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The Lagrange multiplier rule on manifolds and optimal control of nonlinear 

systems*) 

. by 

J.C.P. Bus 

ABSTRACT 

In this paper we present a differential geometric approach to the 

Lagrange problem and the fixed end points, fixed time optimal control prob-· 

lem for nonlinear time-invariant control systems. We restrict attention to 

first order conditions for optimality. Our treatment of the optimal control 

problem uses a recently proposed fibre bundle approach for the definition of 

nonlinear systems. 
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I • INTRODUCTION 

In this paper we pres.ent a differential geometric approach to the 

Lagrange problem and the fixed end points, fixed time optimal control prob­

lem for nonlinear time-invariant control systems. Herein we restrict atten­

tion to first order conditions; i.e. to the problem of finding stationary 

curves rather than optimal curves. The approach is based on a generalization 

of the Lagrange multiplier rule. This generalization is, in a crude form, 

given in unpublished course notes by TAK.ENS [1978]. In fact, the results 

about the variational and Lagrange problem given in Sections 2 up to 4 are 

not new. Basic references to these results are CARTAN [1922], CARATHEODORY 

[1935], HERMANN [1962,1977]. However, the presentation differs and we worked 

out some questions about the relation be~ween formal stationarity (roughly 

speaking stationarity w.r.t. variations satisfying the restrictions only to 

first order) and stationarity (propositions 4.2 and 5.3). We like to emphasize 

that our treatment of the Lagrange and the optimal control problem is essentially 

global and no assumptions are made about regularity of the cost function to obtain 

the characterization of optimal trajectories. Locally, the results are shown to 

imply the well-known Lagrange equation and Pontryagin' s maximum principle. 

In our setup we use the definition of control systems as first proposed 

by BROCKETT [1977] and WILLEMS [1979] and worked out by NIJMEIJER and 

VAN DER SCHAFT [I 982]. 

The differential geometric notations follows closely that of SPIVAK 

[1979, I & II]. For instance, if Mis a smooth manifold, TM is its tangent 

bundle (TM is the tangent space at x EM) and T*M is the cotangent bundle. 
X 

If f: M -+ N l.S a smooth mapping between smooth manifolds M and N then 

f . TM-+ TN is its lift to the tangent bundles.and for any k-form w on N, 
* 
. 

f*w is a k-form on M which is defined by * (f w) (v) = w(f*v) for all v E TM. 

Some minor deviations from Spivak's notation occur. The set of smooth vector 

fields on a smooth manifold is denoted by X(M). Furthermore, given a k-form 

wand a vectorfield X on M, we define the contraction l]f of w with respect 

to X, to be the (k-1)-form on M defined by 

for 
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x. E X(M) 
1 

(i = l, ... ,k-1). 

Unless states otherwise all manifolds, mappings, forms and vector fields 
00 

are assumed to be smooth, i.e. C. 

2. THE UNRESTRICTED VARIATIONAL PROBLEM 

Let M be a manifold with dim M = m and a a I-form on M. Let I denote 

some closed interval, [a,b] say, in lR. 

define the action of a along~ by 

(2. I) J(~) =fa= f ~*a. 
~ I 

00 

Then, for C curves~: I+ M we can 

(In the first integral the integration path is Im~.) The variational prob-

lemon M with respect to a is to find curves which are locally optimal, i.e. 

which produce an optimal value for the action relative to small variations 

of the curves. We shall restrict ourselves to first ord.er necessary condi­

tions, hence to stationarity rather than optimality of the action. The fol­

lowing definition is standard in the calculus of variations. 

DEFINITION 2. l. A mapping i: (-o,o) x I+M (for some o > O) is called a 

variation keeping end point fixed (k.e.p.f.) of~: I+ M if: 

(i) ~ . 00 • • 
~ is C in each variable; 
~ (ii) ~(O,t) = ~(t) for all t EI; 
~ ~ (iii) ~(E,a) = t(a), ~(E,h) = t(b) for all EE (-o,o). 

The set of variations k.e.p.f. of$ is denoted by Vt and for short we write 

$ (t) = t(E,t). 
E 

Stationary curves for the action are curves which make the first varia­

tion of the action vanish. The following definition makes this precise. 

DEFINITION 2.2. A curve t: I+ Mis stationary with respect to a, if for all 

$ E V we have 
E t 

(2.2) * $ a = O. 
E 
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From now on we shall assume that the curves we consider are injective 

immersions. This is a rather natural assumption as curves with double points 

are usually not optimal, because of occurrence of a loop. In such cases we 

can formulate the variational problem for piecewise injective curves as a 

sum of variational problems for each piece (see also SPIVAK [1979, II 

ch. 6. 14]). 

We can give another, equivalent, definition of stationarity in terms of 

vector fields along$. By a vector field along a curve$: I • M we mean a 

smooth~function V: I • TM which satisfies V(t) E T$(t)M. Clearly, each vari­

ation$ E V$ defines a vector field V along$ by the formula 

(2. 3) t E I, 

with V(a) = V(b) = 0. 

Conversely, given any vector field V along$, with V(a) = V(b) = 0, we 

can extend it (as$ is an injective immersion) to a vector field XE X(M) 

and construct a variation k.e.p.f. of$ by 

(2.4) 

where yX(£) denotes the flow of X over£. Let now w be an arbitrary I-form 

on Mand let Li" denote its Lie-derivative w.r.t. X. Then 

(2. 5) 

We also have the well-known relation: 

(2. 6) 

Given V along$, we have for an arbitrary smooth extension X of V: 
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(With :t we mean the tangent vector evaluated at t.) This shows that ¢*L:t3 

depends on V only, so that we shall write ¢*Lvw to be the I-form on I defin­

ed by 

(2. 7) 

Then, for all extensions X of V and induced variations cf. (2.4) we have the 

equality 

(2. 8) ~*L w = dd I O ¢*w. 
'I' V £ £= £ 

So any vector field V along¢ with V(a) = V(b) = 0 defines a class of varia­

tions k.e.p.f. ¢ of¢ satisfying (2.8). ! 
£ 

These relations between vector fields along¢ which vanish at the end 

points and variations k.e.p.f. of ¢ show that we can equivalently define 

stationarity by: 

DEFINITION 2.2' ¢ is stationary with respect to a on M, if for all vector 

fields V along¢ with V(a) = V(b) = 0 we have 

(2. 9) 

This definition easily leads to a useful and well-known characteriza­

tion of stationary curves. 

PROPOSITION 2.3. ¢ is stationary with respect to a, if and only if for all 

t E I: 

(2. 10) 
a 

¢* (at) E ker da, 

where ker da = {v E TM I da(v,w) = 0, Vw E T1r(v)M} and 1r: TM+ M the natural 

projection. 

