

ma the ma tisch

cen trum

AFDELING NUMERIEKE WISKUNDE (DEPARTMENT OF NUMERICAL MATHEMATICS)

NW 146/83

JANUARI

J. VAN DE LUNE & H.J.J. TE RIELE

ON THE ZEROS OF THE RIEMANN ZETA FUNCTION IN THE CRITICAL STRIP, III

Preprint

amsterdam

1983

stichting mathematisch centrum

AFDELING NUMERIEKE WISKUNDE (DEPARTMENT OF NUMERICAL MATHEMATICS)

NW 146/83

JANUAR1

J. VAN DE LUNE & H.J.J. TE RIELE

ON THE ZEROS OF THE RIEMANN ZETA FUNCTION IN THE CRITICAL STRIP, III

Preprint

Printed at the Mathematical Centre, Kruislaan 413, Amsterdam, The Netherlands.

The Mathematical Centre, founded 11th February 1946, is a non-profit institution for the promotion of pure and applied mathematics and computer science. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

1980 Mathematics subject classification: Primary: 10H05

Secondary: 10-04, 65E05, 30-04

On the zeros of the Riemann zeta function in the critical strip, III*)

bу

J. van de Lune & H.J.J. te Riele

ABSTRACT

We describe extensive computations which show that Riemann's zeta function $\zeta(s)$ has exactly 300,000,001 zeros of the form σ + it in the region 0 < t < 119,590,809.282. All these zeros are simple and lie on the line $\sigma = \frac{1}{2}$. (This extends a similar result for the first 200,000,001 zeros, established by Brent, van de Lune, te Riele and Winter in Math. Comp., v. 39, 1982, pp. 681-688.) Counts of the numbers of Gram blocks of various types and the failures of "Rosser's rule" are given, together with some graphs of the function Z(t) near the first observed failures of Rosser's rule.

KEY WORDS & PHRASES: Gram blocks, Riemann hypothesis, Riemann zèta function, Rosser's rule

^{*)} This report will be submitted for publication elsewhere.

1. INTRODUCTION

This paper is a continuation of BRENT [1] and BRENT, VAN DE LUNE, TE RIELE & WINTER [2]. We have extended the computations described there to show that the first 300,000,001 zeros of Riemann's zeta function $\zeta(s)$ in the critical strip are simple and lie on the line $\sigma = \frac{1}{2}$. After separating the zeros of Z(t) in the range $[g_{200,000,000}, g_{300,000,000})$ with a slightly changed version of the FORTRAN/COMPASS program described in VAN DE LUNE, TE RIELE & WINTER [4], we ran the computation a little further, and found four Gram blocks (of length 1) in $[g_{300,000,000}, g_{300,000,004})$. By applying Theorem 3.2 of [1] we completed the proof of our claim.

A complete listing of our program may be found in VAN DE LUNE & TE RIELE [5]. We also refer to [4] and [5] for a more detailed description of our slightly adapted strategy (compared with Brent's) for finding the required number of sign changes of Z(t) in Gram blocks of length ≥ 2 . It may be noted here that the average number of Z-evaluations needed to separate two successive zeros of Z(t) varied slightly around 1.19. Comparing this with our previous computations, it appears that the oscillatory behaviour of Z(t) has not changed very much.

Besides 126 exceptions to Rosser's rule of length 2, we also found three exceptions of length 3. The latter ones appeared as Gram blocks of length 3 containing only 1 zero, followed or preceded by a Gram block of length 1 with 3 zeros. More details are given in the next section, including some graphs of Z(t) in the neighbourhood of various types of exceptions to Rosser's rule which have emerged. (Previously, two exceptions of length 3 were implicitly given by KARKOSCHKA & WERNER [3], viz. B_{1,089,751,985} and B_{10,008,051,629}, although these are far beyond the range covered by our systematic search.) In the next section we also give a number of tables which are (nearly) similar to those given in [1] and [2].

We intend to extend our computations in the near future.

2. STATISTICS

The counts given here are now exact (in contrast with the LR & W - counts given in [2]). This was realised by immediately computing $Z_B(g_n)$ in case $|Z_A(g_n)|$ was too small (rather than computing $Z_A(g_n-\delta)$ for a few small

values of δ , as we did in [2]). We never met a value of t for which our method B could not determine the sign of Z(t) rigorously, with the bounds given in Section 3 of [2].

