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Spectrum and eigenfunctions of a differential operator arising by linear

ization of the Fisher and related equations*) 

by 

. **) E.J.M. Veling 

ABSTRACT 

For a class of semilinear diffusion problems from population genetics 

the linearized differential equation is studied in order to estimate the 

rate of exponential convergence to some ~table stationary solution. Some 

monotonicity properties of the lowest eigenvalue with respect to the param

eters of the problem are given. Two types of lower bounds for this eigen

value are constructed and compared. For the Fisher nonlinearity it turns 

out that the eigenvalue problem can be solved by an explicit representation 

of the eigenfunction as a hypergeometric polynomial. For the cubic non

linearity the eigenfunction can be represented by a Heun function. 
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1 . INTRODUCTION 

Many problems from population genetics are described by seinilinear 

. parabolic differential equations. If, for example one studies the frequency 

u(x,t) of an allele A in a diploid population with zygotes AA, Aa and aa, 

where the carriers of the alleles are restricted to a half-bounded one

dimensional habitat, then one encounters the problem 

u = u + f(u), 
t xx 

(1. 1) u(x,O) = g(x), 

u(O,t) = h(t), 

(x,t) E Q 

X:?: 0, 

t :::: O, 

+ + 
=]Rx]R, 

where f(u) represents some nonlinearity 4epending on the relative fitnesses 

of the homozygotes AA and aa with respect to the heterozygote Aa, The 

following classes of nonlinearities f e F = F1 U F2 will be treated 

( 1 • 2) 

(1.3) 

Fl= {flf E c3 ([0,l]), f(O) = f(I) = O, f'(O) < O, f'(l) < o, 
thereexistsanumbera, 0 <a< I, suchthatf(u) < Oon(O,a) 

I 
andf(u) >Oon (a,I), J0 f(u)du > O}, 

F2 = {flf t c3{[0,1]), f(O) = f(l) = O, f'(O) > o, f'(l) < O, 

f(u) > 0 on (0,1)}. 

The class F1 represents the so-called heterozygote inferior case, where the 

zygote AA is the most viable, and the class F2 represents the heterozygote 

intermediate case, where again AA is the most viable genotype. Characteris

tic examples are 

( 1.4) 

(1.5) 

f (u) = u(l-u)(u-a), 
a 

~ 

0 <a<½, 

fvCu) = u(l-u)(l+vu), v > -1, 

F2 is known as ~he class of the Fisher type nonlinearity with characteristic 

representative f 0 (Fisher [8]). 

If one specifies the initial and boundary conditions as follows 
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h(t) lS nondecreasing, t ::: 0, lim h ( t) 8, 8 E [0,1], 
t-+= 

{q (x)' X E (a,b), 
( I • 6) g(x) = 

0 , X E JR+\(a,b), 

with a> O, q(a) = q(b), q" + f(q) = O, 

then it is known (Aronson & Weinberger [3], Proposition 5.1) that 

lim u(x,t) = V(x), uniformly on bounded sets. V(x) satisfies 
t-+co 

(I. 7) {
V" + 

V(O) 

f(V) = 0, X > O, 

= 8, V(oo) = 1, 

d = dx' 

8 E [Q,l]. 

From the expression 

u 

( I • 8) !(V') 2 + F(V) = F(l), X ::: O, with F(u) J f(v)dv, 

0 

and from the properties off E Fit follows that V(x) is a strictly increas

ing function with the asymptotic behaviour 

( I. 9) -bx 
1 - V(x) = Ce (l+o(l)), X -+ oo, b ✓-f'(l)', 

for some positive constant C. We label this function as v8. For the study 

of this stationary solution by means of the principle of linearized 
2 stability it is necessary to consider in the Hilbert space L (0, 00 ) the 

eigenvalue problem defined by (1.10) and (1.11) 

(1.10) 

(1.11) 

N[w] - -w" - f' (V8 (x))w = "Aw, 

w(O) = O, 

X > 0, 

where N[w] is obtained by linearizing (1.7) around the stationary solution 

v8(x). In this paper we pay attention to this eigenvalue problem. 

The type of parabolic equations as (I.I) allows travelling wave solu

tions u(x,t) = U(z), where z = x - ct, c E JR and U(z) satisfies 
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(1 • I 2) 
Ju" + cU' + f(U) = o, 

lu(-00 ) = 1, U(oo) = o. 

Z E JR, 
d = dz' 

For f E F1 there exists a unique positive number c0 which depends on f and 

for f E f 2 there exists a half-line [c(f) , 00) of possible velocities, such 

that for all c 2 c(f) there exists a solution U (z) of (1.12). See Aronson 
C 

& Weinberger [3] and Fife [7] for more biological background, a detailed 

derivation of the equation (1.1) and more mathematical results, mostly 

concerning the corresponding Cauchy problem. In Veling ([17],[18]) problem 

(I.I) was considered for a broad class of initial and boundary conditions 

and it was proved that if h(t) tends to a limit e, 8 E [0,1], fort • 00 , 

the solution converges for x E JR+ to an asymptotic state which consists of 

a travelling wave U and the solution V 8 ; At this study interest arose in 

the eigenvalue problem (1.10), (I.II) as an independent problem. 