PROOF. For any vector field V along¢ with V(a) = V(b) = 0 we have, using 

Stokes theorem and (2.7): 
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(2. I I ) 

I I 

* * a where~ 1Vda has to be interpreted in the obvious way: ~ 1Vda(at) = da(V(t), 

~ (~)). The proof of the proposition follows innnediately from Definition * at , 
2.2 and equality (2.10). 0 

From this proposition we conclude that dais an integral invariant for 

stationary curves w.r.t. a (cf. CARTAN [1922]). Curves~: I • M satisfying 

(2.10) are called characteristic curves of da. 

3. THE RESTRICTED VARIATIONAL PROBLEM 

A natural way to impose restrictions on curves in Mis by use of I-forms. 
! * Let S be a I-form on M which is nowhere zero, then the equality~ S = 0 de-

fines a restriction on curves~ in M. In fact it expresses that~ lies in an 

integral manifold of the distribution which is defined pointwise by S(x) = 
{v ET MI S(v) = 0}. In this case Sis integrable. More generally, we can 

X 

define restrictions by smooth distributions defining only locally a set of 

basic I-forms. In such a setting we define an admissible curve as follows. 

DEFINITION 3.1. A curve~: I • Mis called admissible under restriction 

distribution S on M if 

(3. 1) 

Vt E I. 

Given S we can define its annihilator E = s.L 
' 

E (x) = { Sx E T*M I S (s) = 0, Vs E S (x)}. 
X X 

* EcT M, pointwise by 

We shall assume throughout this paper that S has constant dimension. Then 

the smoothness implies that Eis a smooth codistribution, consisting of all 

smooth I-forms which lie pointwise in E(x), x EM. That means that Eis 

locally spanned by smooth I-forms s
1

, ••• ,Sp (p = codim S) and in this neigh­

bourhood admissible curves~ satisfy: ~*s. = 0 (i = I, •.• ,p). Now denote the 
1 

set of admissible variations k.e.p.f. by V!: 
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(3. 2) vE = { E;. E v"' I E;. * s = o , vs E E l . 
<fJ E: 'I' E: 

Then the following definition is natural. 

DEFINITION 3.2. An admissible curve cp: I • Mis stationary w.r.t. a I-form 

a under smooth restriction distribution S, if for all <fJ E E v: (E = Sl.) : 

(3. 3) :E:,E:=0 I <p:a = o. 
I 

Note that this definition implies that isolated admissible curves are 

stationary as only the trivial variation <fJ (t) = </i(t) VE, is admissible. E: 
We see that condition (3.3) is of first order in E:. This suggests that 

the higher order part of the variation is of no interest as long as the vari-
' ation is admissible. Moreover, the question arises whether we might restrict 

attention to variations which are admissible only to first order in e. If 

this is true we might expect a considerable simplification of the theory and 

the practical computations. We shall not answer this question for general 

smooth restriction distributions. We prove that the answer is positive for 

(at least a large class of) the problems that we consider in this paper. 

(Propositions 4.2 and 5.3). So, in the cases of interest to us, the follow­

ing stronger concept of "formal stationarity" reduces to stationarity. This 

notion, together with Theorem 3.8 is suggested in TAKENS [1978]. 

DEFINITION 3.3. An admissible curve cp: I • Mis formally stationary w.r.t. 

a I-form a under restriction distribution S (smooth and of constant dimen­

sion) if, with E = Sl.: 

(3. 4) d:IE:=0 I <p:a = O 
I 

where the set of formally admissible variations WE 1s defined by 
<fJ 

(3.5) 

Clearly, formal stationarity implies stationarity as~ cw:. The con­

verse 1s not true for arbitrary distribution S, but has been proven for the 

cases o~ interest to us. 



Similar to Definition 2.2' we can give an equivalent definition for 

formal stationarity: 

7 

· DEFINITION 3.3'. ¢ is formally stationary w.r.t. a under restriction distri­

bution S if¢ is admissible and for all vector fields V along¢ with V(a) = 

V(b) = 0 we have 

* ¢ LVB = 0, VB EE 

Before expressing the main results about these notions we shall dwell 

for some time upon the global character of these results. In fact the global 

problem can easily be broken up in finitely many equivalent local problems. 

This follows from the following proposition. 

PROPOSITION 3.4. Let¢: I+ M be a given injective immersion. Let {Iµ} be a 

finite collection of closed subintervals of I such that {int Iµ} is an open 

covering of I. Define¢µ= ¢JIµ, the restriction of¢ to Iµ. Then¢ is (for­

mally) stationary w.r.t. a I-form a (undEr restriction S) if and only if¢µ 

is (formally) stationary w.r.t. a (undEr restriction S) for allµ. 

PROOF. First let¢ be stationary and let¢~ be a variation k.e.p.f. of¢µ. 
-Then¢ defined by 

E 

= 0 

is not necessarily smooth at the end points of the subinterval Iµ, so that 

it is no variation k.e.p.f. of¢ on I. However, we can find a smooth varia­

tion¢ of¢ on I which is arbitrarily close to i on I. Hence stationarity 
E E 

of¢ implies stationarity of¢µ, for allµ. 

Conversely, let¢µ be stationary w.r.t. a for allµ. Let V be a vector 

field along ¢ with V(a) = V(b) = 0. We can choose fµ: I + JR such that 

supp fµ c Iµ, E fµ(t) = I, Vt EI. Then fµV = V is a vector field along 
µ µ 

¢µ, which vanishes at the end points. Then stationarity of¢µ implies: 

,. 
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For formal 

f * I ( µ * 
cp LVa, = (cp ) LV a, = 0. 

J 
I 

µ 
I µ 

)1 

stationarity we require the additional equality 

cp*Lv B = fllcp*LvB + B(V(t))df(:t) = fllcp*LvB 
µ 

(use (2.7)): 

as B(V(t)) 

implies 

* = cp B(X) = 0 for any extension X of Vas cp is admissible. This 

* cp LV 8 = 0, Vµ. 
µ 

Using this we can give a proof for formal stationarity that is similar to 

the one above for stationarity. 0 

This proposition allows us to assume that cp(I) lies entirely in a co­

ordinate neighbourhood of M, as far as unrestricted stationarity and restrict­

ed formal stationarity is concerned. 

After this intermezzo we return to the development of the main theorem 

of this section. We need the following definitions. 

* DEFINITION 3.5. Let M be a manifold with cotangent bundle TM and natural 

projection TI: T*M • M. Then, the canonical I-form eon T*M is defined by 

(3.6) e (~) 

* for all ~ E T M. 

