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. . d 1 1 . *) Process algebra for communication an mutua exc usion 

by 

J.A. Bergstra & J.W. Klop 

ABSTRACT 

Within the context of an algebraic theory of processes we provide an 

equational specification of process cooperation. We consider three cases: 

process merging, merging with communication, and merging with mutual exclu

sion of critical sections. The term rewrite system behind the communication 

algebra is shown to be confluent and terminating (modulo its permutative 

reductions). 

KEY WORDS & PHRASES: nondeterministic processes, process algebra, merge, 

concurrency, communication, synchronisation, mutual 

exclusion, critical sections, term rewrite systems 

*) This report will be submitted for publication elsewhere. 
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0. INTRODUCTION 

Let A be a finite collection (alphabet) of atomic actions, ceA a dis

tinguished symbol denoting deadlock. Finite processes are generated from 

atomic processes in A using two operations 

+ nondeterministic choice and 

sequential composition. 

The following equational laws will hold for finite processes. 

X + y = y + X 

X + (y + z) 

X + X = X 

(x + y) + z 

(X + y) . Z = X • Z + y . Z 

(x. y) . z x.(y.z) 

X + C = X 

c .x c 

Al 

A2 

A3 

A4 

A5 

A6 

A7 

The initial term algebra of these equations is (A,+, ., c). 
w 

The main source of process algebra in this style is MILNER [9]. Exactly 

the above processes occur as finite uniform processes in DE BAKKER & ZUCKER [1], 

[ 2]. After adding an extra equation: x. (y + z) = x.y + x.z, one obtains a 

version of trace theory as described in REM [13]. 

For each PE A and n ,ii 1 we have the approximation (p) of p. This is 
w n 

inductively described by 

(p + q)n = (p)n + (q)n 

(a) = a 
n 

(ax) 1 n+ 
a (x) • 

n 
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Interestingly, if A = { (p) I p EA } then (A , +, . , 15) is another model n n w n 
of the axioms Al, .. ,A7. 

Infinite processes (A00
) can be obtained as a projective limit of the 

structures A. Technically this means that Am is the set of all sequences p= 
n 

(p1 ,p2 ,p3 , ... ) with piE Ai and p. = (p. 1 ) .. The operations '+' and'.' are 
1 1+ 1 

defined component-wise: (p + q)n = (p)n + (q)n' (p.q)n = ((p)n. (q)n)n' 

thus obtaining the process algebra 

m 
(A , +, • , 15 ) • 

m 
On A a metric exists: 

d(p,q) = {0 if p = q 
-n 

2 with n minimal such that (p) 1 (q) if p 1 q. 
n n 

m 
(A ,d) is a complete metric space, in fact it is the metric completion of 

(A ,d). The operations+,. are continuous. 
w 

(A00 ,d) was introduced in DE BAKKER & ZUCKER [l]. MILNER[l0] uses charts 

modulo bisimulation (from PARK [12]) to obtain infinite processes from finite 

ones. Working with trace sets under the extra assumption x. (y + z) = x.y + x.z 

this metric occurs in NIVAT [11].In DE BAKKER et al. [31 the connections 

between (Am,d) and its corresponding trace space are investigated. 

The processes discussed so far are provided with a bare minimum of struc

ture. The crux of the algebraic method lies in algebraically defining new 

operators over the given process domains that will correspond to important 

process composition principles. 

We will describe operators corresponding to the following three composition 

principles: 

1. merging two processes 

2. merging with communication 

3. merging processes with mutual exclusion for critical sections. 
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1. MERGING 'IWO PROCESSES 

The result of merging processes p and q is Pllq. For algebraic reasons 

(finite axiomatisability and ease of computation) an auxiliary operation ll 

(left merge) is used. The process pllq stands for the result of merging 

p and q but taking the first step from p. Both operations II and IL are 

specified on (A,+, ., o) by this system of equations: 
w 

xllY = xlL Y + Yll x 

all x = a.x 

ax IL Y = a(xllY> 

(x + y) ll z = x IL z + y ll z 

Ml 

M2 

M3 

M4 

Here x,y,z are variables over A and a is a variable over A. Formally this 
w 

is justified as a two-sorted logic with sorts A and A where one sort is a 
w 

subset of the other one. 
a, 

The operations are extended to A as follows: 

(p1,P2•···> II (q1,q2,···> = ( (P1llq1)1, <P2llq2>2•···> 

(p1,P2,···> IL (q1,q2,···> = ( (PllJ_ql)l' <P2llq2>2,···> 

We omit the proof that these are indeed projective sequences (i.e. that 

((pn+lllqn+l)n+l)n = (pnllqn)n ). It also follows that 11 and IL are continu

ous w.r.t. the metric d. 

