\sum_{1 \leq j \leq k \leq 3 t} a_{j} a_{k}+(t-1) t\left(\frac{3}{2} b+1\right)
\end{array}
$$

The equivalence proof is left to the reader.

5. CONCLUDING REMARKS

The major open problem in the area of preemptive scheduling of uniform machines subject to release dates involves the minimization of $\sum C_{j}$. It has been pointed out that this problem cannot be solved by an on-line algorithm. We suspect that it cannot be proved NP-hard either and conjecture that it is solvable in polynomial time.

An important generalization of the models considered in this paper is the addition of precedence constraints between the jobs. It turns out that a number of results for the nonpreemptive scheduling of unit-time jobs subject to precedence constraints can be extended to the preemptive scheduling of jobs with arbitrary processing requirements. For example, polynomial-time algorithms have been obtained for the minimization of $C_{m a x}$ on an arbitrary number of identical machines subject to release dates and outtree constraints, and for the minimization of $L_{\max }$ on two uniform machines subject to release dates and general precedence constraints. Also some NP-hardness proofs carry through, e.g., for the above $C_{\text {max }}$ problem with intree rather than outtree constraints. The reader is referred to [10] for further details.

Another challenge is to investigate the stochastic counterparts of these models, in which the job parameters are random variables and an expected objective value is to be minimized. Initial results for such models are reported in [20].

ACKNOWLEDGMENTS

This research was partially supported by NSF Grants MCS76-17605 and MCS7820054 and by NATO Special Research Grant 9.2.02 (SRG.7).

REFERENCES

1. K.R. BAKER (1974) Introduction to Sequencing and Scheduling, Wiley, New York.
2. J. BRUNO, E.G. COFFMAN, JR., R. SETHI (1974) Scheduling independent tasks to reduce mean finishing time. Comm. ACM 17,382-387.
3. J. BRUNO, T. GONZALEZ (1976) Scheduling independent tasks with release dates and due dates on parallel machines. Technical Report 213, Computer Science Department, Pennsylvania State University.
4. M.R. GAREY, D.S. JOHNSON (1979) Computers and Intractability: a Guide to the Theory of $N P$-Completeness, Freeman, San Francisco.
5. T. GONZALEZ (1977) Optimal mean finish time preemptive schedules. Technical Report 220, Computer Science Department, Pennsylvania State University.
6. T. GONZALEZ, S. SAHNI (1978) Preemptive scheduling of uniform processor systems. J. Assoc. Comput. Mach. 25,92-101.
7. W.A. HORN (1974) Some simple scheduling algorithms. Naval Res. Logist. Quart. 21,177-185.
8. E.C. HORVATH, S. LAM, R. SETHI (1977) A level algorithm for preemptive scheduling. J. Assoc. Comput. Mach. 24,32-43.
9. A.V. KARZANOV (1974) Determining the maximal flow in a network by the method of preflows. Soviet Math. Dokl 15, 434-437.
10. E.L. LAWLER (1982) Preemptive scheduling of precedence-constrained jobs on parallel machines. In: M.A.H. DEMPSTER, J.K. LENSTRA, A.H.G. RINNOOY KAN (eds.) (1982) Deterministic and Stochastic Scheduling, Reidel, Dordrecht, 101-123.
11. E.L. LAWLER, C.U. MARTEL (1982) Computing maximal "polymatroidal" network flows. Math. Oper. Res., to appear.
12. J.K. LENSTRA, A.H.G. RINNOOY KAN, P. BRUCKER (1977) Complexity of machine scheduling problems. Ann. Discrete Math. 1,343-362.
13. C. MARTEL (1982) Preemptive scheduling with release times, deadines and due times. J. Assoc. Comput. Mach., to appear.
14. C. MARTEL (1982) Scheduling uniform machines with release times, deadlines and due times. In: M.A.H. DEMPSTER, J.K. LENSTRA, A.H.G. RINNOOY KAN (eds.) (1982) Deterministic and Stochastic Scheduling, Reidel, Doŕdrecht, 89-99.
15. R. MCNAUGHTON (1959) Scheduling with deadlines and loss functions. Management Sci. 6,1-12.
16. S. SAHNI (1979) Preemptive scheduling with due dates. Oper. Res. 27. 925-934.
17. S. SAHNI, Y. CHO (1979) Nearly on line scheduling of a uniform processor system with release times. SIAM J. Comput. 8, 275-285.
18. S. SAHNI, Y. CHO (1980) Scheduling independent tasks with due times on a uniform processor system. J. Assoc. Comput. Mach. 27,550-563.
19. W.E. SMITH (1956) Various optimizers for single-stage production. Naval Res. Logist. Quart. 3,59-66.
20. G. WEISS (1982) Multiserver stochastic scheduling. In: M.A.H. DEMPSTER, J.K. LENSTRA, A.H.G. RINNOOY KAN (eds.) (1982) Deterministic and Stochastic Scheduling, Reidel, Dordrecht, 157-179.