In section 2 we study the spectrum of the self-adjoint operator A 

associated with N and it is proved that o(A) c (0, 00). Some additional 

information about o(A) is gathered in section 2. For this operator A there 

may exist points in the point spectrum: in that case m = inf{>..\>.. E o(A)} is an 

isolated point of o(A) and is denoted by >.. 1 . To emphasize the dependence 

of >.. 1 on the parameter 8 and the nonlinearity f we shall write also 

>..(8,f) = >.. 1 where we suppress the index 1. 

In section 3 some monotonicity properties are proved with respect to 

the parameter 8 for fixed f and with respect to different functions 

f for fixed 8, namely 

( 1. 13) 

(1.14) 

>..(81,f) 2: >..(82,f), 

>..(e,f 1) 2 >..(e,f 2), 

if 81 2 82' 

if f 1(u) < f 2(u), f "(u) :<'. 0 on [8 I] I ' • 

In section 4 we shall obtain the following lower bounds for >.. 1 • 

(1.15) 

(1.16) 

).(8,f) 2 f 2(8)/{2(F(l) - F(8))}, if f"(u) :<: 0 on [8,1], 

>..(8,f) 2 -f' (1) - cpllqlJP ( 2p)/( 2p-l), p 2: I, 
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00 

with llqllPP I 
0 

(1.17) cl 4' C 
p 

-C2p)/(2p-1) (2p-2)/(2p-I)jr(½)r(p) ,-21c 2p-I) 
P (p-I) r(p+D ' 

p > I' 

(I • I 8) q(x) = f'(I) - f'(V6(x)). 

The condition f":,:; 0 on [6,1] we needed for (1.15) can be relaxed somewhat. 

In section 5 we solve the eigenvalue problem for the Fisher nonlin

earity f (u) = u(l-u) explicitly by means of a quadratic transformation. It 

turns out that the eigenfunction can be written as a hypergeometric polyno

mial. The results of section 2 and 3 are illustrated by this example. 

In section 6 we prove that the eigenvalue problem for the cubic 

f (u) = u(l-u)(u-a) can be reduced to fi6ding a zero for a Heun function. 
a 

This knowledge can be used to calculate the eigenvalue numerically. 

In section 7 numerical results are presented with respect to the 

calculation of the eigenvalue for f (u) by means of the method of section 
a 

6 and by a finite element method. In this section we also compare the 

constructed lower bounds for this calculated eigenvalue. It turns out that 

the bound (1.16) is superior to (1 .15) as far as this example is concerned. 

It is possible to apply (1.16) to other problems of estimating the lowest 

eigenvalue from below. It applies to eigenvalue problems with a point 

spectrum and a continuous spectrum. 

2. THE SPECTRUM o(A) 

We consider the eigenvalue problem (1.10), (1.11). In order to be 

consistent with the usual setting for singular Sturm-Liouville problems we 

define the differential expression M 

( 2. 1) M[w] _ -w" + q(x)w, x > 0, q(x) = f' (I) - f' (V6 (x)). 

The coefficient q is real-valued and by (1.9) q E Lp(0, 00 ) for all p :::>: 1 

(even for p>O). By means of the following definition of V(T) we introduce 

the operator T (see Naimark [11] and Everitt [6]): 



(2.2) 

(2.3) 

V(T) = {wlw E L2(O, 00), w' absolutely continuous on 

[0,X] for all X > 0, w(O) = O, M[w] E L2(0,oo)}, 

Tw = M[w], w E V(T). 

Next we define the operator A as 

(2.4) Aw= N[w], w E V(A) = V(T), 

so this implies the identity A= T - f'(l). Further there exists a 1 - 1 

correspondence between cr(A) and cr(T) in the sense that A E 0(A) 

5 

~A+ f'(l) E cr(T). So all information abouc cr(T) is easily translated into 
I 

that for cr(A). We introduce the following subsets of the complex plane a, 
where R = (T-µI)-l and E is the linear manifold spanned by the eigen-

µ µ 
vectors forµ, 

Pcr(T) = {µIµ E ~, R is a bounded operator defined on the whole µ 
2 of L (0, 00 ) e E }, µ 

(2.5) Ccr(T) = {µIµ E ~, R is an unbounded operator defined on a set µ 
which is dense in L2(0,oo)}, 

PCcr(T) = {µIµ E ~, R is an unbounded operator defined on a set µ 
which is dense in L2(0,oo) e E }, µ 

(see Chaudhuri & Everitt [4]). Now we formulate 

THEOREM 1. Let the operator T be defined by (2.1), (2.2), (2.3). Let f E F, 
then the spectrum cr(T) ean be deeorrrposed as cr(T) = Pcr(T) u Cg(T) u PCu(T) 

with the properties 

i),(-00 ,O) n Pcr(T) is finite (possibly errrpty), 

ii) PCcr(T) = 0, 
iii) Ecr(T) = Ccr(T) u PCcr(T) = Ccr(T) = [O, 00) •. 