In BERGSTRA & KLOP [4] the operation LI_ was introduced and a general 

existence theorem for solutions of equations of the form x= ,(x) in 

(A00
, +, . , 11, IL, o) is derived. 

2. MERGING WITH COMMUNICATION 

Starting with (A , +, . , o) plus a communication function . I . : AxA + A 
w 

which describes the effect of sharing (simultaneously executing) two atomic 

actions, three operations II, IL and I are defined on A. Here' I' extends 
w 
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the given communication function. 11 and IL coincide with the operators de

fined in Section l if the effect of alb is always o (i.e. no two atomic 

actions communicate). 

For the communication function three properties are required: 

alb= bla 

(alb) le= al (blc) 

ola = o 

Then II, IL and I are specified by: 

xllY = xll_y + yll_x + xly 

all_x = a.x 

(ax) ll_y = a(xlly) 

(x + y) 11. z = x IL z + y LL z 

(ax) lb= (alb) .x 

al (bx) = (alb).x 

(ax) I (by) = (alb).(xllY) 

ex+ y> I z = xlz + ylz 

x I (y + z) = xly + xlz 

Cl 

C2 

C3 

CMl 

CM2 

CM3 

CM4 

CMS 

CM6 

CM7 

CMB 

CM9 

Let C = {a EA I 3 b EA (a I b) -'Io}. C contains all actions that must 

eventually communicate. So if process p runs on its own an action cEC cannot 

be executed and should be replaced by o. This is modeled by the operation 

t:,,: A + A defined by 
w w 



6(a) = {a if a¢ C 

6ifae:C 

6(x + y) = 6(x) + 6(y) 

6(.x.y) = 6(x).6(y) 

62 

63 

Notice that 6(xllY> '/ 6(x)ll6(y). Thus 6 is a homomorphism on (A,+,., 6) 
w 

but not on (A , +, • , 11 , IL , I , 6) • 
w 

An important observation concerning the difference between processes 

5 

and trace sets is exhibited in the following example. Let A= {a,c1 ,c2 ,c,6} 

and let c1 1c2 = c. All other communications result in 6. Now 

6(a(c1 + c 2) II c1 ) = ac, and 

6((ac1 + ac2 ) II c1 ) = ac + a6 

so the second process ac1 + ac2 has a deadlock possibility and the first 

one, a(c1 + c 2), not. 

As before 11 , IL and 6 can be extended to continuous operations on (A00 ,d). 

This formalism includes both message passing and synchronisation. In 

[9] and [l~]synchronisation is modeled by having alb=, whenever alb'/ 6, 

, denoting a silent move. In HENNESSY & PLOTKIN [6] a definition correspon

ding to the equation xllY = xll_y + yll_x + xly occurs. 

The heart of the system consists of Al, ... ,A7,Cl, ... ,c3,CM1, .•. ,cM9. 

We will call this system ACP, for algebra of communicating processes. 

ACP seems to provide a concise formulation of the algebraic essence 

of communication. In view of this we review its structure in detail here. 

We will show that the new operators are indeed well-defined by CM1, ... ,CM9 

over Al, •.• ,A7 + Cl, ••. ,C3. We will rearrange ACP into a TRS (term rewrite 

system) which is shown to be confluent and strongly terminating modulo the 

permutative reductions Al and A2. As a consequence we find that each term 

built from A by +, . , 11 , IL , I can be proved equal to a unique term in A 
w 

by ACP. 

Finally we prove that II is associative, as well as several other 

interesting identities in Theorem 2.2. 
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For technical reasons we associate to each a EA a unary operator a* 

which acts as follows: 

a*x = a.x. 

