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by 

J.H. van Schuppen 

ABSTRACT 

The adaptive stochastic filtering problem for gaussian processes is 

considered. The selftuning. synthesis procedure is used to derive two algo­

rithms for this problem. Almost sure convergence for the parameter estimate 

and the filtering error will be established. The convergence analysis is 

based on an almost-supermartingale convergence lennna that allows a stochastic 

·Lyapunov like approach. 

KEY WORDS & PHRASES: Adaptive stochastic fitering; selftuning synthesis 

procedure; least-squares parameter estimation; almost 

sure convergence 
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1 • INTRODUCTION 

The goal of this paper is to present two algorithms for a continuous­

time adaptive stochastic filtering problem and to establish almost sure con­

vergence results for these algorithms. 

What is the adaptive stochastic filtering problem? Problems of predic­

tion and filtering arise in many areas of engineering and economics. For 

these problems mathematical models in the form of stochastic dynamic systems 

may be formulated. When the parameter values of these systems are known, the 

prediction or filtering problem may be solved by applying known filtering 

techniques such as the Kalman filter. When the parameter values are not known 

these have to be estimated. The parameter estimation may be done off-line, be­

fore the filtering operation sta~ts, or'on-line, concurrent with the filter­

ing operation. The adaptive stochastic filtering problem for a stochastic 

system whose parameter values are not known, is to simultaneously estimate 

the parameter values and to predict or filter the state of the process. This 

problem is highly relevant for applications. Algorithms for this problem are 

especially of interest when the parametervalues are slowly changing as is 

often the case in industrial applications. 

In discrete-time the adaptive stochastic filtering problem has been inves­

tigated by many researchers. Why should one consider the continuous tiJ11e versj on 

of the problem? Time is generally perceived to be continuous. In practice a contin­

uous time signal is sampled and the subsequent data processing is done in a discrete 

time mode. One question then is what happens with the predictions when the sampling 

time gets smaller and smaller? Does the discrete-time algorithm converge in some 

sense? To study these and related questions continuous time algorithms must be 

derived and their relationship with discrete-time algorithms inve;tigated. 

The questions that one would like to solve for the adaptive stochastic 

filtering problem are how to synthesize algorithms, and how to evaluate the 

performance of these algorithms? 

Synthesis procedures for the adaptive stochastic filtering problem are 

sunnnarized below. The selftuning synthesis procedure prescribes to separately 

but concurrently estimate the parameter values and perform the filtering 

operation. On the contrary, the second synthesis procedure prescribes to es-
,. 

timate the parameter values and states jointly. In the latter procedure the 
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extended Kalman filter is often used. A criticism of the second procedure 

is that it treats states and paramaters on an equal basis. In this paper at­

tention is restricted to the selftuning synthesis procedure. This procedure 

suggests first to solve the associated stochastic filtering problem, and 

secondly to estimate the values of the parameters of the filter system in a 

recursive or on-line fashion. A continuous-time recursive parameter estima­

tion algorithm is thus needed. 

What is known about continuous-time parameter estimation algorithms? 

A search of the literature has turned up mainly non-recursive or off-live 

algorithms [I,2,3,4,2O], for which convergence questions are discussed. How­

ever for adaptive stochastic filtering recursive algorithms are absolutely 

necessary., Below two such algorithms are presented. 

In the performance evaluation of the algorithms the major question is 

the convergence of the error in the filtering estimate and the parameter es­

timate. For these variables one should consider almost-sure convergence and 

the asymptotic distribution. Below convergenee results for these error pro­

cesses will be provided. This result is based on a convergence theorem that 

is of independent interest. 

A brief outline of the paper follows. The problem formulation is given 

in section 2. The main results are presented in section 3, while their proofs 

may be found in section 5. Section 4 is devoted to a convergence theorem. A 

preliminary version of this paper, without proofs, has been presented else­

where [18]. 

2. THE PROBLEM FORMULATION 

The adaptive stochastic filtering proble~ is to predict or to filter a 

stochastic process when the parameters of the distribution of this process 

are unknown. The object of this section is to make this problem formulation 

precise. Recall that the selftuning synthesis procedure for this problem 

has been adopted which prescribes first to derive the solution of the sto­

chastic filtering problem and then to estimate recursively the parameters 

of the filter system. 