* = TI ~ 

REMARK 3.6. By definition of 

(3. 7) 

* TI , (3.6) implies: 

* * * for all~ ET M, v E T~T M (n: TM • M). If we choose coordinates x 1, ... 

x in some open neighbourhood in M, then we can define canonical coor-••• , m 

dinates xi,pi' i = I, ... ,m by 

(3. 8) = ~(-0-1 ). 
axi x(O 



9 

We shall identify x. and x .. In canonical coordinates, the canonical I-form 1. 1. 
* 8 on TM is given by 

(3. 9) 
m 

e = I 
i=I 

p.dx .. 1. 1. 

DEFINITION 3. 7. Let M be a manifold with I-form a and distribution S on M • 
.L Let E = S (cf. (3.1)). Then the Cartan form 8 on E, associated with a 1.s 

a 
defined by: 

(3. IO) 

* where TIE is the restriction to E of the natural projection TI! TM • Mand SE 

* is the restriction to E of the canonical ii-form on TM. 

Now we are ready to formulate the basic theorem. 

THEOREM 3.8. Let M be a manifold with I-form a and distribution S of constant 

dimension. Then, an injective immersion¢: I • Mis formally stationary with 

respect to a under restriction S if and only if there exists an injective 
-I 

immersion n: I • E with n(t) E TIE (¢(t)) and n stationary in E with respect 

to the Cartan form e . 
a 

PROOF. First let an injective innnersion n: I • Ebe given with n(t) E 
-I 

TIE (¢(t)) and n stationary with respect to a. By Proposition 3.4 we can re-

strict ourselves to curves in a coordinate neighbourhood such that E is 

spanned by forms 8 1, ••• ,Bp on this neighbourhood. Furthermore, note that an 

arbitrary vector field along n yields a projected vector field along¢ as$ 

and n are injective immersions. 

To prove that¢ is formally stationary we first have to prove that¢ 1.s 

admissible. Therefore choose local coordinates x for Mand let s
1

, ••• ,Bp 

be a local basis for E. Then we can give coordinates (x,y) for E. I.e. an 

element (x,~l=I yiBi(x)) EE has coordinates (x,y) (y = (y 1, ••• ,yp)). By 

* definition of the canonical form on E c TM we obtain 

p 

= ( l y.B. (x))(TIE*v) = 
i=I 1 1 

p 

l y.(TIE*s.)(v), 
i=I 1 1 
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for V E T ( ) E. So x,y 

(3.11) SE (x,y) = 
p 

I y.(nE*s.)(x,y). 
i=l i i 

Therefore, given an arbitrary vector field X on E, 

we obtain: 

(3. I 2) 

n 
X = I 

i=I 

p 

x. _a_+ I 
1 clx. • I 

1 J= 

p 

a 
y. cly. ' 

J J 

(LX8E) (x,y) I * = LX(yinEBi)(x,y) 
i=l 
p p 

I * . I * = Y.(nEB.)(x,y) + yiLX(nEBi)(x,y). 
i=I 1 1 i=I 

Now let in these coordinates n be given by 

(3. I 3) n(t) = (</l(t),A(t)) 

{qi and A are x and y coordinates, respectively) and define 

w. (t) = w. (t) ~1 . 
1 1 oy i n (t) 

1 = l, ... ,p, 

where w. arbitrary on I with w.(a) = w.(b) = 0. Clearly W. (i = I, •.• ,p) are 
1 1 1 1 

vector fields along n with projection TIE*Wi = O. We have 

f * f * * f * ( * 
n ~ e = n ½.L (nEa.) + n ~.eE = n ~.eE . a. J 

I 
1 

I 
1 

I 
1 

I 
1 

(3. 14) 

r 
p 

( (3. I 2) * * I * * w. (t)n nEB. + ;\i (t)n ~.J". (nEBi). 
J 1 1 i=l J 
I I 

1 

As nE*Wi = 0 the last term equals zero because 
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Then the stationarity of n makes the left-hand side of (3.14) equal to zero, 

so that 

r * * f * 0 = w.(t)n nEB. = w.(t)~ B., 
J 1 1 J 1 1 

I I 

* (1" for arbitrary w .. This proves that~ B- = 0 = 
1 1 

I, •.• ,p), hence~ is admis-

sible. 

To prove the formal stationarity of~ let a vector field V along~ with 

V(a) = V(b) = 0 be given in coordinates: 

V(t) = 
n 
l v. (t) _a_! 

i=I 1 axi Ht) 

Define a vector field W along n by 

W(t) = 
n 
I v. Ct)~, 

i=I 1 oXi n (t) 

Then nE*W = V and the a/ay i - components of W are zero. So use of (3. I 2) 

yields: 

J 
* 

J 
* * f n*1'weE n 1'wea = n 1\7(nEa) + 

(3. I 5) I I I 

f 
p 

f * * I * * = n 1\7(nEa) + Ai (t)n Lw('lfEf:\). 
i=l J 

I I 

Moreover, using (2.7): 

Substituting this in (3.15) yields 

,, 
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* Stationarity of n makes the left-hand vanish. Hence <f> LV8i = 0 (i = I, ... ,p) 

yields J
1 

cp*LVa = 0 which implies formal stationarity. 

To prove the converse, let <f> be formally stationary. Given any vector 

field W along n with W(a) = W(b) = 0 we obtain, using (3.12): 

p 

I w cp*s. + I f A.n*1~-CTTE*s.), 
y. 1 ·-1 J 1 -W 1 

I i 1- I 

with WYi the a/ayi - component of W. As <f> is admissible (cp*8i = O) we obtain, 

with V = TTE*W: 

(3. I 6) * A.c/J LV8 .. 
1 1 

Hence, we have to prove that we can find 
1
Ai: I+ JR (i = I, .•• ,p) such that 

for all V, Va vector field along <f> with V(a) = V(b) = 0, the following 

equality is satisfied 

(3. I 7) * Lc/l LV8. 
1 1 

Note that we then have n(t) = El=I Ai (t)8i(<f>(t)) satisfying the conditions 

of the theorem. For simplicity we assume that p = I, i.e. Eis spanned by 

one I-form. We omit the subscripts for A and 8. To find an appropriate A in 

this case define a vector field Z along <f> such that 8(Z) = I along cp. Let 

F1 ={VI V vector field along <f>, cp*LV8 = 0, V(a) = 0}, 

F2 ={VI V vector field along c/J, V = wz, $(a)= O}. 

