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We study the generalized Abel transform for SL(2,C) in the case of
equal left and right, fixed K-type. We rewrite this transform as an inte-
gral transform of classical type. Then it involves a double integration with
kernel expressed in terms of a Chebyshev polynomial of the second kind.

We obtain the inversion formula in a similar form and we completely charac-
terize the image in the C -case. As a corollary we prove the subquotient

theorem for SL(2,€) by a global approach.
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0. INTRODUCTION

In earlier papers [13], [14] the second author formulated a program for
a global approach to the representation theory of noncompact semisimple Lie
groups G and he carried it out for SL(2,R) . "Global" means that no use of
the Lie algebra and universal enveloping algebra of G is made. Instead, the
analysis is based on a more or less explicit knowledge of the canonical
matrix elements of the principal series representations of G with respect
to a K-basis, K being a maximal compact subgroup of G. Furthermore, in the
case of SL(2,R) it turned out that the subquotient theorem (i.e. the
Naimark equivalence of K-finite irreducible representations of G to sub-
quotients of principal series representations) can be proved by use of the
generalized Abel transform.

It is the purpose of the present paper to give a global proof of the
subquotient theorem for G = SL(2,C) by use of the generalized Abel trans-
form. Leth:’d(G) be the commutative topological convolution algebra of K-
central C -functions with compact support on G which behave as the irre-
ducible representation 8§ of K under left or right action of K. Then the

generalized Abel transform is an algebra isomorphism of T (G) onto a con-

volution algebra of certain vector—valued C -functions wiiﬁécompact support
on R. The subquotient theorem follows from a knowledge of all continuous
characters on this image algebra. So_we have to know this image algebra.
This method was earlier used by NA}MARK [19] and the characterization of

the image algebra follows from WANG's [26] Paley-Wiener theorem. However,

we will give a probably new proof with side results of independent interest.
Namely, we write the generalized Abel transform as an integral transform of

"classical" type and we obtain the inversion formula in a similar form:
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In this integral transform pair, £ is in {0,%,1,%3...}, UZK is a Chebyshev

polynomial of the second kind, and f and F are C -functions with compact sup-
port, f(y,x) and F(y,x) both having the form
2 c (x)e_Zimw,
me{-2,-f+1,...,£} "
with certain additional conditioms.

Let us summarize the contents of the paper. In section 1 we give basic
results about the global approach to finding irreducible subquotients and
proving Naimark relatedness. Section 2 contains general theorems for the
generalized Abel transform on a semisimple Lie group, section 3 a discussion
of earlier results for SL(2,€) and SL(2,R) . Section 4 gives preliminaries
on SL(2,C) and the representation theory of SU(2) which will be needed. The
main work of the paper is done in sections 5,6,7: the derivation of (0.1)
and an integral representation for related spherical functions of type & in
§5, the derivation of the inversion formula (0.2) (also leading to a new
proof of the Plancherel formula for SL(2,€)) in §6, a characterization of
the image algebra in §7. Finally, the subquotient theorem is derived in §8

and we state without proof some further results in §9.

Notation. rep means representation,
Zrr. means irreducible.

1. IRREDUCIBLE SUBQUOTIENTS, NAIMARK RELATEDNESS AND THE ALGEBRAS IC (6)

58
In this section we collect some results which are relevant for the
global approach to the representation theory of a general locally compact
group.
Let G be a locally compact group satisfying the second axiom of count-
ability and let K be a compact subgroup of G. Let T be a K-unitary Hilbert

rep of G, i.e. a strongly continuous rep T of G on a separable Hilbert



space H(t) such that TIK is a unitary rep of K on H(t). Then

(1.1) |, = & m 3,
K ek 8

where the multiplicity m, equals 0,1,2,... or w (countably infinite). Let

)
HG(T) be the closed subspace of H(t) which is the representation space of

mg § in (1.1) and let PG be the orthogonal projection of H(t) onto HS(T).
For v,8 in M(t) define the canonical matrix elements TYG of T:
(1.2) Tys(g) = PyT(g) !HG(T), g e G.

Then TYG(g) is a linear operator of HS(T) to Hy(T). The operator 1(g) can be
written as a (usually infinite) block matrix with blocks TYG(g). Define the

K-content M(t) of T by

(1.3) M(t) := {6 ¢ R | mg # 0}.
The rep T is called K-finite if m, < « for all & in K and 1 is called K-
multiplicity free if m, = 0 or 1 for all & in K.

§

DEFINITION 1.1. Let T be a Hilbert rep of G, HO a closed subspace of H(1)

and PO the orthogonal projection of ﬁ(T) onto Hp. Let To(g) := POT(g)lH

. .0
(geG). If To(g]gz) = TO(gl)TO(gZ)(§]’g2€G) then 7o is called a subquotient
rep of T on HO.

THEOREM 1.2 (cf.[13,83.21). Let 1 be a K-multiplicity free rep of G. For
Y,8 in M(T) write vy ~ 8§ 1ff TY5 # 0 and Tay # 0. Then ~ Zs an equivalence

relation on M(t) and 1, 28 an Zrr. subquotient rep of t i1ff T0| = @ v

0
K vyly~s

for some § in M(1).

DEFINITION 1.3. Two Hilbert reps ¢ and T of G are called NaZmark related if

there is a closed (possibly unbounded) injective linear operator A of H(o)
to H(t) with domain D(A) dense in H(c) and range R(A) dense in H(t) such
that D(A) is o-invariant and Ao(g)v = 1(g)Av(veD(A),geG). Notation: o =¢ T

A
or ¢ & T.



Naimark relatedness is an equivalence relation (called Naimark equiv-

alence) on the class of K-finite Hilbert reps of G (cf.[13, Theorem 4.41).

LEMMA 1.4. Let o and t be irr. Hilbert reps of G. If, for certain nonzero v
in H(o) and w in H(t), (o(g)v,v) = (1(g)w,w) for all g in G, then o =~ 1.

PROOF. Define g(g) := (c(g_l))*(geG), and similarly ;(g). Then o and T are
also irr. Hilbert reps of G. Define a linear operator A with

D(A) := Span{o(g)v]|g ¢ G} and R(A) := Span{t(g)w|g ¢ G} by

n n
jZ] ajc(gj)v) := jzl ajT(gj)w

for arbitrary n in N, o S50 in ¢ and Byse By in G. By irreducibility

o
of ¢ and 1, D(A) is dense in H(o) and R(A) is dense in H(t1). For the proof
that A is one-valued and injective note that the following equalities are

equivalent:
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551 409
Clearly, D(A) is o-invariant and Ac(g) = 1(g)A on D(G) for g in G. For the
proof that the closure A of A is one-valued and injective let

n(k)
jz] %3,k°(85,10V 7 Vo and



K T(gj’k)w > w, as k » o,

nik)
o.
521 da

Then vy = 0 iff W = 0, by a similar argument as above. Finally apply [13,

Lemma 4.3]1. [

THEOREM 1.5. Let o and t be irr. K-unitary reps and let some § in K have
multiplicity 1 in both o and 1. Then o and t are Naimark reloted iff

(1.4) tr osa(g) = tr Tﬁa(g) for all g in G.

PROOF. If o =~ 1 and I_: Hs(c) - HG(T) is a K-intertwining isometry then

S

-1
T5s(8) = Ig9ss(8) I

(cf.[13, Theorem 4.5]). This proves (1.4). Conversely assume (1.4) and

choose orthonormal bases e ,...,e for H (1) and £, ,...,f; for HS(T) such
I ds ) 1 s

that

Gij(k) 1= (o(k)ej,ei) = (T(k)fj,fi), k € K.