Throughout this paper (Q,F,P) denotes a complete probability space. 

Let T = R. The terminology of C. DELLACHERIE and P.A. MEYER [6,7] will be 
' 

used. 
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Assume to be given an R-valeud Gaussian process with stationary incre­

ments. Under certain additional conditions it follows from weak Gaussian 

stochastic realization theory [9] that this process has a minimal stochastic 

realization as the output of what will be called a Gaussian system: 

(1) 

(2) 

where y: Q x T + R, x: Q x T + Rn, v: Q x T + Rm is a standard Brownian mo­

tion process, A E Rnxn, BE Rnxm, CE Rlxn, DE R1xm. The precise definition 

of a realization is that it is a stochastic system such that the distribution 

of the output y of this system is the sdme as that of the given process. 

One may construct the asymptotic Kalman-Bucy filter for the above 

Gaussian system, which is 

dA A 
+ K(dyt 

A 
xt = Axtdt - Cxtdt), 

where 
A 

[xtlF~], FY a({y ,Vs t}) xt = E = :,; 
t s 

is constructed such that it satisfies the "usual conditions" [6]. This filter 

may be rewritten as a Gaussian system 

(3) 

(4) 

A 
dx 

t 

A 
= Cxtdt + dvt, 

where v: Q x T + R is the innovations process, a Brownian motion process, 

say with variance a2t. It is a result of stochastic realization theory that 

the two realizations (1,2) and (3,4) are indistinguishable on the basis of 

information about the distribution of y only. For adaptive stochastic fil­

tering one may therefore limit attention to the realization (3 ,4). That realiza­

tion has the additional advantage that it is suitable for prediction purposes. 

The minimality of (I ,2), and hence the minimality of (3,4), implies 
' that (A,C) is an observable pair and that the spectrum of.A is in 
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-C := {c EC I Re(c) < 0}. 

PROBLEM 2.1. Assume given an R-valeud Gaussian process with stationary in­

crements having a minimal past-output based stochastic realization given by 

(5) 
A A 

dxt = Ax dt + Kdvt, t 

(6) 
A 

+ dvt, dyt = Cxtdt 

(7) 
A A 
zt = ext, 

with the properties given above. Assume further that the values of the dimen­

sion n and of a2
, occurring in the vari~nce of;, are known, but that the 

values of A,K,C are unknown. The adaptive stochastic filtering problem for 

the above defined Gaussian system is to recursively estimate~ given y. 

The second step of the selftuning synthesis procedure prescribes to re­

cursively estimate the parameters of the filter system (3,4). To solve this 

parameter estimation problem another representation of this dynamic system 

is required. This representation is derived below. For notational convenience 

the time set is taken to be T = R+ in the following. 

2.2. PROPOSITION. Given the Gaussian system as defined in (1,2) and (3,4). 

The tuJo following representations describe the same relation betuJeen; and 
A 
z. 

A A 
+ Kdvt, 

A 
O, a. dxt = Axtdt XO = 

A A 
zt = Cxt, 

A 
+ dvt, o. dyt = ztdt Yo = 

b. (8) dht = Fhtdt + Gldyt + G2dvt, ho = O, 

(9) 
A hTP zt = t ' 

~ 



(IO) T 
h~p dt + dvt, O, dyt = Yo = 

where 

h: Q X T ->- R2n 

hT (I) (n) -(I) -(n) 
= (y t ' 0 •• ' yt ' Vt , •.• , Vt ) , t 

(1) 
yt = yt' 

-(]) 
Vt = Vt' 

t 
(i) 

yt = I (i-l)d 
Ys s, for 1 = 2,3, ••• ,n, 

0 

p E R2n is related to A,K,C, as indicated in the proof, 

c- .. !} nxn 
F F' = R , 1 

n-1 

GI = e 1 E R2n 
' Gz = en+l E 

where e. is the i - th unit rector. 
1 

'~1 0) R2nx2n 
F E • 

I 

R2n , 

5 

PROOF. a+ b. By the remark below (1,2), (A,C) is an observable pair. Then 

there exists a basis transformation, say TE Rnxn non-singular,such that with 
A A 
wt= Txt 

(

a ) 
_'l I 
. · n-1 

an O ••• O 

(IO ••• O) 

By successive substitution it is then shown that 

A T 
z = h p t t-

where his as given before, and 

The representation b. then follows. 