On the term system generated by A, +, . , II, IL, I, a* (a EA) we introduce 

two norms 1-1 and 1- I . Here intuitively Is I computes an upper bound for 

the path lengths in S and 11s II computes an upper bound of the number of 

(nontrivial) summands in which S decomposes. 

lal = 1 

Ja*x I = 1 + Ix I 
lx.yl = lxl + IYI 

Ix+ yl= max<jxl,IYP 

lxJyl = lxl + IYI - 1 

Ix lL y I = Ix I + I y I 

Ix 11 Y I = Ix I + I Y I 

Ila 11 = 1 

lla*x ~ = 1 

llx. y II = llx II 
llx + Y II = llx II + IIYII 

llxly II= 11x11. ,1y 11 

llxli_yjj = llxll 

llxllY II= llx II+ l!Y~ + llx~ · IIYII • 

Now consider the following term rewrite system RACP: 

X + y + y + X 

x + (y + z) + (x + y) + z 

(x + y) + z + x + (y + z) 

X + X + X 

(X + y) • Z + X. Z + y. Z 

a.x + a*x 

(a*x) .y + a*(x.y) 

X + 6 + X 

6*x + 6 

xlly + xll_ y + yll_ x + xly 

all x + a*x 

(a*x) lL y + a* (xii y) 

(x + y) lL z + x IL z + yLI_ z 

alb+ c b a, 
(a*x)jb + c* b.x a, 
alb*x + c* .x a,b 
(a*x)j(b*y) + c* (xllY> a,b 
(x + y) lz + xlz + ylz 

xi (y + z) + xly + xlz 

RAl 

RA2 

RA2' 

RA3 

RA4 

RAS' 

RAS 

RA6 

RA7 

RCMl 

RCM2 

RCM3 

RCM4 

RCMS' 

RCMS 

RCM6 

RCM7 

RCM8 

RCM9 



In RCM5', ••• ,RCM7 the symbol c b denotes alb EA. The axioms Cl ,C2,C3 a, 
translate into the commutativity and associativity of c and c = 6 for 

6 ,a 
all a CA. 

Convertibility in RACP is denoted by =R. 

2.1. THEOREM. For all ACP-terms without variables: 

ACP 

ACP 

l- s = 

1- s = 

T# S = T 
R 

S' for some S' not containing ll , [l , I . 
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( i) 

(ii) 

(iii) 

(iv) 

(v) 

ACP 1- S'= S" ~ Al, .•• ,A7 -1- S' = S" for S' ,S" not containing II, lL, I -

(vi) 

(vii) 

S. (T.U) =R (S.T) .U 

RACP is weakly confluent (has the weak Church-Rosser property), 

working modulo Al and A2. 

RACP is strongly terminating, modulo Al and A2. 

RACP is confluent (has the Church-Rosser property). 

PROOF. we start with (vi) and we introduce the auxiliary notion of the multi

set of direct subterms DS(T) of a term T: 

DS(a) = 9) 

DS(a*x) = DS(x) 

DS(x + y) = DS(x) u DS(y) 

DS(x • y) = {x • y} u DS(x) 0 DS(y) (here ois ., II, IL, or l> 

Here 0 denotes the multiset union. Let [S] be the mapping from terms to wxw 

defined by 

c s 1 = c Is I , II s II> • 

This mapping is extended to multisets over terms, thus producing multisets 

over wxw 

[V] = {[S] I SEV}. 

On w x w there is the lexicographic well-ordering < which induces a well

ordering « on finite multisets over w x w • We now observe that along a re

duction path 

R ) 
2 
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we have 

[ DS (T.) J » [ DS (T. l) J if R. is not RAl, RA2, RA2', and 
1 1+ 1 

[DS(Ti)J = [DS(Ti+l)J if Riis RAl, RA2 or RA2'. 

From this observation strong termination of RACP modulo Al and A2 follows. 

Instead of a proof of the observation we provide two characteristic 

examples. 

(1) a.x + a*x. Then: 

[DS(a.x)J = [a.xJ u [DS(x)J and [DS(a*x) = [DS(x)J. 

Now [a.xJ majorizes each element of [DS(x)J because 

[SJ 6 [DS (x) J • Isl~ !xi • Is I < la.x I- Hence [DS (a.x) J » [DS (a*x) J. 

( 2) x 11 y • x lL y + y lL x + x I y. Then: 

[DS(xlly)J = [xllyJ 0 [DS(x)J 0 [DS(y)J and 

[DS(xll_y + yll_x + x!y)J = [xll yJ u [DS(x)J v [DS(y)J u 
[yll xJ v [DS (x) J 0 [DS (y) J 0 

[xlyJ 0 [DS(x)J 0 [DS(y)J. 