In (1.4) replace g by gk(geG,keK). Then we obtain:

d6 dé
.. .,e.) = .. (k LE).
i’jz] 85500 (9(@)ese ) i,§=1 85500 (@),

Hence (o(g)el,el) = (T(g)f],fl)(geG) and 0 =~ T by Lemma 1.4. g

The spaces C(G) and, if G is a Lie group, C:(G) are algebras under con-
volution and, provided with the usual inductive limit topology, they become
topological algebras. Consider the following closed subalgebras
IC(G), IC’G(G)(GeK) of CC(G) and IC(G), IC’S(G)(SeK) of CC(G):

(1.5) If°w> ={feC§O®Hf&Q;5 = f(g), g € G, k € K},
(=) _ () _ '
(1.6) IC,G(G) ={f el (G)]daj £(gk)xg(k)dk = £(g), g€ G, k e K}

K



()
The present definition of I( g(G) corresponds to the definition of I g
,

(6 being contragredient to 6) in [13, p.43]. Here we follow the definition
in WARNER [27,84.5.11].

PROPOSITION 1.6. (cf. WARNER [27, Theor. 6.1.1.2, Prop. 601,1.61). Let

§ ¢ R and let the algebra I, G(G) be commutative. Let T be an irr. K-uni-—
H
tary rep of G in which § occurs with finite nonzero multiplicity m, . Then

mg = 1 and the linear functional

-1
(1.7) £ dg f f(g)tr T,(g)dg
G
18 a nonzero continuous character on I, 6(G). Furthermore, this character
) ]

completely determines trigs(.) as a function on G.

PROOF, By (3, Lemma 5.1] m = 1 iff the rep 1 of

(1.8) K"

has multiplicity 1 in the rep T ® § of G x K. By restriction to G x {e} the
algebra C (K*\GXK/K*) is mapped 1somorph1cally onto I (G). Under this map-
ping the algebra

A= {f ¢ C_(K\GK/K")|

d f £(g,k)xg (K dk = £(g,e),g ¢ G,k ¢ K}
K
corresponds to Ic,G(G)'
For f in CC(GXK) define f# by

# -
£ (g,k) = d J J f £k gk k Kk gk,) x50y )k, dk, dkg, g € G,
KKK
, k e K,

#
Then £ » £ 1is a prOJectlon of C (GXK) onto A, Let P. be the orthogonal pro—

1
jection ef H(T®6) onto H (;®5) One easily verifies that, for v in H (T®6),

f e CC(GXK).



Vv \"
(1®8) (f#) v = PI(T®5)(f) v,

v %
By irreducibility of T, (T@S)(CC(GXK)) v is a dense subspace of H(1®$8).

v
Hence, since H](T®6) is finite dimensional,

v v v
(t®8) (A) v = P1(1®6)(CC(GXK)) v = H](m5).
V 3 3 3 V V
Thus T ® § is an irr. rep of the commutative algebra A on H](T®5), so Hl(T®6)
has dimension 1.
For the proof of the second statement note that, for f in CC(GXK) and

v
v in Hl(r®6) with vl = 1, we have

j J f(g,k)((w\é)(g,k)v,V)dg dk = dgl J £#(g,e) tr 14,(g)dg..
G K G

Finally the third statement follows from the observation that

J f(g) tr Tas(g)dg = d6 f { {‘If(klgkzk;])xa(kz)dk]dkz]trTés(gﬁg,
G G KK
f e Cc(G)' g

The function tr tT,,(.) is called a spherical trace function of type §.
The theory of these functions goes back to GODEMENT [5].

COROLLARY 1.7. Let § ¢ K and let I, §(6) be commutative. Let o and t be irr,
K-unitary reps of G in which § has finite nonzero multiplicity. Then o = 1
Lff the corresponding characters on Ic,G(G) (or I:’a(G) 1f G 28 a Lie group)
defined by (1.7) coincide.

PROOF. Use Theorem 1.5 and Prop. 1.6. [

The pair (G,K) is called a Gelfand pair if the algebra CC(K\G(K) is

commutative,

COROLLARY 1.8, If (GXK,K*) 18 a Gelfand pair then each irr. K-finite Hilbert
rep of G 18 K-multiplicity free.




PROOF. Use Prop. 1.6 and the correspondence between CC(K*\G*K/K*) and IC(G).
g

2., THE GENERALIZED ABEL TRANSFORM

Let us restrict attention now to the case that G is a noncompact con-—
nected real semisimple Lie group with finite center and that K is a maximal
compact subgroup of G. Choose subgroups A and N of G such that G = KAN is
an Iwasawa decomposition of G and let g in G be accordingly factorized as

(2.1) g = u(g)e (®

n(g) )
where H(g) ¢ a, the Lie algebra of A. Let M be the centralizer of A in K.
For £ in M and X in az (the complex linear dual of a) we define the princi-

pal series rep m as the rep of G induced by the rep

EsA

A(log a) E(m), me M, ae A, n € N,

man » e
of the subgroup MAN of G. Let n be the Lie algebra of N and let p in a be
defined by p(H) := 2tr(adH| ) H € a In the compact picture the rep WE N
is realized on the Hilbert space L (K3H(&)) con31st1ng of all H(E) -valued

L2 — functions f on K such that f(km) E(m )f(k) k € K, m € M, Then

-1
(2.2) (1, @D ) = SPIEE W),

, 2€6G, keK, fe LE(K;H(E)).

The rep ™ is a K-finite Hilbert rep of G.

I
We would like to attempt a global approach to HARISH-CHANDRA's [7, The-

orem 4], [8, Theorem 4] subquotient theorem:

"THEOREM 2.1. Every K-finite irr. Hilbert rep of G is Naimark equivalent to

some irr. subquotient rep of some principal series rep.

Choose a Haar measure dn on N. For f in I: G(G) (GGE) define
H



(2.3) Ff(k,a) i= ep(log a) J f(kan)dn, k € K, a € A,
N
(2.4) Fi(a) .= P (log a) J J £(kan) 8Dk dn =
KN
v 1
§ x ydk, a e A,

1]
Hh O R Y———y,
ri
Hh
~
=
o]
-

v
the latter function F_ being L(H(8))-valued. For some choice of an orthonor-

v
mal basis of H(S), Ff can be expressed in terms of Fi by
d
§ v o o
(2.5) Fe(k,a) = dg . §=1 aij (k)(Ff(a))ji,f € Ic,é(G).
3

The transform f » Ff or £ » Fi
WARNER [27, §6.2.2]).

is called the generalized Abel transform (cf.

v
From now on assume that 6§ is M-multiplicity free. Then 6 is also M-mul-

v v
tiplicity free. Let MM(6) denote the M-content of §. Note that
8 § -1 v §, Y. ~-1
Ff(a) = Ff(mam ) = G(m)Ff(a)é(m ), a€ A, me M,
Hence,

(Fp@), = €@ ER@), | n@ D, £ n e M)

(where (Fi(a)) is the matrix block of Fg(a) corresponding to (&,n)).
v

£,N
Since § is M-multiplicity free, this implies

S 0 if E#n)
(F_(a)) = {
£778m Fi ((@).id if € = n,

v o
for certain functions Fg E(EEMM(G)) in Cc(A)‘ Combining this with (2.5) we
H

get
\" ) ©
(2.6) Fo(k,a) = dg Yy tr Ggg(k)Ff,g(a), fe IC’G(G).
EeMM(S)

It can easily be proved that for fin I: 6(G) we have a similar formula: there
3

exist functions f inCZ(A) such that

g



10

v
(2.7) f(klakz) =d tr § (kzkl)fg(a), kl’ k2 € K, a e A,

s Ly
g (8
Note that f and Ff(feI: G(G)) are completely determined by their restric-
9
tions to M x A,

Choose a Haar measure da on A and normalize the Haar measure dg on G

such that

f £ (kan)e2? (198 @ g 4a dn, £ ¢ c_(©).