2n 
k -a)ER 

n n 
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b • a.Set pas above. 

dvt = dy 
t 

T 
- h P' dt t , 

Al hT p wt = 
t 

dAn Al 
+ kndvt, = aw dt wt n t 

It is then shown by induction that 

• 

3. THE MAIN RESULTS 

In this section two algorithms are presented for the continuous-time 

adaptive stochastic filtering problem, and convergence results are provided. 

The proofs of the convergence results may be found in section S. 

In the following attention is restricted from the Gaussian system de­

fined by (3,4), or by (5,6), to the autoregressive case described by 

or 

(11) 

n where now h: Q x T • R, 

(12) " ... ' 

n 
p E R , 

(n)) 
Yt ' 

= o, 
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Then 

(13) 
al •.. a 

dht 
n = 

I 0 
n-1 

0 

One concludes that asymptotically his a stationary Gauss-Markov process. 

Since the interest here is in the stationary situation, it will henceforth 

be assumed that his a stationary Gauss-Markov process. Because of the sta­

bility of the Gaussian system, the covariance function of his integrable, 

hence his an ergodic process [19,p.69]. 

I 

3.1. DEFINITION. The adaptive stochastic filtering algorithm RLS for the 

autoregressive representation (11,13) based on the least-squares parameter 

estimation algorithm is defined by: 

(14) 
I\ -2 TA I\ o, dp = Qtht a [dyt ht ptdt], Po = 

t 

(15) T -2 dt, QO, dQt =-· Qththt Qt (J 

I\ 

(16) 
I\ TA 
zt = ht pt, 

I\ Rn "' Rnxn nxn such that where p: Q xT+ Q: f:2 X .J. + , QO ER I\ 
, 

I\ 

q5 A I\ 
the desired estimate 

A I\ 
is Q = > O, z: Q X T + R. Here z is of z and p an 

0 
estimate of the parameter p. 

From [8] follows that the stochastic differential equation for~ (14) 

has an unique solution. Here y is assumed to be generated by (11), the un­

derlying a-algebra family generated by the Brownian motion process v, and 

p E Rn. 

In the following digression a derivation of the algorithm 3.1 via the 

Bayesian method is given. Consider the representation 

Po= P, 
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= h Tp dt + dvt, 
t t Yo= O, 

where it is now assumed that vis a Brownium motion process, p: Q x T • Rn, 

pis a Gaussian random variable with 

v are independent objects. From (12) 

adapted. The conditional Kalman-Bucy 

mean O and variance q
0

, and that p and 

one concludes that (h ,FY, t ET) is 
t t 

filter [13,12.1] applied"to the above 

representation then yields the algorithm given in 3.1. Actually the condi­

tions of [13,12.1] are stronger then necessary, a similar result holds under 

weaker conditions. This is the end of the digression and in the following 

the assumptions above 3.1. will be in force. 

To evaluate adaptive stochastic filtering algorithms two questions are 

relevant: 
A 

1. 
A A 

is limt-+oo zt - zt = 0 in some sense, and if so what is the asymtotic 

distribution of this difference; 

2. is limt-+oo ~t - p = 0 in some sense, and if so what is the asymtotic 

distribution of this difference. 

The first question concerns the difference of the filter estimate~ 

obtained with knowledge of the parameters, and the adaptive filter estimate 
A 
~ z; The second question deals with the error in the parameter estimate. 

In the literature the second question is often emphasized. In the opin­

ion of the author the first question is much more relevant, because the adap­

tive filter estimate is available to an outside observer and is what one is 

ultimately interested in; the parameters are inaccessible to an outside ob­

server anyway. 

3.2. THEOREM. Consider the adaptive stochastic fiZtering problem 2.1. for 

the system (5,6) resticted to the autoregressive case as indicated above. 

Assume that t~e conditions of 2.1. hold, in particular that n, cr
2 

are known. 

If the algorithm RLS is applied to this stochastic system then 

t 

f 
A 

-1 (~ 
A . 

a. as-limt-+oo t - z )2 ds = 0 ; s s 
0 

b. as-limt-+oo 
A 

Pt = p. 
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The above result means that under the conditions given the error in 

the filter estimate goes to zero is the above defined sense. Why convergence 

can only be proven in the sense of 3.2.a. is not clear. It is related to the 

fact that in adaptive stochastic control only results for the average cost 

function can be proven. 