PROOF. See Naimark ([11], §24.2, Theorem 5 and Example a)). The fact that 

q as defined in (2.1) is element of L1(0,oo) by (1.9) is sufficient for the 
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proof. Ccr(T) = [0, 00 ) implies Ccr(A) = [-f'(l), 00). D 

The following two lemmas supply information as to whether or not the 

set Pcr(T) is empty. 

LEMMA I. If there exists a real-valued function p E c2 ([0, 00)) with the 

properties 

i) pV8 ' E V(T), 

ii) i 1 = IIP 1'v8 '!1//IIPV8 1 II/ < -f'(l), 

then # { µ I µ E Po (T) } ( = # { :\ I :\ E Po (A) } ) ~ 1 • 

PROOF. Since pV8 1 E V(T) and v8 1 (0) # 0 we need p(O) = 0. The lowest eigen

value µ 1 or the infimum of Ccr(T) (if Pcr(T) is empty) can be characterized 

by 

(2.6) 

If for some choice ijJ E V(T) (ijJ,M[ijJ])/(iµ,ijJ) < 0 thenp 1 <Oandsothereexists 

at least one point in the set Pcr(T). Making the choice ijJ = pV 8' a calcula

tion of (iµ,-,;;") reveals by partial integration 

00 00 

(2. 7) (iJJ,-iJJ") = J (p 1 )
2(v8 1 )

2dx - J p2v0 1v8" 1 dx, 

0 0 

and so, since by ( 1. 7) V '" + f' (V )V ' 8 8 8 
0, we find 

(2.8) 

This means that by ii) (ijJ,M[ijJ])/(iµ,ijJ) < O, and thus µI < 0. 

In section 7 results will be presented for some numerical 

for the choice f = f Fl and p = yx 
1 ' y > o. E e -a 

LEMMA 2. If one of the following conditions has been satisfied 

i) d J; x 2p-l I q(x) lpdx < 1, for some p ~ 1, with d1 = 1, 
p I z 

dp = (p-l)p- r(2p)/{pP(r(p)) }, p > I, 

ii) ¾ f; I q (x) J ½dx < I, 

then Pa (T) == 0. 

• 
calculations 
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PROOF. See Dunford & Schwartz ([SJ, Ch. 13, §9, Hl2) for i), p = I or 

Reed & Simon ([14], Theorem xm. 9) for i) and ii). • 
~ In section 5 condition ii) will be used for f = fO E f2. In section 

7 results will be presented for some numerical calculations for f = fa E F1• 

The following information can be given about cr(A) when Pcr(A) I~- Let 

us introduce the hypotheses 

(m.) 

(Hµ) 

311. 1 E Pcr(A), 

3µl E Pcr(T), 

which means that there exists a eigenvalue l E V(A) = V(T) such that 

Al= All and Tl= µ 1l. 

THEOREM 2. Let (HA) (or (Hµ)) be satisfied, then 

i) Al (or µ 1) is a sirrrpZe eigenvalue, 

ii) l(x) > 0, x > O, 

iii) l E BC2([0,m)), 

iv) 11. 1 > 0 (or µ 1 > f'(l)). 

PROOF. For i) and ii) we refer to Titchmarsh ([16], Ch. 5, §4) or Dunford 

& Schwartz ([SJ, Ch. 13, §7, Theorem 55) and for iv) to Veling ([17], [18]). 

Property iii) follows from the fact that f'(u) is bounded on [0,l], so 

l" E L2(0, 00). Since f'(V6(x)) is continuously differentiable, it follows 

by standard theory that l is two times continuously differentiable on 

(O,m). Using an interpolation lennna in Adams ([2], Ch. 4.10) we find that 

also l' E L2(0,m). By a well-known embedding theorem there holds 

l E BC 1 ((0, 00)) and by N[l] = Al, f E c3([0, I]) also l" E BC 1 ((0, 00)). 

Together with l(O) = 0 this gives finally l E BC 2([0, 00)). Property iv) 

implies cr(A) c (0, 00) as was announced in the Introduction. 0 

In the next two sections the following lemma will be used repeatedly. 

LEMMA 3. Let (HA) be satisfied. Suppose there exists a function 

w E BC 2([0, 00)), w(x) > 0 on [0, 00 ) and a positive number o suah that 
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(2.9) N[w] = -w" - f'(V 0(x))w:::: ow, X > 0, 

then the 7,owest eigenvaiue Al E Pcr(A) satisfies Al:::: c5. 

PROOF. From Protter & Weinberger ( [ 12] & [ 13]) it is known that A 1 :::: 

:::: inf(N[w(x)]/w(x)IO < x < 00 ) from which the statement of the lemma follows 

easily. D 

3. MONOTONICITY OF THE FIRST EIGENVALUE 

Throughout this section we shall assume that (HA) is satisfied. Two 

monotonicity properties of the first eigenvalue are proved: the first 

(Theorem 3) with respect to the paramete~ e, the second (Theorem 4) with 
. . ei,fi . 

respect to the nonlinearity f. Let A(0.,f.), l denote respectively 
i i 

the first eigenvalue and eigenfunction for the operator Aei,fi_ In the 

sequel the indices are suppressed if there is no cause for confusion. 