In Table 1 we present a list of the 126 exceptions to Rosser's rule of length 2 and the 3 of length 3, in the range $[g_{200,000,000},g_{300,000,000})$, including their types and the local extreme values of S(t). Note the occurrence of a type 4 - exception (the first one observed) which yields the second Gram interval with four zeros (viz. $G_{237,516,724}$; the first one is $G_{61,331,768}$ [1]).

Table 2 gives a survey of the various types of exceptions to Rosser's rule observed until now, and their frequencies in $[g_{200,000,000},g_{300,000,000})$.

Table 3 gives the numbers of Gram blocks of length ≤ 8 in [$g_{200,000,000}$, $g_{300,000,000}$) for strings of 10⁷ successive zeros. The last line gives the totals for the whole range. The average Gram block length for this range is 1.2039, against 1.2003 and 1.1900 for the ranges [$g_{100,000,000}$, $g_{200,000,000}$) and [g_{0} , $g_{100,000,000}$), respectively. Note that the number of Gram blocks of length 1 is slowly decreasing, in favour of the numbers of Gram blocks of length ≥ 2 and ≤ 5 .

In Table 4 we present the numbers of Gram intervals $G_j = [g_j, g_{j+1}]$, $n \le j < n + 10^7$, which contain exactly m zeros of Z(t), $0 \le m \le 4$. Note that the number of Gram intervals with precisely one zero is slightly decreasing in favour of the numbers of Gram intervals with no zeros and those with 2 zeros.

In [1] and [2] we have listed the first occurrences of Gram blocks of various types. Here we have met only one new type of Gram block, viz. the type (7,1) - Gram block $^{\rm B}258.779.892^{\circ}$

In Table 5 we list the numbers of Gram blocks of type (j,k), $1 \le j \le 8$, $1 \le k \le j$, in the range $[g_{200,000,000},g_{300,000,000})$. We also give the numbers of Gram blocks of length 2 with zero-pattern "0 0" and "2 2", and those of length 3 with zero-pattern "0 1 0". The "0 0" - blocks correspond to the 126 length 2 - exceptions to Rosser's rule of types 1 - 6 and the "2 2" - blocks correspond to the length 2 - exceptions of types 5 and 6. The "0 1 0" - blocks correspond to the 3 (newly introduced) length 3 - exceptions of types 1 and 2. The entries in parentheses denote the percentages with respect to the total number of blocks of length j, given in the final column. These percentages are nearly the same as those given in the corresponding table for the range

[$g_{156,800,000}$, $g_{200,000,000}$) in [2], and we conclude that our strategy of dealing with Gram blocks of length $j \ge 2$ is successful for $2 \le j \le 5$.

In order to give the reader an impression of the erratic behaviour of Z(t), we give in Figures 1.1 - 1.8 graphs of Z(t) in the neighbourhood of the first (observed) exceptions to Rosser's rule of length 2 and 3 and of various types. We have plotted $Z(g_X)$ with x as a continuous independent variable. The exceptional Gram block is marked by two arrows pointing downwards. The adjacent Gram block where the "missing two" zeros are situated is marked by two arrows pointing upwards. A magnification of the latter block is shown in an accompanying graph. Some "critical" values of Z(t) are explicitly mentioned.

REFERENCES

- [1] BRENT, R.P., On the zeros of the Riemann zeta function in the critical strip, Math. Comp., 33 (1979), pp. 1361-1372.
- [2] BRENT, R.P., J. VAN DE LUNE, H.J.J. TE RIELE & D.T. WINTER, On the zeros of the Riemann zeta function in the critical strip.II, Math. Comp., 39 (1982), pp.681-688.
- [3] KARKOSCHKA, E. & P. WERNER, Einige Ausnahmen zur Rosserschen Regel in der Theorie der Riemannschen Zetafunktion, Computing, <u>27</u> (1981), pp. 57-69.
- [4] LUNE, J. VAN DE, H.J.J. TE RIELE & D.T. WINTER, Rigorous high speed separation of zeros of Riemann's zeta function, Report NW 113/81, October 1981, Mathematical Centre, Amsterdam.
- [5] LUNE, J. VAN DE & H.J.J. TE RIELE, Rigorous high speed separation of zeros of Riemann's zeta function. II, Report NN 26/82, June 1982, Mathematical Centre, Amsterdam.