(2.8) f f(g)dg =
G KxAXN

THEOREM 2.2. Let § ¢ K such that & is M-multiplicity free. Then the trans-—
form

S . oo oo .
£ {Ff,g}aeMM(g) 'Ic,é - mc(A’¢

M, 8|
)

has the following properties:
(1) 7t is continuous;
(ii) <zt Zs injective if G is a linear Lie group;

(iii) Zt Zs an algebra homomorphism, <.e.

S

(2.9) Fe E(a) = j Ff],g

1"ty 4
fl’ f2 € Ic,G(G);

(a8, (a]'ada,, £ e M@),

"

(iv) for each f in I:,G(G)’ £ in MM(G) and X in az we have
-1 S A(1
(2.10) d6 f f(g)tr ng’x;d,a(g)dg = J Ff,g(a)e (log a)da;
G A
v) IZ G(G) 18 a commutative algebra.

PROOF. The proof of (i) is straightgorward. See [13, Theorem 5.171for the
proof of (ii) and WARNER [27, §6.2.2] for the proof of (iii). Combination of

(ii) and (iii) proves (v). Let us prove (iv). From WALLACH [25, Lemma
8.3.11] we have
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NI R T CR Dl

hence

-1
) EF T ag6,6(8) T ET e s ,s8 )

V 3
Choose an orthonormal b351s e seeesey of H(8) such that e],...,edr is an or-
thonormal basis of H, (6) Realize Te on the Hilbert space H(TrE Xj =
b b
= L (K;H(E)). Then tge vector-valued functions fi(i=],...,d ) defined by

dgnd v v
fi(k) := <5—> (6 (k),..., (k)), k € K,

g E
form an orthonormal basis for H (Trg A) It follows from (2.2) that
ds
R AL Mo
) J (5 ue” k))(S {0 dk.
i i=1 j=1 X
Hence
(2.11) "g,x;&,s(g) =
-1
_ -1 -(p+M)H(g k) =1, 1
dddg j e tr 655((u(g k)) 'k)dk.

K

Combination of (*) and (2.11) yields:

dgl j E(g)er mp .4 5(8)de =
G
= d;] J J f(g)e(k-p)H(gk)tr GEE(k—]u(gk))dg dk.
G K
Next make the transformation of variables g »vgk_1 and substitute (2.8) into
the right hand side:

(A+p)1og a

dk da dn.

LHS of (2.10) = dgl J” £ (kan)tr 6, (k)e
K
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In view of (2.4) this yields (2.10). g

CORALLARY 2.3. If (KXM,M*) 18 a Gelfand pair then (GXK,K*) 18 a Gelfand pair,

I: S(G) 18 a commutative algebra and § s M-multiplicity free for each § in

K, and each irr. K-finite Hilbert rep of G is K-multiplicity free.
PROOF,., Use Cor. 1.8 and Theorem 2,2 (v),. 0

In the following examples (KXM,M*) and (hence) (GXK,K*) are Gelfand

pairs:
G K M
SL(2,R) S0(2) 0(1)
SL(2,C) SU(2) u(1)
S0(n,1) S0 (n) S0(n-1)
su’ (n,1) U(n) U(n-1)

Note that the cases G = SL(2,R), SO_(2,1), SU(1,1) are locally isomorphic
and also G = SL(2,C), SO°(3,1). Since, under the assumption that (GXK,K*)
is a Gelfand pair, each finite-dimensional irr. rep of G is K-multiplicity
free, it follows from KRAMER [17] that almost all cases with (KXM,M*)
being a simple linear Lie group occur is the above table,

We can now formulate the program for a global approach to Harish-

Chandra's subquotient theorem:

(a) Let § € K such that § is M-multiplicity free. Let AG be the image of
I: 6(G) under f = {Fg E} and provide AG with the topology which makes
b b
this transform an homeomorphism. Determine AG completely, also topolog-

ically, and prove that each continuous character on AG has the form

F »—J FV(a)e)\(1Og a)da
A £
for some & in MM(G), A in az. Then in view of (2.10) and Cor. 1.7, we
conclude that each irr. K-unitary rep T in which § has finite nonzero

multiplicity is Naimark related to an irr. subquotient rep (namely the
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one containing §) of some HE X
E

(b) In particular, study fIMK»Ff]MXA (EEI:,ﬁ(G)) as a "classical” integral
transform (i.e., as an integral transform given in analytic form without

group variables) and determine its inversion formula,

Clearly, § is M-multiplicity free if 6 = 1 (the spherical case). Then
I:,G(G) = C:(KXG/K). Its image under the generalized Abel transform is known
by GANGOLLI's [3] Paley-Wiener theorem: the space of all Weyl group invari-
ant C -functions on A with compact support. However, part (b) of the above
program in the spherical case has been done only in the rank one case. Then
fe Ff can be written as a Weyl type fractional integral transform or a com-
position of two such transforms (cf. KOORNWINDER [111]).

The above programs has been completed for all § in the Ca%? G = SL(2,R)
(cf. KOORNWINDER [13], [14], TAKAHASHI [20]). Then A = {a =(¢©

t*-\o e7t)[>
K = du = (cO8 © -sin ©
e ° sin 6 cos 6/]°
inb

K consists of the reps Gn(nez), where Gn(ue) = e . In considering the

~

to A and we ob-

transform f ~» F_ for fin I (G), we can trestrict f and F
f c,6n f

tain

=1
(2.12) F(a,) = j f(aW)T]n|(§%—§)<ch2w—chzt) 2sh2w dw,
t

where Tlnl is the Chebyshev polynomial of degree |n]:
(2.13) Tn(cose) := cos n 0.

The inversion formula to (2.12) is

o

__ -1 ch t 2. .2 \-%
(2.14) f(aw) = T J Ff(at)T]nl(EE_§><Ch t-ch w) dw.
w
The correspondences f <« f]A > Ff identify the spaces Ic,d @), Deven (R)

and Deven (R) , respectively, with each other. Note that in"the spherical
case (n=0) the pair (2.12), (2.14) becomes the classical Abel transform to-
gether with its inversion formula (cf. GODEMENT [6]). There are three dif-
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ferent proofs that (2.14) is the inversion formula to (2.12).
(i) by Mellin transform techniques (cf. MATSUSHITA [18]);

(ii) by specializing the inversion formula for the Euclidean Radon trans-
form on ]RZ to functions which behave according to rep dn of S0(2) (cf.

DEANS [21);

(iii) by using generalized fractional integrals (cf. KOORNWINDER [13, §5.9]).
3. SL(2,C), DISCUSSION OF EARLIER RESULTS

Let us now try to deal with the generalized Abel transform for SL(2,C)
in the same spirit as for SL(2,R) above. A global approach to the represen-
tation theory of SL(2,C) can already be found in NAIMARK [19]. He determined
irreducibility properties of principal series reps by using Theorem 1.2 (cf.
[19, Ch. 3, §9, no. 15]) and he used the generalized Abel transform for
proving the subquotient theorem 2.1 (ibidem, no. 16). (In fact, he consid-
ered the generalized Abel transform not on the algebras I:,G(G) but on cer-
tain algebras denoted by X? which are isomorphic to them (ibidem, no. 6).)
However, there are certain unsatisfactory points in his approach: (i) the
formula for the generalized Abel transform is not very explicit (cf. ibidem,
no. 10, formula (1)), with integration variables defined in an implicit way;
(1ii) the inversion formula (ibidem, no. 10, formula (9)) is derived by using
the Plancherel formula; (iii) the image under the generalized Abel transform
is not completely characterized (ibidem, no. 10, IV) but a subalgebra of the
image is obtained which is hig enough to prove that the characters on it
have the desired form., See BRUMMELHUIS [1] for a more detailed discussion of
Naimark's approach.