One might conjecture that a result like 3.2. holds if the restriction 

to the autoregressive case is relaxed and an extended least-squares algorithm 

is applied. An investigation has indicated that such a conjecture may not 

be true. The reason for this may be explained as follows. Consider the re­

presentation (II). The recursive least-squares algorithm RELS applied to 

this representation is given by 

J\T A 
ht 'pt. 

A detailed derivation of this algorithm, as given below 3.1 for the RLS al­

gorithm, runs into serious trouble, but let's not consider that question 

here. The process* contains, besides y, the second innovation process 

and its integrals. Furthermore* is not a stationary process, while in the 

proof of 3.2. the stationarity of h plays a key role. Convergence of the es­

timates produced by the RELS algorithmhas not .. been established, and is unlike-

ly in the author's opinion. Prefiltering of the observations and the inno­

vations seems necessary . A consequence of these remarks is that the value of 

the estimates produced by a discrete-time RELS algorithm may be doubtful 

when the sampling time goes to zero. 
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The second algorithm for the autoregressive case is related to that of 

G.C. GOODWIN, R.J. RAMADGE, P.E. CAINES [10], and that of H.F. CHEN [5]. 

The latter also provides a continuous-time algorithm not only for the auto­

regressive case but also for the general case of 2.1. 

3.3. DEFINITION. The adaptive stochastic filtering algorithm for the auto­

regressive representation (11) based on the parameter estimation algorithm 

AML2 [10] is defined to be 

A -1 -2 - hT A A 
(16) dpt = htrt cr [dy t ptdt], Po = o, t 

( 17) drt 
-2 T = a ht htdt, ro = 1 ' 

A 

( I 8) 
A hT A 
z = Pt• t 

A 
A n A where p: Q x T-+ R, r: Q x T + R, z: 

A 
Q x T -+. R, and his as given in (12). 

Here~ is the desired adaptive filter . f A A • • estimate o z and pis an estimate of 

p. 

3.4. THEOREM. Consider the adaptive stochastic filter'.ng problem 2.1 for 

the system (5,6) restricted to the autoregressive case as indicated above. 

If the algorithm AMI..2 is applied to this system then 

-1 
as-limt-+oo t 

t A 

f 
A A 2 

0 

(z - z) ds = 0. 
s s 

The comments given below 3.2. also apply here. The method of proof does 

not provide information on the question whether as-lim ~ = p. One may pose 
A ~ t 

the question how the asymptotic variances of (z - z ) of the estimates pro-
s s 

duced by the algorithm RLS and AMI..2 are related? Chen [5] considers also the 

algorithm AMI..2 but applies it to the representation (10). Almost sure con­

vergence for such an algorithm is established under an unnatural assumption 

[5,(54)]. 

4. A CONVERGENCE RESULT 

The convergence results of section 3 are based on an almost sure 



convergence theorem that is of independent interest. In this section this 

result is stated and proven. 

As some of the other concepts and results of system identification, 

the convergence theorem is also inspired by the statistics literature, in 

particular by the area of stochastic approximation. H. ROBBINS and 

l 1 

D. SIEGMUND [15] established a discrete-time convergence result for use in 

stochastic approximation theory. A simplified version of that result is 

given as an exercise in [14,II-4] V. SOLO [16,17] has been the first to use 

this result in the system identification literature, and since then it has 

become rather popular [10,12]. This popularity is due not only to the ease 

with which convergence results are proven but also to the formulation in 

terms of martingales which show up naturally in stochastic filtering and 

stochastic control problems. Below the ,continuous time analog of [15,th.l] 

is given. 

A few words about notation follow.(Ft,t ET) denotes a a-algebra fam­

ily satisfying the usual conditions, A+ is the set of increasing processes, 

M1 1 the set of locally uniformly integrable martingales, and 
u oc 

Lixt = xt - xt _ the jump of the process x at time t E T. 

4.1. THEOREM. Let x: n x T -• R+, a: n x T • R+, b: n x T • R+' e: n x T • R+, 

and m: n x T • R be stochastic processes. Assume that 

3. J
oo 

is adapted and eds 
0 s 

4. (mt,Ft,t ET) E Mluloc' m0 = 0; 

5. x iD the unique soZution of 

Then 

b. 

a. 

b 
00 

: 

X : 
00 

= 

= as-lim xt exists in 
t+oo 

as-lim bt 
. ./-

OI' b ex-z,s vS 
t • oo 00 

R+, thus 

< 00 a.s. 