TABLE 1

The 129 exceptions to Rosser's rule in [g200,000,000,g300,000,000)

126 of length 2. Notation: n(type)extreme S(t).

where n is the index of the Gram block $B_n = [g_n, g_{n+2})$ with zero-pattern "0 0"

```
231810024(1) -2.026611
232838063(2) 2.022488
201007375(1) -2.002900
                                                            272096379(2) 2.001554
201030606(2) 2.111895
                                                            272583009(1) -2.032037
                              234389089(2) 2.106429
201184291(2) 2.001518
                                                            274190882(2) 2.008416
                              235588194(1) -2.001915
236645695(1) -2.089639
201685414(5) -2.016715
                                                            274268747(1) -2.018420
                                                            275297430(2) 2.014738
202762876(2) 2.011439
                              236962877(2) 2.023259
202860958(2) 2.018888
                                                            275545477(2) 2.032087
                              237516725(4) 2.108817
240004911(1) -2.000249
                                                            275898480(2) 2.005068
275953000(1) -2.007296
203832578(2) 2.063611
205880544(1) -2.017679
206357111(1) -2.031216
                              240221307(2) 2.096293
                                                            277117197(5) -2.069283
207159768(2) 2.033954
                              241549003(1) -2.036151
                                                            277447311(2) 2.058999
                              241729717(1) -2.025503
207167344(2) 2.029320
                                                            279059658(2)
                                                                            2.037126
                              241743685(2) 2.070155
243780201(2) 2.025648
207669541(2) 2.020740
                                                            279259145(2) 2.033129
208053426(1) -2.073357
                                                            279513637(2)
                                                                            2.000375
                              243801317(1) -2.020358
208110028(2) 2.031212
                                                            279849070(2) 2.048163
209513827(2) 2.023920
                              244122072(1) -2.035325
                                                            280291419(1) -2.021221
                              244691225(2) 2.018927
244841577(1) -2.053021
212623522(1) -2.010194
                                                            281449426(2) 2.000609
213841715(1) -2.024334
                                                            281507954(2) 2.001841
214012333(1) -2.010937
                              245813461(1) -2.035731
                                                            281825600(1) -2.033191
214073567(1) -2.009287
                              246299475(1) -2.001039
                                                            282547094(2) 2.002833
                              246450177(2) 2.116655
215170601(2) 2.007728
                                                            283120964(2) 2.028096
                              249069349(1) -2.020698
                                                            283323493(1) -2.032511
284764536(2) 2.001422
215881040(2) 2.021267
216274605(2) 2.052279
                              250076378(1) -2.036397
216957121(2) 2.032421
                              252442158(2) 2.085094
                                                            286172640(2) 2.042925
217323208(1) -2.013607
218799264(1) -2.040304
                              252904232(2) 2.112235
255145220(1) -2.002286
                                                            286688824(1) -2.046407
287222173(2) 2.048065
                              255285972(2) 2.034861
                                                            287235535(2) 2.024894
218803558(2) 2.013448
                              256713230(1) -2.015377
257992082(1) -2.042307
219735146(1) -2.026815
                                                            287304862(2) 2.003208
219830063(2) 2.015232
                                                            287433571(1) -2.021945
219897904(1) -2.081132
                              258447957(6) 2.005655
                                                            287823551(1) -2.038399
                              259298046(2) 2.091955
262141503(1) -2.006009
221205545(1) -2.014535
                                                            287872423(2) 2.016959
223601929(1) -2.101580
                                                            288766616(2)
                                                                            2.024072
223907077(2) 2.007094
                              263681744(2) 2.006016
                                                            290122964(2) 2.039001
223970397(1) -2.028754
                              266617122(1) -2.046423
                                                            290450849(5) -2.068090
                                                            291426142(2) 2.075533
224874046(6) 2.022804
                              266628045(2) 2.048158
                              267305763(1) -2.028836
267388405(2) 2.012716
225291157(1) -2.152675
                                                            292810354(2) 2.048278
227481734(1) -2.018298
                                                            293109862(2)
                                                                            2.013978
228006443(2) 2.023042
                              267441673(2) 2.085691
                                                            293398055(2)
                                                                            2.042772
                                                            294134427(2) 2.043302
                              267464886(1) -2.006418
228357900(1) -2.022758
228386399(1) -2.008899
                              267554908(2) 2.112706
                                                            294216438(1) -2.005490
228907446(1) -2.018338
                              269787480(1) -2.080890
                                                            295367142(2) 2.049246
                              270881434(1) -2.026487
270997584(2) 2.021752
                                                            297834112(2) 2.022351
228984553(2) 2.032004
229140286(2) 2.000109
                                                            299099970(2) 2.030191
```

3 of length 3. Notation: n(type)extreme S(t).

where n is the index of the Gram block $B_n = [g_n, g_{n+3})$ with zero-pattern "0 1 0"

207482540(2) 2.000431 241389213(1) -2.010430 266527881(2) -2.008550

(For the definition of the types in case of length 3 exceptions, see Table 2.)