01 
THEOREM 3. Let (HA) be satisfied both for A= A 

inequa U ty ho 7,ds 

(3. I) 

02 
A , then the fo?,7,owing 

PROOF. Define the positive number x as the shift such that v0 (x) = v0 (O)= 
2 I 

= e 1. Since v 0 is given by (1.8) it follows thatV0/x+x) =V01 (x), 

x:::: O. Define w(x) = l 62 (x+x), then 

{
--w" - f' (V (x+x) )w = 

w(x) - / 2::+x) > 0, X ::C: 0, 

which is identical with 

J-w" - f'(V0 (x))w = A(8 2 ,f)w, 

i(x) > 0, 
1 

x • 0, 

X > 0, 

X > O, 
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fl f 2 
THEOREM 4. Let f 1, f 2 E F and let (HA) be satisfied both for A= A , A . 

Suppose fUPther 

(Hfl) f 1'(u) < f 21 (u), on [B,l], 

(Hf2) fi"(u) ~ O, on [B,l], 

then 

(3. 2) 

PROOF. From (Hfl) and the fact that f .(l) = 0, i = 1,2, it follows that 
1 

f 1 (u) ~ f 2 (u) on [B,l]. Further by defining Fi(u) = f~ fi(v)dv (see (1.8)) 

this inequality implies 

(3.3) 

and (3.3) together with (1.8) gives for the respective solutions v0, 1, 

v0 , 2 for f = f 1, f 2 of (1.7) 

(3 .4) 

Now define the function w(x) as 

(3. 5) 
B,f2 

w(x) = l (x+E), 

where£ is a positive number to be specified later. By the positivity of 

the eigenfunction l (Theorem 2) w(O) > 0, and evaluation of N1[w] gives 

N [ w J = -w" - f '(V (x) )w = · l l B,l 

(3 .6) 

where o = min{f 21 (u) - f 11 (u)le ~ u ~ I}. By (Hfl)o>Oholds.Nextwedefine 

x = X(E) as the unique solution of VB, 2 (x(E)+E)) =VB, I (x(E)). The uniqueness 
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follows from (3.4). We remark that x(E)+O for £+0. By (3.4) we have 

v8 , 1(x) ~ v8 , 2(x+£) for x ~ x. This result, applied to (3.6) gives, using 

(Hf2), 

(3. 7) X E [x, 00). 

Choose now£ so small that f 1'(v8 , 1(x(E)))+o ~ f 1'(v8 , 1(0)) = f 1' (e), 

then for O ~ x ~ x 

(3. 8) 

Using (3.8) and (3.6) we also find 

(3. 9) X E [0 ,x]. 

COROLLARY I. Consider fai' i = 1,2 E F1 as given by (1.4). Suppose (HA) 

is satisfied for f = fa., i = 1,2, then Theorem 4 applies if a 1 < a 2 and 
1 

e > ½. 

PROOF. Explicit calculation of condition (Hf2) requires e ~ (l+a1)/3, but 

condition (Hfl) requires more, namely 8 >½and a 1 < a 2• D 

COROLLARY 2. Consider fvi' i = 1,2 E F2 as given by (1.5). Suppose (HA) 

is satisfied for f = fv., i = 1,2, then Theorem 4 applies if v 1 > v2 and 
2 1 

e > 3· 

PROOF. Condition (Hf2) 1s satisfied for 8 ~ 0 if-½~ v 1 ~ 1 and 

8 ~ {v 1-l)/(3v 1) if v 1 ~ 1, but condition (Hfl) requires more, namely 
2 e > 3 and v 1 > v 2 • • 



I I 

4. POSITIVE LOWER BOUNDS FOR A(8,f) 

It was shown in Theorem 2 that A1, whenever it exists, is positive. 

· In this section we shall show, how at the expense of additional conditions 

on f and 8, positive lower bounds can be found. 

THEOREM 5. Let (HA) be satisfied, then 

(4.1) A(8,f) ~ min{J(u)l8 ~ u ~ 1} 2, 

where J(u) = f(u)/✓2(F(l)-F(u)j on [0,1) and J(l) = b = ✓-f'(I) (see(l.9}). 

REMARK. Because J(u) • b, as utl and F(l) > F(u), on (0,1), f E c3([0,I]) 
2 for f E F we have J EC ([0,1]) and bounqed away from O on any interval 

[8,1] provided 8 E (a,l) (a=O if fEF 2). Thus for f E F1 and O ~ 8 ~ a 

Theorem 5 does not give an improvement over the estimate Al > 0. 