Again [x!lyJmajorizes all of [xll_yJ, [yll_x], [xlyJ, [DS(x)], [DS(y)J, 

the first three in width and the second two in depth. 

An alternative proof of termination can be given by ranking all occurrences 

of II ,IL ,I by the I-I-norm of the term of which they are the leading operator. 

Using this extended set of operators a recursive path ordering can be found 

which is decreasing in all rewrite steps except the first three (RA1,RA2,RA2'). 

See DERSHOWITZ [5J. 

Proof of (v). RACP is weakly confluent modulo~, the congruence generated 

by Al and A2. (We are here working in congruence classes and reductions have 

the form [SJ~ + [ S' J ~ whenever S + S' . ) This is a matter of some 400 straight

forward verifications. (Of course left to the reader as an exercise.) 

Proof of (vii). Working modulo~ RACP is strongly terminating in view of (vi). 

Now combining (v) and (vi) and using Newman's Lemma· (see [BJ, Lemma 5.7. (1) 

or [7J where more information about reduction modulo equivalence can be found) 

we find that RACP is confluent modulo~ and consequently it is confluent 

because the reductimsgenerating ~ are symmetric. 



Proof of (ii). This follows immediately from (vi). 

Proof of (iv). First one proves the associativity of. for terms not con

taining 11 ,ll ,I , using induction on the structure of S. The result then 

immediately follows using (ii). 
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Proof of (i). s =RT • ACP 1- S =Tis immediate. For the other direction 

one uses (iv). 

Proof of (iii). If ACP f- S' = S" then by (i) S' = S" and by (vii) for 
. R 

some S"': S' • > S"' and S"-» S"' (here ~> is the transitive reflexive 

closure of •) . Now because s' and S" are free of 11 , lL , I we see that 

S' ~> S"' <~ S" is just a proof in Al, ... ,A7. 

D 

2. 2. THEOREM. The following identities hold in (A , +, • , 11 , IL , I , o ). : 
w 

(1) xly = ylx 

(2) xllY = yllx 

(3) xl<ylz) = (xly>lz 

(4) (xlJ_y) II z = xlL (yllz) 

(5) x I (y LI_ z) = (x I y) lL z 

(6) xll<yllz) = (xllYlllz. 

PROOF. All proofs use induction on the structure of x,y,x written as a term 

over (A,+,.), which is justified by Theorem 2.1.(2). We write 

x = l· a.x. + I3. a 3~ 
l. l. l. 

z=t CZ +t 
lm mm ln 

c' 
n 

(1) and (2) are proved in a simultaneous induction. 

ylx. 
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Here we use Cl and the induction hypothesis for xi 11 y k = y k II xi. 

(2): xllY = xLI_y + yl1_x + xly = yLI_x + xl1_y + ylx = yllx. 

The proof of (3), .•. ,(6) is also done using one simultaneous induction. 

(3): Write x = x' + x" where x' = la.x. and x" = La' .• Likewise y = y' + y" 
l. l. J 

and z = z' + z". Then 

xl<ylz) = x'l(Y'lz') + x'l(Y"lz') + x'l(Y'lz") + x'l(Y"lz") + 

x"I (y' lz') + x"l (y"lz') + x"I (y' lz") + x"I (y"lz"). 

Now x'l(Y'lz') = }:(a.l(bklc ))(x.ll<Ykllz)) = 
l. m J. m 

}: ((a. I bk) I c ) ( (x. 11 yk) II z ) = 
J. m l. m 

ex, I y, > I z, . 

Here we used C2 and the induction hypothesis for (6). The other summands 

of xi (ylz) are treated similarly. Hence xi (ylz) = (xly) lz. 

(4) : (xll y) ILz = ((}:a.x. + }:a'.) ll_ y) LI_ z = (}:a. (x. lly) + }:a' .• y) lLz = 
l.l. J l. l. J 

}:a. ( (x. llY) llz) + }:a•. (yllz) = (induction hypothesis on (6)) 
l. l. J 

}:a.(x.ll<yllz)) + }:a~(Yllz) = 
l. l. J 

(}:a.x. + ta'.) lL (Yllz) = 
l. l. J 

x lL (YII z) • 

(5): Let x = x' + x" and y = y' + y" as in the proof of (3). Then 

xl(yll_z) = x'l(Y'ILz) + x'l(y"LI_z) + x"l(y'IL_z) + x"l(y"ll_z). 