Then, any vector field V along <f> with V(a) = V(b) = 0 can be written unique­

ly as the sum 

This is shown by the following argument. Given V the differential equation: 

(3. 18) 
cp*LvB(a"t) = w(t)d8(Z(t),<f>*(:t)) + d$(a"t) 

$(a)= 0 



defines$: I+ JR uniquely. Now define 

V = ,,,z. 2 'Y , V = V- $Z 1 
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then we have the appropriate splitting as v
2 

E F
2 

by choice and v
1 

E F
1 

be­

cause 

Note that v
1

(b) = -v2 (b) = -$(b)Z(b) is not necessarily equal to zero. Now 

let V be arbitrary with V(a) = V(b) = 0 ~nd V = v
1 

+ v
2 

= v
1 

+ $Z its unique 

splitting. Then (2.7) and Stokes theorem yield: 

where qi*1Vda(a/a:t) = da(V(t),</J*(a/at)), by definition. 

If $ (b) :/= 0 (V 
1 

(b) :/= O) we define a constant c
0 

such that 

(3.19) I qi*Lva = I <p*1v da - Co$(b). 

I I 
2 

* * If $(b) = 0 then J1 qi Lva = JI qi 1v2da by formal stationarity of </J, so that 

we can choose c0 arbitrarily and (3.19) still holds. Then define , 1,f2: 

I + JR by 

(3 .20) 

and :>..: I + JR by 

(3.21) 

Then we have: 
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I * (2. 7) I >i.(ijJ'l' 1dt+dijJ) A¢ LVB 

I I 

= J (1/J~- >i.'!' 11/J)dt - >i. (b )1/J (b) 

I 
(3.20) 

(3.21) f 1/J'l'2dt - Coi/JCb) (3.19) f 
I I 

So the chosen >i. satisfies (3.17) for p = 1. Hence n, given by n(t) = 
>i.(t)8($(t)), is stationary w.r.t. ea and ~En=$. For p > 1 the proof is 

similar. D 

In fact, Theorem 3.8 is a generalization of the Lagrange multiplier 

rule: it proves existence of Lagrange mu!tiplier >i..(t) such that solutions 
i 

of a restricted problem in variables x can be found as solutions to an un-

restricted problem in variables (x,y) with y = A at the solution. 

Theorem 3.8 forms the heart of this paper. It enables us to formulate 

the Lagrange problem and the optimal control problem as a problem of find­

ing characteristic curves of the differential of a certain Cartan form (re­

call Proposition 2.3). 

REMARK 3.9. We can set up the theory of Section 2 and 3, including Theorem 

3.8, for the free end point variational problem with action function 

1($) = h($(b)) * f $*a 

I 

with a a I-form on M, h: M + IR denoting the terminal cost and for$: I+ M 

with $(a) fixed and $(b) E F (Fa submanifold of M of dimension unequal 

zero). This can be done by slight modifications in definitions and theorems. 

For clearness of exposition, as we do not work it out for the Lagrange and 

optimal control problem, the details are given in Appendix A. 

4. THE LAGRANGE PROBLEM 

Consider a smooth manifold Q (the configuration space) with dim Q = n 

and a f1mction L: TQ x I+ IR which is called the Lagrangian (I is a closed 
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interval in JR as before). Then we can seek for curves¢: I • Q which mini­

mize the action integral 

(4. I) J(¢) = f L(¢(t),¢'(t),t)dt. 

I 

This is called the Lagrange problem. We can formulate this problem accord-

ing to Section 3. To do so, choose a coordinate ton I, let 

(4. 2) M = TQ XI, a= Ldt, 

and define a mapping l from the set of curves¢: I • Q to the set of curves 

qi: I • M by 

(4. 3) for all t E I. 

(In canonical coordinates we have qi(t) = (¢(t),~(t),t).) Subsequently, we 

can define a codistribution E c T*M by 

(4.4) E = {8 E T*M IV¢: I + Q we have (l(w))*s = O}. 

Eis a codistribution as the following coordinate representation shows. 

REMARK 4.1. Choosing canonical coordinates q, q, ton M, it can easily be 

shown that the fibres of E are spanned by I-forms {3. (i = I, .•• ,n) locally, 
1. 

given by 

(4. 5) 8 . = dq . - q . d t. 
1. 1. 1. 

We have dim E = n and the restriction distribution S for the Lagrange prob-
1. n lem is defined as the annihilator S = E (S = n. 1 ker {3.). 

1.= 1. 

For curves qi: I • M satisfying the restrictions (i.e. qi(t) = (~(t), 

~(t),t) in canonical coordinates for some¢: I • Q) we have 

(4.6) * * . qi a= qi (Ldt) = L(¢(t),¢(t),t)dt. 
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So, the Lagrange problem can be formulated as the problem of minimizing 

J(~) = JI ~*a over curves in Munder restriction distribution S. 

Note that there is some inconsistency in this approach. On one hand we 

define everything coordinate free in TQ, and on the other hand we choose a 

global coordinate ton I. In fact this gives us an easy way to express that 

we consider curves modulo a time transformation on I. A more general ap­

proach might also easily hide the relation with the original Lagrangian 

problem. 

We restrict attention to first order conditions (stationarity), so in 

view of Theorem 3.8 the following proposition is relevant. 

PROPOSITION 4.2. For the above restricted variational problem we have equi­

valence between formal stationarity and stationarity of curves. 
I 

PROOF. We already know that formal stationarity implies stationarity. So the 

reverse remains to be proven. We consider curves modulo a time transforma­

tion, so every formally admissible variation k.e.p.f. ~ of~= ($,$,t) can 
E 

be given as 

(4. 7) 

and we can restrict ourselves to vector fields V along~ which can be given 

in canonical coordinates by 

. 
(4. 8) V(t) = Vq(t) :q1~(t) + Vq(t) ~, , 

aq ~ (t) 

with V(a) = V(b) = O. We use Definition 3.3'. Suppose such a vector field 

satisfies 

(4. 9) VB E span{dq. - q.dt}. 
1 1 

(Note that we may work locally, by Proposition 3.4.) We first assume that Q 

is I-dimensional, so Eis spanned by the form 13 = dq - qdt. Thus (4.9) im­

plies, using (2.7): 



So 

(4.10) 

Now choose~ by 
£ 

q a 
+ d(V (t))(at). 

. 
(4.11) ~ (t) = (~(t) + £Vq(t),~(t) + £Vq(t),t). 

£ 

Then~ is a variation k.e.p.f. of~ according to Definition 2.1 with 
£ 

(4. 12) 2-1 ~ (t) = ct£ £=0 £ 
q q . 

(V (t),V (t),O). 

Moreover 

. 
~:s <a\) = s (~(t) + £Vq(t) ;~·(t) + £Vq(t), o 

using (4.10). So~ is an admissible variation k.e.p.f. of~, so that by 
£ 

stationarity and (4.12) 

17 

This proves the theorem for dim Q = 1. For dim Q > 1 the proof is similar. D 

A direct consequence of Proposition 4.2 and Theorem 3.8 is the follow­

ing corollary. 