TABLE 2 Various types of exceptions to Rosser's rule and their frequencies in $[g_{200,000,000},g_{300,000,000})$

Gram block of length 2 with "0 0" zero-pattern												LENGTI	H = 2
	1 –2	g _n		g _n		g _{n+1}	g_{n+2}		gn	+3	g_{n+4}	type	frequency
Y	,	Y	•	Ý	0	Y 0	Y	3	1	<i>(</i>	Y	1	52
			3		0	0						2	68
					0	0		4		0		3	0
	0		4		0	0			,			4	1
					0	0		2		2		5	3
	2		2		0	0						6	2

	Gram block of length 3 with "0 1 0" zero- pattern LENGTH = 3										
gn	1	g _n	g	n+l	g_{n+2}	8	n+3	g _{n+4}		type	frequency
*		*	0	1	*	0	3	*		1	2
	3		0	1		0				2	1

TABLE 3 Number of Gram blocks of given length $J'(k,n) := J(k,n+10^7) - J(k,n)$

n	J'(1,n)	J'(2,n)	J'(3,n)	J'(4,n)	J'(5,n)	J'(6,n)J'	'(7 , n)J'	(8,n)
200,000,000	6,973,019	1,056,242	236,180	44,997	4,838	272	21	0
210,000,000	6,971,273	1,055,810	236,438	45,249	4,976	297	17	2
220,000,000	6,966,636	1,056,779	236,573	45,864	4,921	312	22	0
230,000,000	6,965,176	1,056,494	236,663	46,250	4,979	295	26	0
240,000,000	6,961,469	1,057,120	237,279	46,150	5,156	327	16	0
250,000,000	6,957,609	1,057,612	237,551	46,633	5,145	341	29	1
260,000,000	6,955,568	1,056,920	238,418	46,694	5,300	306	30	2
270,000,000	6,951,895	1,057,635	238,483	47,211	5,257	353	20	0
280,000,000	6,950,241	1,056,940	238,974	47,373	5,420	366	24	0
290,000,000	6,948,974	1,058,297	238,885	47,295	5,254	354	29	. 0
Totals	69,601,860	10,569,849	2,375,444	463,716	51,246	3,223	234	5

 $\label{table 4} \mbox{Number of Gram intervals containing exactly m zeros}$

n	m = 0	m = 1	m = 2	m = 3	m = 4
200,000,000	1,360,273	7,297,177	1,324,827	17,723	0
210,000,000	1,360,333	7,296,878	1,325,245	17,544	0
220,000,000	1,362,066	7,293,463	1,326,876	17,595	0
230,000,000	1,362,561	7,292,733	1,326,852	17,853	I
240,000,000	1,363,647	7,290,305	1,328,449	17,599	0
250,000,000	1,365,010	7,287,678	1,329,614	17,698	0
260,000,000	1,365,698	7,286,632	1,329,642	18,028	0
270,000,000	1,366,741	7,284,300	1,331,176	17,783	0
280,000,000	1,367,037	7,283,866	1,331,158	17,939	0
290,000,000	1,367,806	7,282,080	1,332,422	17,692	0
Totals	13,641,172	72,895,112	13,286,261	177,454	 l

Number of Gram blocks of type (j,k), $1 \le j \le 8$, $1 \le k \le j$, in the range $[g_{200,000,000}, g_{300,000,000})$

+ j	k → 	2	3	4	5	6	7 8	Totals
1	69,601,860							69,601,860
2	5,285,566 (50)	5,284,152 (50)	126 "0 0" 5 "2 2"	– blocks – blocks				10,569,849
3	1,125,098 (47)	124,535 (5)	1,125,808 (47)	3 "0 1 0"	- block	s		2,375,444
4	212,286 (46)	19,862	19,649 (4)	211,919 (46)				463,716
5	20,326 (40)	4,252 (8)	2,177 (4)	4,346 (8)	20,145			51,246
6	488 (15)	866 (27)	263 (8)	286 (9)	859 (27)	461 (14)		3,223
7	2*)	73	42	9	40	67	l*)	234
8	0	0	2	0	0	3	0 0	5

^{*)} viz. B_n , for n = 258,779,892, 282,307,390 and 299,608,968.

 ∞

Fig. 1.7 B₂₄₁,389,213

<u>Fig. 1.8</u> B_{207,482,540}