KOSTERS [16] studied irreducibility, Naimark equivalence and unitariza-
bility for subquotients of the principal series of SL(2,E@) by using the
global methods developed in [13], but he did not give a global approach to
the subquotient theorem 2.1.

Finally, a helpful reference to us was WANG [26], who derived a Paley-
Wiener theorem characterizing the image of the algebras I:,S(SL(Z,G)) under
the group Fourier transform. Indeed, his result is equivalent to character-

izing the image under the generalized Abel transform.
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4, SL(2,C), PRELIMINARIES

Let us fix an Iwasawa decomposition G = KAN for G = SL(2,C) with

o B 2 2
(4.1) K = SU(2) = {ka gi= ( _ _.) | 0,8 € €,lal® + |B8]° = l},
’ -B .a
et 0 '
(4.2) A= {at 1= ( ‘ -t) | t eﬁR},
0 e
1 x+iy
(4.3) N = {nx+iy 1= ( ) | %,y € D@}.
0 1
Then
ei¢ 0 [
(4.4) M= {m 1= ( s ) 0<¢ <2 ﬂ}.
¢ 0 e 1¢

We will also use special elements of K given by

cos 6 -sin 6
(4.5) ug i= ( ).
sin 6 cos ©

~

K consists of the reps Tﬂ £=0,1,1,60.) of dimension 2£+ 1. A model for the
representation space of TZ is given by the space HE of homogeneous polyno-

mials of degree 2£ in two complex variables with orthonormal basis consist-
ing of the functions wﬁ (n==L,~L+1,...,4):

1

3
(4.6) wﬁ(x,y) 1= (é%;) Xz'ny£+n'
Then
2 B - -
4.7) (T (ka B)f)(x,y) := f(ax-By,Bxtay)

defines an irr. unitary rep of K on Hﬁ’ Note that the orthonormal basis is

an M-basis:

-2in
o L
wn.

L L
(4.8) T (m¢) wn = e

Let
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2 L. L £
(4.9) € () 1= (1Y)

denote the matrix elements of Tz(k) with respect to this basis. From (4.6),

(4.7) and (4.9) one obtains a generating function for these matrix elements:

1
(4.10) ( 22_{'1 ) (ax-By) L™ (Bxray) T =

1
Lo {20\ L-m_&+m
Z tmn ka 8 \ -m X y o

m=—£ >

From this one can obtain an explicit expression for tﬁn(k) in terms of

Jacobi polynomials A more detailed account of the representation theory of

SU(2) is, for instance, given in VILENKIN [24, Ch, IIIJ],

We will need two special functions associated with the reps Tp- First,

for the character Xp of T2 we have

(4.11) Xﬂ(ka B) = Uzz(Re a),
where

_ sin(n+1)¢
(4.12) Un(COS ¢) = ——W

is the Chebyshev polynomial of the second kind. Next, for the diagonal ma-

trix element t..(k) we have:

J]

(4.13) tg.(k ) = . (a)

]3] a’B K_J ,K"'J ?
where
(4.14) R (re'?) := P(O’lm_n])(2r2—l)rlm_nle1(m—n)¢

m,n mAD
and Pﬁa,B)(x) denotes a Jacobi polynomial. Rm n(x+iy) is an orthogonal poly-

3

nomial in the two variables x,y, a so-called disk polynomial. It can be com—

pletely characterized by the three conditions
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R.m n(x+iy) = c.(x+iy)m(x—iy)n + polynomial of degree less than
H

m + n;
J J Rm n(x+iy)xpyqu dy = 0 if p+q < m + n;j
b

2

(4.15) 2
xT+y <1

Rm,n(l) =1,

See KOORNWINDER [12], It follows from (4.11) and (4.13) that

2
(4.16) Uyp(Re @) = j=z-£ Rp_s pag (@)

M consists of the reps Ej(jeéﬂﬂ defined by

o "213¢
(4.17) Ej(m¢) = e .

Let nj N (j e§Z,2e€) denote the principal series rep of G induced by the rep
b

m,a.n »»e_Zij¢e2At
¢ t x+iy

of MAN. Since T, has M-content {Ej]j=—£,—£+l,...,ﬂ}, we obtain by Frobenius
reciprocity that m.

JsA
For p we obtain:

has K-content {T£[£=ljl,|j]+l,...}.

(4.18) p(log at) = 2t,
5. THE GENERALIZED ABEL TRANSFORM FOR SL(Z,C)

v
T ©, d[ := 20+ 1, Note that TK = TZ' Nor-

H)
malize the Haar measure on N by dn

(2.3) to G = SL(2,€) yields

Write Ic,K(G) instead of IC

=1 . e .
xHy T (2m) "dx dy. Specialization of

_ -1 2t o
(5.1) Ff(k,at) = (2m) ‘e j J f(katnx+iy)dx dy, f € IC,Z(G)'

Formulas (2.7) and (2.6) can be written as
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ya
L
(5.2) £(kja ky) = d,p mg;ﬂ t (ko k)E (W),
L
2 ya
(5.3) Fo(k,a) = dp j}_z £y T (0,

forfin I, Z«D' From now on we fix £ and Zm will mean a sum with m running
]

through the set {-£,-£+1,...,£}. Let us use the notation

f(¢,w) f(m¢ aw),

F(T,t) = Ff(m’["at)’

Fj(t) = Ff’j(t).
Then
(5.4) £o,w) = dp ] e ™ (o),
m
_ -2ijT
(5.5) F(t,t) = d, ) e FL (t).

.

[ee] ' )
Note that, for f ¢ 1 Z(G)’ the f '"s and F. s are in C (R). The function f
C, m ] c

satisfies an obvious symmetry because of the Weyl group action:
(5.6) flo,w) = £(—¢,~w).
Indeed, if f ¢ I_(G) then

f(m¢aw) = f(u“/zm au 1T/2) = f(m_¢a_w).

Next we want to rewrite (5.1) as a "classical" integral transform. An
intermediate stage (essentially the same as in NAIMARK [19, Ch. 3, §9, no.
10]1) is as follows:

LEMMA 5.1. If f € 1“ 2(G) then

(5.7) Fj(t) = j ) fm(w)t (ug )tﬁj(u_e Yzdz,
o m 1 2
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where, for given z and t, w, 9, and 6, are such that

(5.8) atnz =ug au g .

PROOF.

~ L, -1
Fj(t) = J Ff(k,at)tjj(k )dk
K
= (2m et fkan . )tt. & Hdk dx d
thx+iy’ "] y
K =0 =
o 2T
_ -1 2t £ -1
= (21) ‘e J J J f(m_wlzkmwlzatnz)tjj(k Ydk zdz dy
KO0 O
= o2t J f f(katnz)tgj(k_l)dk zdz
KO
_ 2t L -1
= e J J f(u_ezkue]aw)tjj(k Ydk zd%
K 0
= dZeZt f J ) fm(w)tﬁm(u o Kug 5t§j(k—1) dk zdz
X0 m 2 1

N
(nd

L £
jm(uel)tmj(u_ez)zdz. g

I
[¢]
o318
B o~
P-h
8
~
=
~
rt

A straightforward calculation shows that (5.8) is equivalent to

cos(Gl-Gz) ch w=cht,

sin(e]-ez) chw= -z et,
(5.9)

cos(6]+62) sh w = sh t,

sin (61+62) shw=ijze,

and that it implies
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(5.10) ch2w = ch2t + ye’tz?