COROLLARY 4.3. An injective curve~: I+ Q is a stationary curve for the 

Lagrange problem if and only if there exists an injective curve n: I+ E 

(Def. (4.4)) with TIE 0 n = l(~) and n stationary with respect to the Cartan 

form 



18 

(see (3.12) with a= LdtJ. 

This corollary reduces the first order Lagrange problem on M to an un­

restricted stationarity problem in the higher dimensional bundle E over M; 

the solutions of the last problem are the characteristic curves of d0L. Let 

us look at how this works out locally. Let q, q, t denote coordinates for 

M = TQ x I (q, q n-dimensional) and let A (n-dimensional) denote coordinates 
n for the fibres of E ,(13 EE => 13 = L. 1 A.13., 13. given by (4.5)). Then 

( 4. I 3) 
n 

eL = l 
i=I 

L 13. + Ldt. 
1. 1. 

1.= 1. 1. 1. 

Characteristic curves of d8L are integral curves of a vector field X on E 

satisfying 

(4.14) 

As solution curves project diffeomorphically on I we may, modulo a time para­

metrization, assume that X has a/at - component equal to 1. 

Denote 

x = x _a_ + x. _a_ + x, . _a_ + ~ 
qi aqi qi aq. Ai aAi at , 

1. 

where summation over i = l, •.. ,n is assumed. Substitution of X and eL ((4.13)) 

in (4.14) yields by collecting terms in dq., dq., dA. and dt, respectively: 
1. 1. 1. 

(4. 15) 

(4. 16) 

(4. 17) 

(4. 18) 

XA. 
aL 

- -- = aq. 
1. 1. 

A. aL 0 - -- = 
1. . 

'dq. 
1. 

q - X = 0 i q. 
1. 

. 

0 

-q.X, 
1. A• 

1. 

- A.X. 
1. qi 

= o. 
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It is easily seen that the first three equations imply the fourth so that 

we have 3n equations. Equation (4. 16) defines a (2n+l)-dimensional submani­

fold N c E. So, stationary curves lie in N. In order that XlN is a vector 

field on N we must have: 

X(t,. - ~) = 0 
l. • 

aqi 
1.=l, •.• ,n, 

which implies: 

-x q. • 
J aq.aq. 

J l. 

- x. 
q. 

J 

,/L a al 
•• +XA. -31:-.-=0 

aq.aq. 1. aq. 
J l. l. 

i = l, ... ,n. 

Using (4.15) and (4.17) we obtain: 

(4. 19) _i_ ~ dq + ~ ~ X + _i_ ~ _1 ~ = 
aq • dt • • q at ~q· aq o. 

aq aq aq o 

We see that the vector field on N is (uniquely) defined if and only if 

(4.20) 
2 

rk (~) 
•2 

aq 
= n. 

Then, the solution curves can be found as integral curves in N of x!N' which 

yields the Hamiltonian formalism. 

If, in general, n: t ~ (1/J(t),s(t),v(t),t) is an integral curve of the 

vector field X satisfying (4.15) up to (4.17), then 

(4.21) X (n(t)) = di/!(t) (4. 17) 
s (t) ' q dt 

(4. 22) x.(n(t)) = ds (t) (4.21) d21/J (t) 
q dt dt2 

. 
(4. 23) X" (n(t)) = dv (t) (4.15) aL(l/J(t) ,1/J(t) ,t) = dt aq 

Moreover, n(t) has to lie in N by (4.16), which implies similar to (4.19): 

(4. 24) aL(l/J,~,t) 

aq 

2 2 • 
= (~) (d 1/J - x. (n(t))) = 0, 

aq2 dt2 q 



20 

using (4.22). So ljJ has to satisfy the well-known Lagrange equatiqn and l; and 

v are defined by (4.21) and application of (4. 16): 

(4. 25) V (t) = aL(l/J,~,t) . 
aq. 

1 

This shows that solutions may exist independent of condition (4.20). xlN 

does not have to exist nor to be unique as a vector field on N. It is enough 

that there exists an integral curve of an X (satisfying (4.14)) on M, which 

satisfies the end point conditions and which lies in N. 

* * REMARK 4.4. If we choose a = Ldt + (3 in (4.2) for any (3 £ E then <f, a= <f, (Ldt) 

for all admissible <f,. Therefore, such a choice does not change the solution 
n of the Lagrange problem. E.g. (3 = r.. 1 \.(3. yields for eL 
1= jL 1 

n 

I 
i=l 

(>..+~.)$. + Ldt. 
1 1 1 

This just results in a translation of Lover\. (i = 1, .•• ,n), i.e. 
1 1 

a translation of the Lagrange multipliers. 

5. THE NONLINEAR OPTIMAL CONTROL PROBLEM 

We shall first recall the notion of a general nonlinear control system 

as given by BROCKETT [1977] and WILLEMS [1979] and worked out by NIJMEIJER 

& VAN DER SCHAFT [1982]. 

DEFINITION 5.1. A nonlinear {time-invariant) control system r, = E(Q,B,f) is 

defined by a smooth manifold Q, a fibre bundle T: B + Q and a smooth map 

f: B + TQ such that the following diagram commutes 

f 

(5. 1) 



We call E affine if Bis a vector bundle and f restricted to the fibres of 

Bis an affine map into the fibres of TQ. 

21 

E is called analytic if Band Qare analytic manifolds and f is an ana­

lytic map. 

We say that~: I+ Q is a trajectory of E if~ is absolutely continuous 

and 

almost everywhere on I. With each trajectory~ we can associate a trajectory­

input l;: I+ B such that 

(5. 2) t E l. 

Q is called the configuration space in this context cf. the Lagrange 

context. The fibres of B represent the (state dependent) input spaces. In 

local coordinates q for Q and u for the fibres T-l(q) we obtain the familiar 

equation q = f(q,u) (with abuse of notation f: (q,u) >+ (q,f(q,u))). A tra­

jectory-input I;; will in such coordinates often be denoted by: l;(t) = (~(t), 

v(t)), ~ and v denoting the q and u coordinates resp. In the sequel we will 

use fin both ways, how it is used will be clear from the context. If Eis 

affine then, in coordinates, f has the form 

(5. 3) 
m 

f(q,u) = A(q) + J. 
i=l 

u.B. (q), 
1 1 

with u. E JR, A and B. vector fields on Q (i = I, ... ,m). 
1 1 

We shall assume in the rest of this paper that f is an injective im-

mersion. 

Now, an optimal control problem can be interpreted as a certain varia­

tional problem on the space-of states and inputs, i.e. B, under certain re­

strictions, one of these being the restriction to curves in B which are tra­

jectory-inputs of the given system. In fact, the approach to the Lagrangian 

problem for curves in Q can be followed here with respect to curves in B. 