PROOF. Set k = min{J(u)I 8 ~ u ~ I}. We observe that in view of (1.7) and 

(1.8) k = min{-v811 (x)/V81 (x) Ix~ O}. Now define w(x) = ek¾8 '(x), then 

N[w] = w{-k2 - 2kV0"/V0'}, 

but since J(V8) = -v811 /v8 1 , we find 

2 N[w] = w{-k + 2kJ(V8)} ~ 

w{-k2 + 2k2} = k 2w, 

from which by Lemma 3 the result follows. 0 

COROLLARY 3. Let (HA) be satisfied and suppose J'(u) ~ 0 on [8,1] then 

' 

(4.2) A(8,f) ~ f 2(8)/{2(F(l) - F(8))}. 

PROOF. From the extra condition on J it follows that J is nondecreasing 

on [8,1], so the minimum k is found for u = 8. 0 



12 

COROLLARY 4. Let (H>..) he satisfied and suppose f"(u)::,; 0 on [0,1], the 

estimate (4.;8) follows. 

PROOF. Suppose there exists a number u 1, 0::,; u 1 < I such that J'(u 1) < 0. 
2 Calculation gives J' = (f'+J )/G and J" = (f"+JJ')/G, where 

G(u) = ✓2(F(l)-F(u))', which means that also J"(u 1) < 0. But this fact 

implies that J'(u) < 0 on [u 1,IJ. However explicit calculation of J'(I) 

reveals 

J'(I) = -f"(l)/(3/-f 1 (1)') > O, 

which gives a contradiction. So J'(u 1) 2 0 on [0,1] and hence Corollary 3 

applies. 0 

COROLLARY 5. Let (H>..) he satisfied and suppose for some c, 0 < c <I, 

f"(u)::,; 0 on [c,I] and J'(u) 2 0 on [0,c], then estimate (4.2) foUouJB. 

PROOF. Combine the two former corollaries. 0 

COROLLARY 6. Consider fa E F1 as given by (1.4). Suppose (H>..) is satisfied, 

f;hen estimate (4.2) holds if 0 > a. 

PROOF. Apply Corollary 4 with. c = (l+a)/3 if 0 > c. Remark that f"(c) = 0 

and f"(u) ::,; 0 on [c,I]. Apply Corollary 5 if a< 0::,; c. Because 

J' = (f'+J2)/G and f' > 0 on (d 1,d2) with di <a< c < d 2 , where d1 , 2 = 
= {I + a ±11-a+aZ}/3 represent the zeros off , we find J' > 0 on 

a 
(d 1 ,d2) ::J [0,c]. 

COROLLARY 7. Consider f E F2 as given by (1.5). Suppose (H>..) ~s satisfied~ 
') 

then estimate (4.2) holds if 0 > 0, v > -½. 

PROOf. Apply Corollary 4 for-~::,; v::,; 

c = (v-1)/(3,J). Remark f"(c) = 0. 0 

and Corollary 5 for v > I with 

Next we give another estimate in which an integral norm is involved. 
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THEOREM 6. Let (HA.) be satisfied, then 

(4.3) A(8,f) 2: -f' (1) - c llqll ( 2p)/( 2p-l) 
p p ' p 2: 1 ' 

where q(x) = f'(l) - f'(V8 (x)), 

(4.4) -(2p)/(2p-I)( -I)(2p-2)/(2p-I)[r(!)r(p)]-21c2p-l) 
P P r(p+!) p > I. 

PROOF. See v,~ling [19]. Of course (4.3) gives only new information if the 

right hand side is positive. D 

REMARK. For p = 1,2, 00 (4.3) gives respectively 

A(8,f) 

A (8, f) 

A (8, f) 

2: -f'(l) -¼IJq;J/, 

2: -f'(I) - </6)2/31lqll//3 

2: -f'(I) - SUP!q(x)l. 
x2:o 

In section 7 calculations of estimates (4.2) and (4.3) for p = 2 and 

f = fa E F1 are compared. Also the best possible result of (4.3) has been 

given by varying p with steps of-kin the range [1,3]. 

5. EXPLICIT SOLUTION OF THE EIGENVALUE PROBLEM FOR f(u) = u(l-u) 

In this section the eigenvalue problem Al= Al for f(u) = u(l-u) will 

be solved explicitly. First we gather some information about f and the 

solution v8 of (1.7). It turns out to be appropriate to express the functions 

in terms of the variable z = I - u. 

(5. 1) {
f(l-z) = 

f"(l-z) 

z(l-z); 

= -2; 

f'(l-z) = -I + 2z; 

2(F(l)-F(l-z)) 
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(5. 2) v8 (x) = 3 
I - ---~--,-

l+cosh(x+a)' O, A (2+e\ 
= arcosh \ 1 _8 )" 

In the foregoing sections we had put the natural restriction O::; e :'::: 1. 

Extending the domain of V 8 to JR, we note that the range of V 8 is [-½, 1]. 

Hence we allow e to lie in [-½,IJ. By the monotonicity of the transformation 

z = 1 - v8 (x) it is possible to write (1.10) as 

(5. 3) -·2(F(l)-F(l-z))v" - f(l-z)v' - f'(l-z)v = Av, 0 :'::: z :'::: 1 - e, 

d 

where we havE~ written v(z) 

yields 

= w(x). Putting A 

(5. 4) -· z (1- Iz )v " - ( 1 - z) v ' + ( / - 2 z) v 
3 

= dz' 

2 = 1 - p and inserting (5.1) 

o, o :'::: z :'::: 1 - e. 