Nl
m
°

The final version of our Abel transform is given in the following

theorem:

THEOREM 5.2. If £ ¢ I: 2 (G) then
H

2T
(5.11) F(t,t) = (2m)”! J J £(d,w).
0t
U2£<%%—§-cos¢ cosT + :2 5 sin¢ sinT)ZshZW d¢ dw
and
(5.]2) F(T’t) = F("T,"'t).

PROOF. By (5.7), (5.4) and (4.8) we obtain:

2T
2t
e L £ ¥4
Fj(t) = 2“42 J.f f(¢,w) Z tjm(ue )tmm(m—¢)tmj(u-6 )d¢ zdz
m 1 2
00
or 2T
== f f(¢ w)tz (u, m ,u )d¢ zdz
omd Wity 5 g T_yU_g .
L 0 0 1 2

Now, by (5.9), we have

=k

u, m ,u
6] ¢ 92 0,B

with

Q
|

= cos(el-ez)cos o - 1 cos(6]+62)81n ¢ =

ch t
ch w

cos ¢ - 1 sh t sin ¢,

sh w

Hence, by using (5.5), (4.11) and (5.10) it follows that
2m @
F(r,t) = e2F(2m ! J f £(¢,w).
00
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ch t sh t . . _
'UZZ(EE—E cos$ cosT + o sind 51nT) d¢ zdz =

2

ch t sh t . .
. Uzz(zﬁ—;-cos¢ cosT + —— sing 81nT)23h2w d¢ dw,

This shows (5.12) and also (5.11) for t = 0. Finally, (5.11) holds for t < O
because the right hand side of (5.11) with f: replaced by fEt (t>0) equals
0 (use (5.6)). O

Because of (4.11) and (4.13) we have the following two variants of
(5.11).

2
(5.13) Fi(r,6) = ! J
0

f(o,w).

— 8

2nd
£ t

ch t .sh t .
. 'Rz-j,£+j(m o8t * ishw Sl“¢)25h2w dé dw,

(5.14) F(t,t) = d, J J £ (w).
m

m
t

ch t .sh t .
'Rﬂ+m,£-m(ch - cosT + g s1n1)23h2w dw.

For a function F of the form (5.5) (FjeCZ(R)) define
2T
(5.15) F(2§,20) i= o J f F(r,e)eltdTe™ A g g,
0 -
joe{-£,-L+1,...,2}, X € €.~
Then, by Fourier inversion:

(5.16) F(T,t) ='§%-J J F2i,2in)e T2 gy,
Co

Normalize the Haar measure on A by dat := dt. and the Haar measure dg on G

by (2.8). It follows by specialization of (2.10) that

-1 ~ 21t o
dﬂ J f(g)tr “j,A;ﬂ,Z(g)dg = J F_j(t)e dt, f € Ic,ﬂ(G)’
G -0
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where we wrote ﬂj,x;ﬂ,ﬂ instead of ﬂj,X;Tﬂ,T£° Hence, by combination with
(5.5), (5.15) and (5.12):
(5.17) [ f(g)tr ﬂj,A;ﬂ,K(g)dg = F(23,2)).

G
Formulas (5.17) and (5.11) together will yield an integral representation

for w. We need a few preparations.

J,A;K,KIMXA'
First observe from (HELGASON [9, Prop. X. 1.17] that, for G = SL(2,C),
the left hand side of (2.8) equals
£(k.a k.)sh22w dw dk. dk
¢ 195w 278 )
0 KK

for some positive constant c. It follows easily that:

LEMMA 5.3. Let f1 € CC(G), £, € C(G) and let both functions have the form
(5.2). Then

(5.18) J £,(8)f,(g)dg = J f](g)fz(g—l)dg =
G G 2T ©
- 2;; J j f](m¢aw)f2(m¢aw)sh22w d¢ dw.
£ 00

By a closer look at the Cartan decomposition G = KAK (cf. HELGASON [10,
Ch. IX, §1]) we obtain:

LEMMA 5.4. Let f-z’f-z+1""’fz be C -functions on R with compact support
inceluded in (0,%). Then (5.2) with kl’k
function £ in Ic,E(G)'

, €K, w20 unambiguously defines a

Apply (5.18) to (5.17) and use (5.12) and (5.11):
21

w7
2nd

£ 0

2

=1
2w

0

f(¢,w)tr nj’x;z’z(awm¢)sh22w d¢ dw

3

O+——8 O+—— 8

F(T’t)(6213Te—2kt+2—2131e21t)dt it =
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2w 2

1 1
“g | | ol ]
0 0 0

sh t . .
'UZE( cos¢ cosT + h sing 31nr)dT dt]ZSh 2w d¢ dw.

(e21JTe—2kt+e-21JTe2Xt).

oO'——=

The first and the last member of the above equalities are equal to each
other for all f in I: K(G)' Hence, in view of Lemma 5.4, the expression in
3

square brackets in the last member will be equal to

c sh2w

24, I ACE R

Divide both sides by sh2w and put w = ¢ = 0. We get ¢ = 2. Thus we have

derived:

LEMMA 5.5. If £ e C_(G) then

c o o

1 2t _
(5.19) f f(g)dg : EF—J J J J f(katnx+iy)e dk dt dx dy =
G K= =0 —=wx

2
2 J J f f(klaZkZ) sh™ 2w dw dk] dk
0 KK
THEOREM 5.6. (integral representation).

2-

2T W
-1 21JT —2At —21JT 22Xt
(5.20) dptr e e, 0(mpay) = 2nsh2w f [ (e ).

ch t sh t . .
'U2£<ch 5 COs$ cosT + —— sing SlnT)dT dt.

6., THE INVERSION FORMULA

In order to invert the transformation f -+ F given by (5.11) we will

first express f(e) (f I:)E(G)) in term . Let
1
2 A+1
(6.1) am(x) - f Pé?ii}m])(Zrz—l)r'lml+ + ar,
0
R i
(6.2) b_OLu) t= | e” ™ (cosy)  (siny) ay,

o
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(a,B)

where P denotes a Jacobi polynomial,

LEMMA 6.1. If £ € 1:¢e(c), ReX, Rep > -1 then
- b
w 3
A . u 2 2
(6.3) F(t,t)(ch t cosT) (sh t sinT) (ch"t-cos”1)dt dt =
00

_ A+2 u+2
= 4@@2 am(k+u)bm(k,u) J fm(w)(ch w) (sh w) dw.
m
0
PROOF, It follows from (5.14) that the left hand side of (6.3) equals

4d, f é ¢ OL,WE_ (W) (ch W2 (sh W) aw,
0

where
w3
ch t .sh t .
C (>\,U) f R£+m’£_m<m cosT + l—s'n SlnT)-
00
2 2
ch t cosT sh t sintT (ch t-cos t) dt dt =
ch w shw ch wsh w

= 1 )\ H =
f f Rﬂ+m,ﬂ—m(X+ly)X yHdx dy am(A+u)bm(A,u)
2. 2
X +y <1
x,y>0

by (4.14). g

There is some similarity of formula (6.3) with the formula in
MATSUSHITA [18, p. 115] which is obtained by taking Mellin transforms at
both sides of (2.12). Matsushita could invert his formula and thus, by
taking inverse Mellin transforms, obtain (2.14). We did not succeed in in-

verting (6.3). However, we can prove:

 PROPOSITION 6.2, If f ¢ I: 2(G) then
9

2 2

Y
(6.4) (~——-+ ———)F(0,0) = -4£(0,0).
9T ot

PROOF. By integration by parts and application of (6.3) we obtain:
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32 2 x
— + ——§>F(T,t)(ch t cost)”(sh t sint)"dt dt =
9T ot

oO+—-38
Nl
o—=3
N

™
F(t,t)[A(A-1)(ch t COST)X-Z(Sh t sin’r)u +

0

+ u(p=-1)(ch t COST)A(Sh t sinT)u_z](chzt—coszr)dt dt =

Nop—

o——38

[oe]

= ] a_Owu=-2)[u(u=-1b_(1,u-2) f £ (w) (ch w2 (sh w)taw +

m
w 0
A p+2
+ A(A—l)bm(A-Z,u) J fm(w)(ch w) (sh w) dw] =
0

= 44, é a_Oorp=2)[(((A=1) ~4m*)b_(A-2,u) +

(o]

~2im(A=2)b_(A=3,u+1)) J £ (w)(ch )2 (sh w)Hdw +

@ 0
+ A(=1)b_(A=2,1) J £_(w) (ch W (sh )2 awl.
0

By analytic continuation in A,p, the first member of these equalities equals

the last member for Re A > 2, Re p > -1, Now let f£ have support inside

2
[0,27] x [-M,M], then the same holds for (Bff +-jL§>F. Divide the first and
aT ot<
last member by
Miw
J J (sh t sinT)Mdt dr
00
and let pu + -1. Then we obtain :
82 32 2
(6.5) —— + ==JF(0,0) = -4d, ) a_(A=3) (=A+1=4m")f_(0).
2 2 L m m
9T ot m

Let A + < in this identity. Then

22 a2
— + —JF(0,0) = -4d, ) £ (0) = -4£(0,0). O
2 2 L m
9T at m
REMARK 6.3. It is evident from (6.5) that a system of functions {fm} deter-
minedlﬁrfdﬂLI: Z(G) must satisfy certain additional conditions at 0. In
Hd

Prop. 9,1 we will make a more preecise statement about this.
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PROPOSITION 6.4. If fl’f2 € IC,K(G) then
2T
(6.6) J f f.(¢, w)f (¢, w)sh 2w d¢ dw =
00
27

e 2 2
% f J F](—r,t)(_a_7 + —8——2—>F2(T,t)d’t dt.
9T ot
PROOF. First observe that (5.18) (with c=2) yields:

21 o
1

£ 00
Next, by (2.9) and (5.5):
£ £ 4
() f F (t )F . (t=t,)dt
f *f2, J fl?J fZ’
27

Thus, by (6.4) and (5.12):

i

82 32
(£,x£,)(e) = - Z<;‘§' “"§>Ffl*f2(mrat)lr=t=0 B

oT ot

2T

1 02, o
=.T§;§éf f Fl(Tl’tl)< 5+ Z)F (T tl)drl dt].

0 = BT] atl

A second application of (5.12) yields (6.6). [

THEOREM 6.5 (inversion formula).
If f ¢ Ic,K(G) then

2T W
- 1 82
(6.7) f(p,w) = = 5 J f ( 2>F(T,t).
00 BT ot
ch t sh t . .
'UZE<EE—§ cos$ cosT + Tt w sing SlnT>dT dt.

PROOF, Substitute (5.11) for £ = f.  into the right hand side of (6.6)

1
interchange the order of integration:

EE_.J f f1(¢,w)f2(¢,w)sh22w d¢ dw = (f]*fz)(e).

and
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2m

£

f](¢,w)f2(¢,w)sh22w d¢ dw =

o*-——‘ﬁ o——38

it 2T W
-1 1 L) )
J f£.(¢ W)[ EF-J J(——f ;;E)F (t,t).
0 00
ch t sh t . . 2
'UZE(ch - cos$ cosT + h w sin¢ SlnT>dT dt]sh 2w d¢ dw.

For flxedféqJIIc’z(G) this formula holds for a11:§ in Ic,K(G)' By Lemma 5.4

we conclude that (6.7) is valid. 0O

REMARK 6.6, The proof of the inversion formula (6.7) uses the group théore—
tic property that the generalized Abel transform is an homomorphism with
respect to convolution, We did not succeed in finding a direct analytic

proof for the inversion formula,

REMARK 6.7. Prop. 6.4 implies that f » Ff is injective on I: Z(G)’ which we
b

already knew from Theorem 2.2 (ii).

COROLLARY 6.8. If f ¢ 1: 2(G) then
H)

1 -1 2 .2

(6.8) fle) = F'Z j [ J f(g)tr nj,ik;ﬂ,ﬂ(g )dg](k +i7)dAx.
10 ¢

PROOF, It follows from (5.16) that

oo

2 .2 .
2+ 20,00 = - 2an ! | T F2i,2i0) 035D an.
22 .
9T ot ]

—00

Now substitute (6.4) and (5.17) into this formula and use (5.12), [

The above corollary immediately implies the Plancherel formula for
SL(2,C). This formula was first obtained by GELFAND & NAIMARK [4], see also
the very readable proof (for SO_(3,1)) in TAKAHASHI [21].

7. CHARACTERIZATION OF THE IMAGE OF THE GENERALIZED ABEL TRANSFORM

Let A£ denote the image of 1 K(G) under the transform f » F. We al-
ready know that all F in AK have the form (5.5) with FJ in C (R) and that
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F satisfies the symmetry (5.12). Now we will derive an additional condition

satisfied by each F in AE'

PROPOSITION 7.1. If F € Aﬂ then

(7.1) F(2p,2q) = F(24,2p), p, q e{-£,~2+1,0..,L}.
PROOF. We will prove that
(7.2) tr Wp,q;ﬂ,ﬂ(m¢aw) = tr “q,p;ﬂ,ﬂ(m¢aw)’ P, q e{-L,~2+1,...,2}.

By (5.17) and Lemmas 5.3, 5.4 this is equivalent to the proposition. It fol-
lows from (5.20) and (4.16) that

-1
do (erm 32,0 ®e2) = tTTg o p(mea)) =

2T w
=) e_Zim¢n_] R Cht st + iR E gine
£+m,L-m\ch w sh w °
m
00
] e21pT—2qt + e—21pT+2qt _ e21qr-—2pt _ e—21qr+2pt dt dt .
2sh2w

The part in square brackets, with new integration variables

X = ch t cosT = 5
ch w > ¥

t .
sinT,
w

equals
f J R£+m,£—m(X+ly)fp,q(T’t)dXdy’
x2+y2<1
where
._ ch(2ipt-2qt)-ch(2iqt—-2pt)
fp,q(T’t) T ch2t-ch2it *

Now, by using the recurrences
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i

I
h(t+it)f T,t) = 5(£ T,t) + f T,t
ch(EHDE, (68 = 5y, gy (08 + Fpy quy (T8))

1
h(t-it)f T,t) = 5(f T,t) + f T,t
eh(E=in)ty (08 = 3y ey (T8 * £y g (50,

H

together with

ch(t+it) x ch w + iy sh w,

ch(t-it) x ch w - 1y sh w,

we conclude that fp q is a polynomial in x,y of degree 2|p|viq|-1. Now use
35

the orthogonality property of the disk polynomials R +m K-m(X+iy)' g
H

DEFINITION 7.2, Let Bﬂ be the space of all functions F on [0,27] x R of the

form

F(t,t) = Z e_ZijTF.(t),
i J

with Fy c:(no (Ge{-£,-£+1,...,2}), such that
(i) F(T,t) = F(—Ta_t)s
(ii) F(2p,2q) = F(2q,2p) (p,q e{~£,—L+1,...,£4}).