Therefore, let us first assume to be given a function G: TB x I + JR, in ana­

logy with the Lagrangian Lin Section 4. What G appears to be in the 
,. 
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specific case of optimal control will be discussed later. The problem be­

comes to find stationary curves qi: I + TB x I of the action integral 

J (qi) = I Gdt, 

I 

with qi restricted to curves of the form qi(t) = (s*(:tlt),t) wheres~ I+ B 

1s a trajectory-input of the system, with s<a) and s(b) given. Let T*: 

TB x I + TQ be defined by T* (v, t) = T* (v), for all v E TB, then we easily 

deduce from (5.2) for such curves qi: 

(5. 4) t E I. 

Now define with natural projection 1TB: TB x I + B: 

(5. 5) M = {w E TB x I I fo;B (w) = ~ (w)}. 
* 

Then, the curves satisfying the restrictions.lie in M (trivial from (5.4)). 

Moreover, Mis a submanifold of TB x I. Namely, if (q,u) are coordinates in 

B and (q, u,q, {i, t) denote canonical coordinates in TB x I, then elements of M 

can locally be given by (q,u,f(q,u),~,t). As f is an injective immersion M 

can be coordinatized locally by (q,u,{i,t). Finally, the following diagram 

commutes 

TQ 

(5. 6) l "Q 

B Q 
T 

So our variational problem may be restricted to Mand the restriction co-

d . 'b . .L • h 1str1 ution E = S on M wit 

* E = {B I B I-form on M, qi f3 = 0 for all admissible qi: I + M} 

is locally represented as follows. 
,. 



PROPOSITION 5.2. Let (q,u,~,t) denote coordinates on Mas above. Then Eis 

spanned locally by (n+m) 1-forms: 

s. = dq. - f. (q,u)dt i = 1, .•. ,n, 
1 1 1 

(5. 7) . 
Bn+j = du. - u.dt j = I , ••• , m. 

] ] 

Here f.(q,u) denotes the i-th coordinate of f(q,u). 
1 

PROOF. For an admissible curve</): I+ Min coordinates given by </)(t) = 
(<P (t),<P (t),</).(t),t) we have imbedded in TBxI (imbedding i): 

q u u 

i O q> ( t) = (<P (t),<P (t),f(</) (t),<P (t)),</)•(t),t) 
q u q u u 

i 

for some trajectory input,. Clearly, = (<P , <P ) and 
q u 

. 
cf>u = <P • • u 

* It follows innnediately that</)$. = 0, i = I, •.• ,n+m. As$. (i = I, •.. ,n+m) 
1 1 
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are independent and the dimension of E equals n+m (x EM) due to determina­
x 

tion of curves in M by trajectory-inputs, the proof is completed. 0 

In order to use Theorem 3.8 profitably for the restricted variational 

problem defined above, we have to investigate, analogous to Proposition 4.2, 

the equivalence between stationarity and formal stationarity under this 

specific restriction distribution. It appears that equivalence holds for 

the special but important class of affine analytic systems. We shall state 

the proposition here; however, the rather technical proof is postponed to 

Appendix B. 

PROPOSITION 5.3. Let [(Q,B,f) be an analytic affine control system and let 

G: M + 1R be given. Then a curve <P: I +Mis formally stationary w.r. t. Gdt 

under restriction codistribution E (cf. Proposition 5.2) if and only if it 

is stationary w.r.t. to Gdt under restriction E. 

We shall now first discuss the choice of Gin the case of fixed end 

points,, fixed time optimal control problem (OCP). Such a problem is defined 
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by: 

OCP: 1. a nonlinear time-invariant control system [(Q,B,f); 

2. a cost-function g: IB -+ JR; 

3. two points sa,sb EB. 

We search for trajectory-inputs s: I-+ B such that s(a) = sa' s(b) = sb and 

is minimal. 

f g(s(t))dt 

I 

Clearly, a natural choice for G: M-+ JR is: 

(5. 8) G(m) = g(rrM(m)), m E M 

with rrM: M-+ B the natural projection. Each trajectory-inputs= (1/1,v) is 

uniquely associated with an admissible curve~= (1/1,v,~,t) in M, and each 

admissible curve in M projects on a trajectory-input in B. So finding an 

optimal trajectory-input is equivalent to finding an optimal admissible 

curve in M. 

Note that, similar to Remark 4.4, we might have added a ]-form BEE 

to Gdt, resulting in a translation of the coordinates on the fibres of E 

(the Lagrange multipliers). 

The final result is a compilation of the above translation of an OCP 

together with Theorem 3.8 and Proposition 5.3. 

COROLLARY 5.4. Let an analytic affine OCP be given as above. Then a traject­

ory-input 1:_; is a stationary solution if and only if there exists an injective 

irronersion n: I -+ E (E as in Proposition 5 . 2) which is stationary w. r. t. the Cartan 

form 

(5. 9) 

such that rrM0 1TE 0 n = s, where rrM: M-+ Band rrE: E-+ M natural projections 

and eE the canonical 1-form on T*M restricted to E. 

PROOF. Directly from the above translation of the OCP, together with Propo­

sition 5.3 and Theorem 3.8. 0 
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So, with use of proposition 2.3, we may conclude thats: I+ Bis a 

stationary trajectory-input for the OCP if it is the projection of a charac­

teristic curve of d8G on E. Let us work out this characterization as we did 

for the Lagrange problem at the end of section 4. Denote coordinates for E 

by (q,u,u,A,µ,t) with (q,u,u,t) coordinates for Mand 8 EE is given by 
n m 

8 =.I 1 A.$. +.I 1 µ.$ +· (Bk cf.(5.7)). Then (5.8) and (5.9) yields 
i= ii J= J n J 

n m 
eG = g(q,u)dt + I L (dq.-f. (q,u)dt) + l µ.(du.-u.dt). 

i=I 1. 1. 1. • 1 J J J J= 

Substituting X X .1.. + X C' a 
XA .l..+ X i + .1.. = -+ x. -. + q clq u au µ au cl11 µ aµ at 

in 1 dqiG = 0 and collecting terms for dL, dq. du., du• and dµ., respectively 
X IL 1. J J J 

(i::::,l, .•. ,n,j=l, ••• ,m) yield 

(5. IO) X = f(q,u), q 

(5. 1 I) XA = ag (9.2u) _ (clf(q,u)\\ 
clq clq ' , \ I 

(5. 12) X = 
ag(q,u) (af(q,u)\\ 

µ au - \ au ) ' 

(5. 13) µ = o, 

(5. 14) X 
. 