Equation (5. L1.) represents a hypergeometric differential equation with 

regular singularities at z = 0, ¾, 00 and can be characterized with the 

aid of the Riemann's P - symbol ([l], 15.6.1, 15.6.3) as 

= p {: 

00 

½,}-(5. 5) v(z) 0 2 
I 3 

-p 2 2 

By [I] (15.6.11, 15.6.5, 15.1.1) (5.5) can be written as a multiple of 

(5. 6) zPpJ ~ 00 t} v(z) = 0 p+2 

l-2p 
l 3 
2 p--

2 

p 3 2 
z 2F l (p+2, p- 2 ; 2p+ 1 ; 3 z) = 



where (a) = r(a+n)/r(a). The series is absolutely convergent for 
3 n 

lzl ~ 2. We remark that for p = 1, which implies A= O, v(z) equals, by 

[1] (15.1.8), 

(5. 7) v(z) = zli-; z
1 = h(F(l)-F(l-z))', 

thus by (1.8) v(z(x)) = v0 '(x) satisfies N[V0 1 J = 0. This fact follows 

easily by differentation of (1.7). 
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It is possible to obtain more information from (5.6). The value of the 

parameters of the 2F1 - function are such that there exists a quadratic 

transformation: v(z) can be written by [I] (15.4.13) in terms of a so-called 
I 

associated Legendre function of the first kind P~ 

(5.8) 

which is turn can be written, using [I] (8.1.2) 

(5.9) 

In fact this 

we can write 

(5. IO) 

(5. 1 I) 

(
1+/1_1 ;)-p I?' 

v(z) = 3P /. ~ , 2F 1 (-3,4;1+2p;(l-✓1-jz)/2). 
l-v'I- 3 z 

2F 1 - function is' a polynomial ([l], 15.4.1) in r(x). Since 

by z = 1 - v0 (x) and (5.2) 

(1+-li- 2 z
1)-p 3 _ -p (x+A) 

1--:=1==-2-· - e , 
'I-v'l--z 

3 
I 2 I 

r(x) = (l-✓l--z(x))/2 = (1-tgh((x+A)/2))/2, 
3 

the representation of w(x) becomes 

(5. I 2) w(x) = v(z(x)) = 3pe-p(x+A) 
3 (-3) (4) 
l (l+2;) n1 [(1-tgh((x+A)/2))/2]n 

n=O n 

Next we choose p so that w is an eigenfunction (w(O)=O). Using (5.9) we 

require then 
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(5. 13) 2F 1 (-3,4;1+2p;(I-✓(1+28)/j)/2) = 0. 

After some calculation and by (5.12) this equation becomes 

(5. 14) Q(p) 
' ~--- 2 = p.J + 31(1+28)/3p + ((1+108)/4)p + (58-2) ✓ (1+28)/3'/4 0. 

Thus the eigenvalue problem Al= >-.l has been reduced to an algebraic one: 

to find a zeiro p E (0,1] of the cubic Q. The value p O is excluded since 

in that case w i L2 (0, 00). A further analysis of Q(p) = 0 reveals that for 
1 2 - 2 s: 8 < 5 there exists a unique monotonely decreasing solution p E (0, I] 

for increasing 8 (see Theorem 3). For this range of 8 there exists 

thus just one point >-. 1 = A(8) E Po(A8 ). For f s: 8 s: 1 there is no solution 

and so Po(A8) = ~-
We colli~ct the results of this section 1.n the next theorem. 

THEOREM 7. The eigenfunction l (x) of A 8 l = Al when f (u) = u (1-u) and V 8 (x) 

is given by (5.2) is represented by (5.12) where p = p(8) is the un~que 

solution of ·the equation Q(p) = 0., is which Q is given by (5.14) and 

p E (0, 1 J, 8 E [ -½,f). The eigenvalue equals then A (8) = I - p 2 (8) . For 
2 8 8 

8 E [ 5, 1 J there does not exist a solution of A l = Al and so Po (A ) = (/J. 

8 
We remark finally that the condition on 0 which 1.nsures that Pcr(A) = (/J 

( ii) in Lemma 2) can be evaluated quite easily. One finds 

00 

(5. 15) 2 J 
·rr 

✓] f' ( 1 )-f' (V 8 (x)) I' dx 

0 

and so from Lennna 2 we learn that 

(5. 16) 3 .2(1T) -2S1.Il ffi 

1-8 
212' r 1 1 

1T J -/,,;==r2 """""2' dz = 
0 z- 3 z 

413' arcsin( ✓2(1- 8)/3'), 
1T 

This is in agreement with Theorem 7, where 00 , has to be compared with the 
2 

exact value -5 



6. THE EIGENVALUE PROBLEM FOR f(u) = u(l-u)(u-a) 

In this section the eigenvalue problem At= Al for the cubic non

linearity f(u) = u(l-u)(u-a) will be studied. Once again we gather some 

information about f expressed in the variable z = 1 - u and the solution 

v 6 of (1. 7) 