< 00 a.s.; 

X < 00 a. s.; 
00 

t 
PROOF. I. Define¢ : n x T x T • R ¢(t,s) = exp( f e dr) which is well de­

s r 
fined'by e positive and assumption 3. Then 
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¢(t,O) ~ ¢(00 ,0) < 00 a.s., ¢(0,t) ~ 1, 

and 

3¢(0,t)/3t = - et¢(0,t). 

By [8] the stochastic differential equation 

has an unique solution, and xis a semimartingale. Define y: Q x T + R 
+ 

yt = ¢(0,t)xt. Application of the stochastic calculus rule yields 

2. For c ER+ define 

t 

.= Fnf 
b00

, 

{t E Tl f ¢(0,s)das > c}, 

0 

Then 

otherwise. 

1" 

f ¢(0,s)das ~ c +~a, ~ c + c 1 

0 

by 1 above and assumption 2. Furthermore 

Let 

tA, 

I 
< c} f ¢(0,s) dm 

{xo s 
0 

= [ytA, - XO -

r: Q x T + R 

t 

tA, 

f 
0 

rt= f ¢(0,s)dms. 

0 

¢(0,s)da + s 

tA, 

f 
0 

¢(0,s)dbs]I{x 
0 

< c} 
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is a fundamental sequence [7], then so is {TAT, n E Z+}. By the above n 

{I{ r Ft, t E T} 
XO < c} tA-r' 

is bounded from below. For s, t E T' s :e:; t then 

by Fatou' s lennn.a, 

= rSAT 

by {-rA-rn,n E Z+} a fundamental sequence for r. Thus (rtA-r,Ft,t ET) E SupM 

bounded from below. By [7] 

tAT 

f as-lim 
t-+oo 

0 

cp(O ,s) dm I 
s {xo < c} 

exists and is finite almost surely. 

3. Consider 

+ I 
< c} {xo 

tAT 
< c} 

tA't' 

I cj>(O,s)db 
s 

0 tAT 

I 
0 

<l>(O,s)da 
s 

J cj>(O,s)dms. 

0 

By 2. above the third term on the right hand side converges, while by defini­

tion of-rand assumption 2 

tAT 

as-lim I{ < c} I <I>( o, s) da :e:; C + cl '[-+oo XO s 
0 

exists and is finite almost surely. Because y is positive and b increasing 
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both terms on the left hand side of the above equality must converge to 

finite limits. Then as-!.im yt exists and is finite on {x0 < c} n {T = 00 }. 

Furthermore 

()() 

{a
00 

s c} c { J ~(O,s)das s c} c {T = 00 }, 

0 

thus as-lim yt exists and is finite on {x
0 

< c} n {a
00 

s c}. Since this holds 

for all c E R+ , x
0 

< 00 , and a
00 

< 00 a. s., as-lim y t exists and is finite 

almost surely. Similarly 

t 

as-!~ J ~(O,s)dbs 

0 

exists and is finite almost surely. 

4. Finally, by assumption 3, 

as-!~ ~(t,o) = ~(00 ,0) < oo a.s, 

hence 

exists and is finite almost surely, while also 

t 

as lim 

t 

f Hs ,OH (O,, s) <lbs 

0 

s ~(00 ,0) as lim I HO,s)dbs 

0 

exists and is finite almost surely. D 

5. THE PROOFS . 

In this section the proofs of the theorems 3.2. and 3.4. are given. 

The convergence result of section 4 is used. The method of the proofs is 

analogous to the Lyapunov method for proving stability of deterministic 

differential systems. 