= u. u 

The equation resulting from the dt term is satisfied by substituting (5.10) 

up to (5.14). If <P(t) = (<jlq(t),qiu(t),qiu(t),qiA(t),qiµ(t),t) is an integral 

curve of X as given above (note dt(X)=l) then we must have 

q 
(5.15) ~<Pt = f ( qi q 'qi u) , 

(5. I 6) dqiA = ag(qiq,<Pu) - (af(qiq,<Pu))Tl' 
dt clq \ clq , 

(5. I 7) cf>µ = 0 ' 

,, 
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(5.18) 

(5. 19) X 
u 

u 
. . ( q u d$ A . h q u A So a stationary curve satisfies$= $ ,$ 'dt'$ ,0,t) wit $ , $ , $ 

satisfying (5.15), (5.16) and (5.18). Note that, with the definition 

H(q,A,u) T = g(q,u) - A f(q,u) 

we obtain for these three equations 

q a q A u 
~ = - li H($ ,$ ,$ ), 

(5.20) 

which are the well-known equations resulting from Pontryagin's maximum 

principle. So we see that a trajectory-inputs= ($q,$u) of a nonlinear 

analytic affine optimal control system is stationary, keeping end points 

fixed, if and only if there exists a $A: I -+ ]Rn such that equations (5. 20) 

are satisfied. Note that this only gives a necessary condition for optimali­

ty. 

The above coordinate-dependent characterization is for illustrative 

purposes only. The value of corollary 5.4 is its coordinate-free description 

of stationary curves for OCP as characteristic curves of d8G. 

Note that we did not assume any regularity of the cost function. As in 

the elaboration on the Lagrange problem, such conditions come in at the 

moment we want to define a submanifold of Min which the solution curves 

lie. For instance the "(q,A)-manifold" with solutions defined by the 

Hamiltonian system given by the first two equations of (5.20) for certain 

$u. This is obtained by choosingµ= 0, so that X = 0. Then (5.12) can be 
µ 

used to solve for u if its Jacobian w.r.t. u is nonsingular. 

,. 
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6. CONCLUSIONS 

We presented a general formulation of first order conditions for the 

restricted variational problem with fixed end points and applied it to the 

Lagrange problem and the fixed end points, fixed time optimal control 

problem. Moreover, it is pointed out how the free end point variational 

problem can be handled (see Appendix A). This opens the way to formulation 

of free end point or infinite-time control problems on manifolds. Future 

research efforts will be in that direction and in the application of these 

results. 
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APPENDIX A: THE FREE END POINT PROBLEM 

Consider the free end point variational problem of finding stationary 

curves¢: I+ M, with ¢(a)= <P fixed, </J(b) E F c M (we call F the target 
a 

set), of the action function 

J ( <P) = h ( Hb) ) + I * <P a.' 

I 

for some I-form a. on M and h: F + JR. We assume that F is a smooth submani­

fold of M of dimension r IO and his smooth. To handle this problem we 

have to adapt the definition of variation and (formal) stationarity in 

order to obtain similar results. 

~ DEFINITION A.I. A mapping <P: (-o,o) XI • Mis called a free end point 

variation of¢: I+ M if (i) and (ii) of definition 2.1 are satisfied and 

moreover: icE,a) = <P(a), $(E,b) E F, VEE (-o,o). 

It is easily seen that we can again associate such variations with 

vector fields V along <P which now satisfy: V(a) = O, V(b) E T<P(b)F' the 

tangent space to F at <P (b). We denote the set of free end point variations 

of <P by V cp. 
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DEFINITION A.2. A curve~: I • M 1s stationary for the free end point prob­

lem with a and h if 

d
d I [h(~ (b)) 
£ £=0 £ 

+ r ~*a]= 0 J £ 
I 

This definition appears to be equivalent to 

DEFINITION A.2'. ~ is stationary for the free end point problem, if for all 

vector fields V along~ with V(a) = O, V(b) E T~(b)F we have 

(A. l) dh(V(b)) + I ~*Lva = o •. 
I 

Then we can easily prove the followtng characterization of stationary 

curves, analogous to proposition 2.3. 

PROPOSITION A.3. ~ is stationa.ry for the free end point problem with a and 

h if and only if 

(i) ~ (;-) E ker da Vt EI, * ot 
(ii) (dh+a) IF(~(b)) = O, 

where IF denotes restriction of this form to F. 

PROOF. Sufficiency is trivial. If~ is stationary, then (A.I) with Stokes 

theorem yields 

(A. 2) o = (dh+a)(V(b)) + f ~*1Vda 

I 
a 

for arbitrary V along~ (V(a) = O,V(b)ETHh/). Suppose ~*(at) i ker da 

for some t EI. Then by the smoothness we can construct a V along~ with 

V(a) = O, V(b) = 0 E T~(b)F with JI ~*1vda # O. This contradicts (A.2). 

So ~*(:t) E ker da (tEI). Then (A.2) implies (ii). D 

Condition (i) is the same condition as in proposition 2.3. Condition 

(ii) is the so-called transversality condition in the endpoint. 

Definition of (formal) stationarity under restriction distribution 1s clear. 

We use definition A.2 but restrict~ to admissable variations, or we use 
£ 

definition A. 2' with V such that tLV8 = 0 V8 E E. Finally_ we get the 
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following version of theorem 3.8. 

PROPOSITION A.4. An injective immersion~: I+ Mis formally stationa,ry for 

. the free end point problem with l-fo1>rn a, end cost hand target manifold 

F, under restriction S, if and only if there exists an injective immersion 

n: I+ E(=S~) with n(t) E rr;
1
(~(t)) and n stationary for the free end point 

problem with Cartan form ea, end cost~= horrE and target manifold 

FE= {e E ElrrE(e) E F}. 

PROOF. The prove goes along the same lines as the proof of theorem 3.8. 

There is a slight difference where we use Stokes theorem in the definition 

of c0 • Here we choose c0 such that 

dh(V(b)) + J ~*LVa = J ~*1V
2
qa + C0$(b), 

I I 

which is fine for $(b) # 0. If $(b) = 0, then v2 (b) = $(b)Z(b) = 0 E T~(b)F 

and as V = v2 + v 1 E T~(b)F we also have v1(b) E T~(b)F. Then formal 

stationarity with v2(b) = 0 yields 

so that (A.3) is also satisfied if $(b) = 0 for arbitrary choice of c
0

• For 

the rest there is no essential difference with the proof of theorem 3.8. D 

APPENDIX B: PROOF OF PROPOSITION 5.3 

For ease of notation we write a= Gdt and I= [0,1]. Let~: I+ M be 

given locally in coordinates for Mas in proposition 5.2: 

~(t) 
q u u = (~ (t),$ (t),~ (t),t), 

* with~ S = 0 VS EE. Recall notations (3.2) and (3.5). We shall show that, 

symbolically, 



(B. 1) 

. i.e. every formal variation can be written as an order £2 perturbation of 

a variation. The proof then follows innnediately from: 

di r * di r - 2 * di J-;;:-:,,. d£ £=0 J q,£a = d£ £=0 J (q,£+0(£ )) a = d£ £=0 'I'"'..,.= O, 
I I I 

for q> E w~ with q> = q> 
£ 'I' £ £ 

To prove (B.1) write~ E 

. 
~(£,t) = (~q(£,t),~u(£,t),~u(£,t),t). 