(6 .1) 

(6. 2) 

f(l-z) = z{(l-a) - (2-a)z + z2}, 

f'(l-z) = {-(1-a) + 2(2-a)z - 3z2}, 

f"(l-z) = {-2(2-a) + 6z}, 

2(F(l)-F(l-z)) == z2{(1-a) - lc2-a)z + -21 z2}, 
,3 

V () =I_ 6(1-a) 
6 X ' 

2(2-a) + /2-2a-4a2' sinh( ✓t-a'x+B) 

B = arsinh [
fi(3-3a-(1-6)(2-a))l 

(1-e) /1-a-2a21 • 

X ~ 0, 

In the same way as in section 5 it is possible to rewrite (1.10) for the 

function v(z) = w(x), with z = I - v6(x). Putting A= (1-a)(I-p 2) and 

using (6.1) we find 

(6.3) . 

-v" + P(z)v' + Q(z)v = 0, 0::;; z::;; I - e, 

P(z) 

Q(z) 

] l l 

= z + z-2z + z-2z ' 
I 1 

1 =------
z(z-zl)(z-z2) 

2 
{-6z + 4(2-a) - 2(l-a)p }. 

z 

2 1 2 where z1, z2 represent the zeros of 1 - a - 3 (2-a) z + 2 z : 

(6.4) z 1 2 = (2(2-a) ± i/2-2a-4a2') /3. , 

Equation (6.3) represents a differential equation with four regular 

singularities (z=O,z 1,z2, 00 ) and Riemann's P-symbol is given by 

17 
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0 zl z2 00 

(6. 5) V(z) = p ao p al = 0 a2 = 0 a = 3 z . 

Bo = -p 81 = I 
82 = I 8 = -2 2 2 

The parameters a, 8, ai, Si' i = 1,2,3 are found by the identification 

(see Snow ([15], Ch. VII (1)) 

(6.6) 

(6.7) {
Q(z) 

tj) ( z) 

l-a 1-s 1 
+ ---- + z-z 1 

I 1~ 1 (0) l);'(zl) lj;'(z2)1_ 
= iµ(z) foSz + p + aOBO z + al 61 z-z 1 + a2G2 z-z 2 f' 

= z(z-z 1)(z-z2). 

The so called accessory parameter p needs to be given as well and equals 

here 

(6.8) p = 4(2-a). 

By the transformation z = z/z 1 , v(z) = v(z) = zpF(z) can be written as (see 

Snow ([15], Ch. VII (2),(3),(4))) 

(6.9) 

with p 

0 

0 0 

1-y=-2p r+8°-a-s=½ 

3 4 (2-a) (2 -p) (p+2) / (3z 1). 

1-8=½ 

00 

a=3+p z 

s=-2+p 

The Riemann's P- symbol 1.n the form (6.9) solves the differential equation 

(6.10) F" + {1-y + y+o-a-S + 1-8}F'+ { a e z +p }F = 0. 

z z-1 z-a z(z-1)cz-a) 
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The solution of (6.10) which is regular in the neighbourhood of z= 0 

and belongs to the exponent zero is the Heun function denoted by (Snow [ 15 J, 

Ch. VII (6a),(7),(7')) 

(6.11) F(a,p;Cl,8,Y,°6;Z) = 

and the coefficients satisfy 

00 

-Lz+ I 
y CL n=2 

-n 
C Z 
n 

(6. 12) 
Jc0 = I, c1 = -p/(ya), 

rn+2} (n+ I +y)ac0 +2 • { (n+ I) 2 (a+ I) + (n+ 1) [ y+8- I+ (a+S-6) a]-p}c 1 n+ 

- (n+a)(n+"'s)c. 
n 

So we find that, deleting insignificant factors, 

(6.13) V(z) 

The recurrence relation becomes, defining b 
n 

b0 = I, b 1 = (2-a)(p+2)(2p-3)/{3(1-a)(2p+l)}, 

(6. 14) I b = ....,...,..---,,-,-__,,--e--
n (1-a)(n+2p)n 

2 5 {3 (2-a) (n+p+l) (n+p- 2) bn-l 

I - 2 (n+p-4)(n+p+l)bn_2}. 

We note that this recurrence relation is identical to the one which has 

been found·by Greenberg [9] if one changes a into 1 - a. He studied the 

eigenvalue problem for the linearization u + f(u) = 0 with respect to the 
xx 

function W(x) satisfying 

(6.15) {
W" + W(l-W) (W-a) = O, 

W(-oo) = W(oo) = 0, 

- co< X < co, 

It is well-known that the asymptotic behaviour of a recurrence relation 

b + a b + c b 2 = O, ,,,here lim a = A, lim c = C, can be found by n n n-1 n n- 2 n~ n n~ n 
determining the roots of t +At+ Ct= 0 (see e.g. Hunter [10])·. 
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Here we find 

(6.16) b 
n 

n + oo, 

where R = lt1I = lt 21 = l/ ✓2-2i < 1, ¢ = arctg(ph t 1) = 
= arctg(/1-a-2a2/((2-a)v'Z)), c0 is a constant determined by the initial 

values and r is a constant which needs a higher order symptotic study. 