Clearly, AK < B, (cf. (5.5), (5.12), (7.1)). If F ¢ BE then define the

function E, on [0,2m] x R by

(7.3) EF(¢,W) := RHS of (6.7).

Thus, if f ¢ I: Z(G) and F := F_ then E_ = fl

f F MxA

-

ping F ¥ E_ is a bijection of BK onto I: K(G) (restricted to MxA), Thus it
H]

. We will show that the map-

F
will turn out that Aﬂ = BK'

'PROPOSITION 7.3. Let F € B,, £ := E Then

1 1 T 32 32
(7'4) f(¢,W) = 2sh2w E‘T"_'J f (—‘—2 + _"‘2">F(T,t)-
0w aT ot
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2£<Ch t cos¢ cosT + :E ; sing¢ SinT)dT dt,

and £ is the restriction. to M x A of a function f on G belonging. to I': E(G)‘
. b
and given by
1
—_— A
(7.5) f(g) = dzﬂ Z [ F(2j,2iA)tr ﬂ irse, K(g)(k +j )dk
N
0

PROOF. (7.4) follows from (7.3) because of condition (i) of Definition 7.2
and because

2T o

ch t sh t . ) L
f (;;—.+ ———)F(r t)U (EE—;-COS¢ cosT +«sh = sing s1n1)dr dt =0,

=00

To prove this identity, observe that

ch ¢ cos¢ cosT + sh t sin¢ sinTt
ch w sh w

is invariant under (t,t) = (iT, —1t) and that U K(—x) (-1 )2£U K(X)’ so

22(...) is multiplied by (- ]) under T > T + m, Hence UZZ("') is a finite
linear combination of terms e2lpT 2qt ZIqT 2pt(p,q e{-L,-£+1,...L}) with

ccefficients depending on ¢,w. Now if we write

2 .2
(ji7.+ iii)F(T,t) Z H (£)e 21T,
oT ot

then condition (ii) of Def. 7.2 implies:

J Hp(t)ezqtdt - - J o (D)e’Ptde,
IR R
and our claim is clear,

Formula (7.5) is proved for g € MA by substituting (5.16) into (7.3)
and next combining this with (5.20). Now observe that A - ﬁ(Zj,ZiA) is ra-
pidly decreasing (je{-£,-£+1,...,£}), since F € C:([O,ZWJXR), and that, by
(2,.11), all partiael derivatives w.r.t. g of the function
(A,g) » tr WJ irsl, K(g) exist and are of polynomial growth in A. Hence
(7.5) defines a functlon £ in C (G). Next, f is invariant under K-conjuga-

tion and behaves like the rep TK of K because of similar properties of the
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function g ~ tr ﬂj insl t(g). Thus f will have the form (5.2). Finally,
b 29
since fIMA has compact support because of (7.4), we conclude that f has com-

pact support on G. Hence f € I (G). 0

Next we want to prove that F - EF is injective on Bﬂ' For this we need:

THEOREM 7.4,
(a) If Ial = 13| ¢ IN then LI ig trr, If || = |j]l € N then LETPN has two
- ’ ’
irr, subquotient reps o, , and 1. ,, With
IsA 3,2
M(Gj,l) = {lel, lel"‘l’...Tl)\l-l}’
M(Tj,k) = {TIAI,TI)\]'Fl’...}‘

(b) There exist precisely the following nontrivial Naimark equivalences

between the above irr. reps:

oA T T L UAl=1514m),

o. ~ g , T. > T, IAl=-17]elN
iox T %3, Ty T Tog, - (A=l Tlem,

. = T, LT, = T .(3l-1Aalem),
[PE SOV ELS 1O W W 1A )

PROOF, The matrix element ﬂ By K K 2,0 (a ) (K >0 ) can be easily eva-
luated in terms of azF] h]pergeometrlc functlon (cf KOSTERS [16, (3.11)7J).

This shows that, if " = 0 then |A] - |j] € IN and
s A3 Zl,ﬁz
1 > [Al, £ 5 < |A] or K A, Kz > |A|. Thus, by Theorem 1.2, "j A is irr.
3
if Al = |31 ¢ N and . A has at most the irr. subquotient reps Gj N and
5 H
Tj N if |A]l = |j| € N, However, by (7.2) and Theorem 1.5 it follows that
3

J (IA]—IJleIN) is indeed an irr. rep being Naimark equivalent to the irr.
3

rep T, i This settles (a). The other equivalences in (b) follow from the
9

evident identity

£ ﬂj’k;‘z,'e(md’aw) -t ﬂ-j’—)\;’es’e(m(baw)’
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together with Theorem 1.5. Finally, to prove that this exhausts the possible

Naimark equivalences, observe:

. = T, = A.i. = A.]
“Jl,xl;z,z;z,z iyshy38,258,8 131 T "3

(cf. KOSTERS [16, p. 161). [

The above proof simplifies the proof by KOSTERS [16] because of our new

proof of (7.2). The above proof that “j A

H
occurs in NAIMARK [19, Ch. 3, §9, no. 15].

is irr. if |A] - |j] ¢ IN also

PROPOSITION 7.5. The mapping F » Ey: B, > 1: 2(6) T8 injective.
S
PROOF. Suppose F] € BK’ f] 1= EFl =0, f2 € IC,K(G)’ F2 1= Ff2 then
2T
32 32
— + —|F (1,t)F_(1,t)dT dt = O.
2 21 2
0 —o oT ot

To see this, substitute formula (5.11) with £ = f_, into the left hand side

for F2 and interchange the order of integration. éubstitution of (5.16) into
the above formula and application of (5.12) yields:
) f ﬁl(2j,2ix)§2(2j,2ix)(xz+j2)dx = 0.

10
Let KZ denote the set of functions F onA{—Zﬂ,—2£+2,...,2£} x 1[0,») for
which F € A,. One easily verifies that AZ is an algebra under pointwise mul-
tiplication, consisting of continuous functions Fwhich satisfy F(2j,2i)) = O
as A > », and that Kﬂ is closed under complex conjugation. Nex;, Rﬂ separates

points. Indeed, if ﬁ(Zjl,zixl) = §(2j2,2ix2) for all F e A, then

tr ™., . = tr m. .
J],lkl;ﬂ,ﬂ(g) 32,1A2;Z,K(g)

because of (5.17) and Lemmas 5.3, 5.4, so (j],ill) = (jz,ixz) by Theorems
7.4 (b) and 1.2, Finally, another application of (5.17) and Lemmas 5.3, 5.4
shows that no (2j,2i)) is annihilated by all F e KE' Thus, by the version
of the Stone-Weierstrass theorem for a locally compact Hausdorff space (cf.