Now x'l(y'LI_z) = (laixi)l(}:bkyk)llz) = (}:aixi)l(}:bk(Ykllz» = 

ex • I y • > u_ z . 

}:(ailbk) (xiii (ykllz)) = (induction hypothesis on (6)) 

}:(ailbk) ((xillyk) llz) = ( }:(ailbk) (xillYk)) llz = 

The other three summands are treated similarly. Hence x I (y LL z) = (x I y) IL. z. 
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(6) Write A (y,z) = xll_ (yllz> and B (y,z) = (ylz> ll_x. Then: 
X X 

xii (yllz> = xlJ_(yllz> + (Yllz) ll_x + xi (yllz) == 

A (y,z) + (yll_z) ll_x + (zll_y) ll_x + (ylz> ll_x + xi (yll_z) + xi (zll_y) + xi Eylz) = 
X 

A (y,z) + y[L(zllx) + z[L(yllx> + B (y,z) + (xly)LI_z + (xlz)IJ_y + xl(ylz) = 
X X 

A (y,z) + A (z,x) + A (y,x) + B (y,z) + B (y,x) + B (x,z) + xi (ylz>. (*) 
X y Z X Z y 

Also (xllY> llz = zll (xlly) = zll (yllx> = 

A (y,x) + A (x,z) + A (y,z) + B (y,x) _+ B (y,z) + B (z,x) + zl (ylx> = 
Z y X Z X y 

A (y,z) + A (x,z) + A (y,x) + B (y,z) + B (z,x) + B (y,x) + (xly) lz 
X y Z X y Z 

which equals (*) using the commutativity of the A's and B's and the induction 

hypothesis on (xly) lz. 
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3. MERGING WITH MUTUAL EXCLUSION OF CRITICAL REGIONS 

From (A , +, . , o) we derive ( (Av A) , +, • , o) by adding for each w + w 
atomic action a A, a new copy~- This~ stands for: do a and, if possible, 

immediately proceed with an action of the same process (i.e. do not allow 

interference of other processes until the "lowest" process containing a has 

terminated) . 

Now this algebra is enriched with operators 11 and IL and a really 

new one: Pt-+E• Here E stands for: execute pas a critical region (i.e. do 

not allow interference of other steps). 

The axioms for ( (Au A) , +, . , 11 , lL , , o ) are as follows: +w 

xllY = xll_y + yll_x MEl 

alJ_x = a.x ME2 

~Li_ X = a.x ME3 

(ax) IJ_ y = a. (xlly) ME4 

(ax) lLY = ~- (xll_y) ME5 
+ 

a = a ME6 -
a = a ME7 
.± 

a.x = a.x MEB 
+ -

a.x = a.x ME9 
:t,._ + -

X + y = X + X MElO 

0 = + 
0 MEll 

We omit a prooftheoretic analysis of these equations, but state without 

proof these useful facts: 

!llx = !·X + X·! · 

In general !l.Lx_ "I ! 11 x however. 



13 

Suppose one considers terms generated by A,+, ., II and • These have 

an intuitively clear meaning and should be given a semantics in (A,+, ., o). 
w 

Note that x frequently is denoted by <x> in the litterature on parallel 

programs. On the other hand, atomic actions of the form a are not common 
-+-

and should not enter the definition of a programming system; they are here 

only used as a means of calculation and are eliminated in the second step 

below (i.e. by applying the homomorphism t). 

As an intermediate step a semantics in ( (Au A) , +, • , o) is found: 
-+- w 

frl* (a) = a 

frl*(p + q) = frl*(p) + frl*(q) 

frl*(p.q) = frl*(p).frl*(q) 

M* (£) = M* Cpl 

frl* <Pllq) = M* (p) IIM* (q) 

Then the canonical mapping (homomorphism) 

t: ( (Au A) , +, . , o) --+ (A , +, . , o) 
-+- w w 

generated by t(a) = t(~) = a can be used to provide a semantics for +,.,II,_ 

terms over At 

M (p) = t (M* (pl ) . 

Note that frl* is a homomorphism w.r.t. all program constructions +,.,II,_, 

as should be expected from a denotational (or rather compositional) semantics; 

tis a homomorphism only w.r.t. +,.,o. Hence Mis a homomorphism w.r.t +,.,o. 

However, M does not act as a homomorphism w.r.t. II- (I.e. frl(pllq) 'f- frl(p)II frl(q), 

in general. ) 
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