By the knowledge of a possible candidate l(x) of AR..= Al we solve the 

eigenvalue problem by determining p such that v(l-8) = 0 which amounts to 

locating the zeros p € (0,1) of 

( 6. 1 7) F(zz 2,4(2-a)(l2 -p) (p+2)/(3z 1);3+p,-2+p,1+2p); 1- 8) = 0. 
1 2 zl 

The number of zeros is equal to the number of points in Pcr(A). The series 

representation (6.11) with (6.14) offers a suitable tool to perform these 

calculations nummerically. In section 7 we determined the eigenvalue A for 

different choices of 8 and the zero a of f(u) by this technique. 

We collect the result of this section in the next theorem. 

THEOREM 8. The eigenfunction l (x) of Al = Al for f ( u) = u ( 1 -u) ( u-a) and 
a 

v 8 (x) given by (6.2) is represented, if it exists, by l(x) = v(1-v8 (x)), 

where v(z) is given in (6.13) ,and pis a solution of (6.17), p € (0,1). 

The corresponding eigenvalue then equals A= (l-a)(l-p 2). 

7. NUMERICAL RESULTS 

As was announced in the previous sections the numerical calculations 

involving some of the equations will be summarized in this section. In all 

the calculations below we have taken the nonlinearity f(u) = f (u) = 
a 

= u(I-u)(u-a) E F1 as an example. We have made three choices of a 

(0.1,0.25,0.4) and eleven choices of 8(0,0.l,0.2, .•• ,0.8,0.9, and 0.95). 

In Table 1 the results of calculations based on Lennnas 1 and 2 are 

shown. The explanation of the symbols used in this table reads: 

+ : Pcr(A) is not empty according to Lennna with p(x) = eyx_l, y > O; 

Pcr(A) is empty according ot Lemma 2, i) for p = l; 
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X Both methods above failed to give information; calculation of 
~ 2 2 
Al = 11 pV e' IJ_ 2 / II p 'V 6' ti 2 reveal,:d: 

a= 0. I , e = 0.7, for y = 0.9050 Al = 0.9035 > 0.9 = -f~ (I), 
~ a = 0.25, e = 0.8, for y = 0.8400 A} = 0.7605 > 0.75 = -f~ (I), 
~ 

a = 0.4, e = 0.8, for y = 0.7440 Al = 0. 6071 > 0.6 = -f~ (I). 

e 0 0. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

a 0. I + + + + + + + X 

0.25 + + + + + + + + X 

0.4 + + + + + + + + X 

Table l • Pcr (A) (see text). 

In Table 2 we show: 

(A) The eigenvalues Al calculated up to three significant digits by the 

method of Theorem 8. A finite element method gave the same results up 

to the required precision. For the entry with the - symbol, there does 

not exist a solution of (6.17), soPcr(A) =(/). The same conclusion 

holds for a= 0.25, 6 = 0.8 and a= 0.4, e = 0.8 (compare Table 1). For the entry 

a= 0.4, 6 = 0 there exists a second eigenvalue A2 = 0.598. 

(B) The lower bounds of Theor~ 6 for p = 2. 

(C) By varying pin the interval [1,3] with stepsize 1~ it is possible to 

improve the bound under (B). 

(D) The lower bound of Corollary 6. For the entries with the x symbol, 

the bound given by (4.2) is not applicable. 

It turns out that (D) is inferior to (C). 
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e 0 0. 1 0.2 0.3 0.4 0.5 0.6 0.7 

a = 0. 1 (A) .459 .540 .625 .708 .783 .844 .885 

(B) .206 .2396 .287 .349 .421 .501 .587 

(C) .209 .2397 .288 .354 .433 .523 .618 

p = 2.2 2.1 1.9 1.8 I. 7 1.6 1.5 

(D) X X .0019 .0139 .0450 .1021 .1901 

a= 0.25 (A) .305 .375 .454 ~535 .612 .677 • 725 .749 

(B) • 135 .156 • 192 .243 .306 .378 .456 .539 

(C) • 142 • 159 • 192 .244 . 311 .391 .479 .568 

p = 2.3 2.2 2.0 1.9 1.8 1.6 1.5 1.4 

(D) X X X .0012 .0156 .0535 • 1213 .2229 

a= 0.4 (A) • 137 • 193 .267 .348 .429 .502 .559 .593 

(B) .0503 .0606 .0870 • 1292 .184 .250 .323 .400 

(C) .0669 .0722 .0914 • 1294 • 185 .256 .337 .421 

p = 2.6 2.5 2 • .3 2. 1 1.9 1. 7 1.6 1.4 

(D) X X X X X .0130 .0568 • 1356 

Table 2. Eigenvalue A (see text). 

We remark that the results are in agreement with Theorem 3 (monotonicity 

in 8) and Corollary 1 (monotonicity in a). 
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