Then we have, as Eis spanned by forms (5.7): 

(B. 2) 

(B. 3) 

dd£ I £=0 

dd£ I £=0 

. 
a u u (at~ (£,t)-~ (£,t)) = o. 

From (B.3), together with ;t ~u(O,t) - ~u(O,t) = ;t q,u(t) - q,u(t) = 0 by 

admissibility of q,, we obtain: 

. 
(B.4) u a u u 

~ (£,t) =at~ (£,t) + C (£,t), 

. 
u 2 

with C (£,t) = 0(£) for£+ O. Denote 

(B.5) 

Then (B.2) yields 

(B.6) 

n ( o) = dd I ~ q( £ • o) = dd j </> q ( o) = o . 
£ £=0 £ £=0 

31 



32 

The homogeneous part of (B.6) is the linear equation of Var>iations associated 

with the solution <pq of the nonlinear equation q=f(q,<fiu) (seeARNOLD[1978]). 

In fact it represents a vector field on TQ. If y denotes the flow of the non­

linear vector field and y(t)q0 is a solution with initial point q0 , then the 

solution of the homogeneous part of (B.5) is given by 

Note that n(t) E Ty(t)q
0

Q. Substituting (5.3) we obtain, by using the varia­

tion of constants formula, for the solution of the linear inhomogeneous 

equation: 

t 

(B. 7) n(t) = f J y(t-a) B.(<pq(a))µ.(a)da. * l. ' l. i=l O 

Note that n(l) = ~, ~q(s,1) 
de: s=O 

Taylor's theorem with (B.5) and ~(O,t) = <p(t) yields 

(B.8) 

where Cq(s,t) and ~(s,t) are O(s2
) for E: + O. 

Now consider, for arbitrary C~(s,t) = O(s 2
), the equation on I: 

1. 

. 
q (t) 

(B. 9) 

m 
=A(q(t))+L 

i=l 

m 

u 
B. (q(t))<p. (t) 

1. l. 

+ l B.(q(t))(sµi (t)+C~(s,t)), 
i=l 1. . 1. 

Then for E: = 0 <pq(t) is a solution, as <flu, <pq is a trajectory-input 

of the system. Then we know (see BROCKETT [1976, thm 6] and CROUCH [1981]) 
u that for sµ(t) + C (s,t) small enough any solution of (B.9) can be written 
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as a unique uniform convergent Volterra series: 

t l 

Jr w.- (t,cr 1) (q 0) (£µ. (cr 1) + c:1 (£,cr
1
))<lcr

1 11 . 11 11 

(B. l O) 

0 

t CT l 

f I wfli2 (t,crl,cr2)(qo)(£µil (al)+ 

0 0 

~ The kernels are defined as follows. Let y denote the flow for£= 0 (note 
~ that y(t)q

0
=y(t)q

0 
and y as in (B.7)). Define vector fields Bi(cr) on Q by 

(B. l l) B.(cr)(q) = y(-cr) B.(y(cr)q). 
1 * 1 

Then the definition is by recursion 

0 ~ 
W (t)(q) = hoy(t)(q), 

k W. . (t,cr 1, ••• ,erk) (q) 
il ••• ik 

k-1 
= B. (crk)W. . (t,cr1 , ••• ,crk-l)(q), 1k 11° 001k-l 

where h denotes the coordinate function h: Q • lR n. We see that W~ . 
n (k=O, ••• ) are :R valued 

. i 1 ••• ik 
functions, and (B.10) gives the solution in 

coordinates. As ~q(t) is a solution for£= 0 we must have 

Furthermore, 

t 
m 

I r 1 J Wi(t,cr)(q0)(£µi(cr))dcr = 
i=l 

0 

m 

£ I 
i=l 

t 

Jr y(-cr) B.(y(cr)qo)w0 (t)(q) lq µ.(cr)dcr = * i =qo i 

0 
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t 

m J £ .l y(t-o) B.(~q(o))µ.(o)do = 
i=l O * i i 

£n ( t) . 

· So (B.10) gives 

(B. I 2) 
q m 

z.;(£,t) = ~ct)+£n(t) + I 
il=l 

t a I 

] 

r l U J wi
1 
(t,o )(q0)ci

1 
(£,a )da 1 

0 

f 
J 

2 U w .. (t,o
1
,a2)(q

0
)(£µ. (o

1
)+C. (£,o

1
)) 

1112 11 11 
0 

U Now assume that we choose C.(£,o) analytic: 
1 

U 
C. (£,a) = 

1 

Then we can collect terms in 
2 

£ : 

2 
£ 

m 

I 
i =I l 

+ µ. (al) 
11 

al 
m r 
I 

i =I J 
2 0 

We can choose ci
12

(o)(oEI)(i 1=t, ••• ,m) such that this expression equals 

zero fort EI. Moreover, asµ. (o1) appears in the second term and 
11 

µi (a)= µi (b) = 0 we have c. 
2

(a) = c. 2(b) = 0, i = l, .•• ,m. 
I I 11 11 

Similarly, we can choose ci3, ci4 , ••• such that all nonlinear terms in £ 

in equation (B.12) vanish, with Cik(a) = Cik(b) = O, k = 3,4, •••• 

So the choice 

~(£,t) = ~q(t) + £n(t), 
(B. 13) 
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satisfies the system equation for all£ small enough. Moreover, as Cu(£,t) = 
2 u u 

= 0(£) and C (£,a)= C (£,b) = 0 it is easily seen that for l defined by 

,;:,q -::'ll a -::'ll 
= <s (£,t),s (£,t),ai: s (£,t),t), 

E 
we haves E W~. Therefore, using (B.8) yields 

- 2 s(£,t) = s(£,t) + 0(£ ), 

which proves (B.1). 

REMARK. The restriction to affine systems does not seem to be essential. All 

arguments, including the Volterra series solution can be given for general 

nonlinear systems too. The restriction td analytic systems is essential for 

the method of proof as otherwise the Volterra series does not have to 

converge. We conjecture however that even in that case the theorem is valid. 