5. I • PROOF OF. 3 • 2 • I • 

u 
t 

Let p: Q X T • Rn 
~ 

- zt, u: Q x T • R 

Q -I p + 
·t t 

t I a-2 i; 
0 

Elementary calculations then show that 

ds. 
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A 
A A T~ 

zt = zt - zt = ht Pt' 

dpt 
-2 ~ 

+ d;t], = Qtht a [ztdt 

dQ-1 T -2 = htht a dt, t 

dut 
T -2 

+ 2(h~ pt)a-
2
d;t. = ht Qthtcr dt 

2. Definer: Q x T + R 

dr = T -2 -I 
ht hta dt, r = tr(Qo ). t 0 

t I 

Then 
-1 -1 

f cr-2h hTds) tr(Qt) = tr(Qo + = rt. s s 
0 

Define w: Q x T + R wt= ut /rt. Then 

-1 3. To be able to apply 4.1., its conditions are checked. Because Q is 

positive definite, so is Q, and hence u. Thus rand ware positive, and 

t 

f 
0 

t 

f 
0 

= tr( 

0 

tr(- Qt+ Qo) ~ tr(Qo), 
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as-lim 
t-+<x> 

t 

I -1 -2 
r hT Q ha ds ~ tr(Q

0
) 

s s s s . 
< 00 

0 

4. From 4.1. then follows that as-lim wt exists and that 

5. As argued below 3.1. h is an ergodic process. Hence 

t 

Then 

as-lim t -I I h hT 
s s 

0 

-2 
cr ds 

= a-
2
E[htlt :J > O, 

t I 

as-lim r /t = as-lim t-l 
t 

as-lim rt= 

t 

+ co, 

as-lim I 
0 

r-lhT h a-2ds 
s s s 

t 

I hTh a-2ds 
s s 

0 

= as-lim f r~
1
drs = as-lim ln(rt) - ln(r0) = 

0 

+ co. 

6. One now claims that as-lim wt= O. For if not then there exists a set 

of positive measure and an£ E (0, 00), such that on this set 

as-lim wt 

t 

as-lim f 
0 

~ £ > O, 

~ (as-lim wt)(as-lim 

0 

by using 5., which is a contradiction of the conclusion obtained in 4. 

Hence as-lim wt= O, and by definition of u and positivity of the terms in u 



-1 
as-lim rt 

t 

f ~;a-2ds = 0, 

0 
-l~T -1~ 

as-lim rt ptQt pt= 0. 

7. By using a result of 5 above, one obtains 

t 

as-lim t-l f ~;ds 

0 t 
-1 

= (as-lim r/t) (as-lim rt f ~;as) = o, 
0 

~T -1~ -1 
= (as-lim rt/t)(as-lim ptQt ptrt) = o. 

s. above 
-1 o, hence as-lim pt 0. By as-lim Qt /t > = 

~ n~ 
5.2. PROOF OF. 3.4. 1. Let p: Q X T • R pt = pt - P, 

A 
A A 

z: Q X T • R zt = z - zt, u: Q x T • R t 
t 

1 ~r ~ -1 I ~2 -2 u = 2 pt pt + r zsa ds. t t 
0 

Elementary calculations then show that 

where (mt,Ft,t ET) E Mluloc· 

2. Let k: Q x T • R 

0 

-2 
rt drt = 

1 7 

• 

1 , . 
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Then 

as-lim t-+«> kt~ 1. 

From 4.1. then follows that 

as-lim ut exists in R+, 

t T 

f J 
~ 2 -2 -2 T -2 as-lim ( z a ds)r h ha dT 

S T T T 
0 0 

3. As in the proof of 3.2 one shows that 

t 

< 00. 

as-lim rt /t as-lim 
-1 I T -2 = t p ha ds s s 

0 

= cr-
2
E[h/ht] > o, 

t , 
T -1 -2 as-lim 

J 
h hr a ds = 00' s s s 

0 
t 

as-lim -1 I ~2 -2 o. rt z a ds = 

Then 

as-lim -1 
t 

0 
s 

t 

J 
~ 2 
zs ds 

0 

-1 
= (as-lim rt/t)(as-lim rt 

6. CONCLUSION 

• 

The adaptive stochastic filtering problem for Gaussian systems has 

been considered. For the autoregressive case two algorithms have been pre­

sented for which almost-sure convergence results have been derived. 

In addition a rather general convergence theorem has been stated and 

proved. This result may be used to establish almost-sure convergence for 
(, 

adaptive stochastic filtering problems and adaptive stochastic ·control 



problems. This result is also applicable when point-process systems are 

considered, rather than Gaussian systems. 

19 

Future research efforts will be concentrated on synthesizing and 

establishing convergence for other classes of stochastic systems. The re­

cursive maximum likelihood method is currently under investigation. 
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