SIMMONS [23, §38, Theorem B]), each continuous function on
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{- 25,...,2@} x i[0,~) vanishing at « can be uniformly approx1mated by func-

tions in Aﬂ' In particular, the (rapidly decrea31ng) function Fl can be

uniformly approximated by functions F

5 € AZ’ so

) f |7, 23,200 20 %+%ar = o,
J
0

This shows that F1 =0, [

Define §£ to be the algebra of all functions in D(]K;Gzz*l) such that

(1) Fj (-t) = F_j (t), j = —4@,—'6-‘-1,..0"8,

-2ty -2jt

i

i) 7 F(t) e F (e “IMde, i,k = =£,-£+1,...,4,
with componentwise convolution as multiplication, and the topology inherited
from D(IR;(IIzEH

mapping F » {Fj} defined by (5.5). From (5.1) and (5.3) we have:

) . Note: §£ and BZ are isomorphic as vector spaces under the
¥4 _ -1 2t K -1
(7.6) Ff,j(t) = (21) e f J J f(katnx+1y) jj(k )Ydk dx dy.
KRR
Now we arrive at the main theorem:

THEOREM 7.6. The mapping f = {ng J.}: I: K(G) > EK s an isomorphism of topo-
5 E

logical algebras.,

PROOF, The mapping is an injective continuous algebra homomorphism by Theorem
2,2 and it is surjective by Proposition 7.3 and 7.5. The only thing left to
prove is that the inverse E: B£'+ I:,E(G) is continuous., This is done as
follows. Denote by lgll (geSL(2,€)) the operator norm of g acting on the

Hilbert space Cz. The elements of K(=SU(2)) have norm 1, so, if g = klath
then lgl = "a I = max{et,e_t}. If R > O then let I. e, L R(G) denote the space
of functions in I K(G) which vanish on all g in G w1th loglgl > R; simi-
lary, let BZ con31st of all functions in BK with support included in

[0,27) x [-R,R]. Let f ¢ 1 Z(G)’ R > 0. In view of (5.2), (5.11) and (7.4)

we have:

f e Ic,K;R(G) = SuppflMXA c[0,2m) x [-R,R] = F. e BZ;R



34

so f » Ff: IQ,K;R(G) - BK;R 1s a continuous linear bijection with inverse
EIB . Because of the open mapping theorem for Fré&chet spaces (cf. RUDIN

/@; oo . oo
[22, gor.2.12(bXD,Eh BZ;R(G)—>IC,£;R(G) is also continuous. Since IC,K(G) =

U = . . . .. ..
R>0 IC,K;R(G)’ endowed with inductive limit topology, and similary for BZ’

we conclude that E: I: K(G) > B[ is continuous. 0

8. THE SUBQUOTIENT THEOREM FOR SL(2,C).

In order to derive the subqoutient theorem from Theorem 7.6 we have to
find all continuous characters on EE,AS a preparation we need two lemmgs.
Identify {Fj} in BK with F in BL by means of (5.5). Thus (5.15) can be re-
written as

(8.1) F(23,20) = d, f Fj(t)e—ZAtdt

and F H‘dzl %(Zj,ZX) defines a continuous character on %Z for each j

jin{-2,-L+1,...,2},A in C.
LEMMA 8,1, Let

~

B

2,0 1= {F ¢ §£|§(2p,2q)==0 for p,q = =£,-8+1,...,L}.

Then 2. is a closed subalgebra of B, and every nonzero continuous character
7,0 . 14

on Eﬂ 5 has the form F H—qgl F(2j,2)) for some j in {-£,...,2}, A in C.
b

PROOF, See NAIMARK [19, Ch. 3, §9, no. 13]. The lemma is easily reduced to
the two problems of finding all nonzero continuous characters on the con-
volution algebras D(R) and D
of the form f » fnif(t)e_A

(R), respectively. In both cases these are
even

Y4t for some A in C (see also [13, Prop. 5.61). 0O

The next lemma is also given by NAIMARK, see [19, Ch. 3, §9, no. 141,
but there is an error in his proof, so we will give here the full correct

proof,

LEMMA 8.2. Let A be an algebra, f,g, fl""’fn multiplicative Llinear func-—

tionals on A, A

0 i= {x e A|f](%) = ...‘= fn(x) = 0}, f|AO = g|A0. Then
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f=gorf=f for some k in {1,...,n} or £ =0,

PROOF, Without loss of generality we may assume that the fi's are linearly
independent. By a simple inductive argument we can find X, in A (1<ks<n)

. n
= < < - .
such that fj(xk) ij(l_J,k_n). If x € A then x Zj=1fJ(x)xj € AO’ so

. ,
f(x) - ) f.(X)f(x.) = gx) - Z £,(gx;).
j=1 J J j=1

On putting aj := f(xj)—g(xj) we see that

(%) £(x) = g(x) + Z o f ().
j=1

Substitution of x = y¥, with y in A yields,

0

f(y) @ = 0 (yeAO, 1<k<n).

Now there are two possibilities:

(i) a = 0 for all k. Then £ = g by (*).

(ii) a, # 0 for some k. Then f| = (0 and
k A0

*%x) f = x. f. f(x.).

(x*) f(x) 5 & (%) (XJ)

If £ # 0 then f(xK) # 0 for some £ and (**) with x = XpX: will yield
f(XZ)f(Xi) = GZif(gt). So f(xi) = 512 and f = fk' 0

PROPOSITION 8.3. Each nonzero continuous character on 3@ has the form

F H'dzl F(2j,2)) for some j in {~£,-L+1,...,L} and some X in C.

PROOF. Let X be a nonzero continuous character on B,. Then Xg = xlg i
continuous character on Bﬂ It follows from Lemma 8.1 that XO 0 %io
XO(F) dK F(2j,2)) (FeB 0) for some J in {-£,-€+1,...,£} X in C. Now ap-

ply Lemma 8.2 with f = Xg and g: F r d£ F(ZJ,ZA), Then

x(F) = dzl §(2j,21)(F€§£) or x(F) = dzl f(2p,2q)

(Feﬁz) for some p,q in {-£,-£+1,...,£}. [
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THEOREM 8.4 (subquotient theorem for SL(2,C)).
Let G = SL(2,C), K = SU(2). Then every K-finite irr. Hilbert rep of G is

Naimark equivalent with an irr. subquotient rep of a principal series rep.

PROOF, Use Theorems 1.5, 2.2 (iv), 7.6 and Propositions 1.6 and 8.3. [
9, FURTHER REMARKS

Obviously, Theorem 7.6 together with (5.17) and the Paley-Wiener theo-—
rem for the classical Fourier transform yields a characterization of the
image of IZ,E(G) under the group Fourier transform. This provides a new
proof of the Paley-Wiener theorem in WANG [26, Prop. 4.5].

Next we state without proof a characterization of functions f in I: Z(G)

b
in terms of functions fm.

PROPOSITION 9.1. Formula (5.2) together with

ya
tmn(uﬂ/4)fm(w{

L-n _ z
0 (£-m) ! (L+m) )

9.1) ¢n(w)(sh w)£+n(ch w)

DNl

defines a one — to =— one correspondence f <> (¢_£,¢_£+],...,¢£) between
17 ,(0) and (C] ®) 21,

c,even

Finally, we would like to remark that similar results as in this paper
for SL(2,C) can be derived for the corresponding Cartan motion group
SUu(2) o IR3. Let G be a noncompact connected real semisimple Lie group with
finite center, K a maximal compact subgroups, g and Rk the corresponding Lie
algebras, and g = k + p a Cartan decomposition of g. Consider the semidirect
product K o p, where K acts on p by Ad. Let a be a maximal abelian subspace
of p, a® the orthoplement of 4 in p w.r.t. the Killing form B on g. For §
in K let I:,S(G) be defined as in (2.3), (2.4). Then the analogue for K o p
of the generalized Abel transform (2.3) becomes

(9.2) F.(k,H) := f f(k,H+Y)dY, k ¢ K, He a, f ¢ I: G).

,6¢
al o
Now it can be proved that, if G = SL(2,C), f ¢ IC K(Kop) and a = R.Hothen
3
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2w

(9.3) Ff(mT’tHO) = const. j J f(m¢,wHO).
0t

. . t
.Uzz(cos¢ cosT + sin¢ sinT ;)d¢ wdw.
Compare this formula with (5.11).
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