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. *) The generalized Abel transform for SL(2,~) 

by 
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ABSTRACT 

We study the generalized Abel transform for SL(2,C) in the case of 

equal left and right, fixed K-type. We rewrite this transform as an inte­

gral transform of classical type. Then it involves a double integration with 

kernel expressed in terms of a Chebyshev polynomial of the second kind. 

We obtain the inversion formula in a similar form and we completely charac-
oo 

terize the image in the C -case. As a corollary we prove the subquotient 

theorem for SL(2,t) by a global approach. 

KEY WORDS & PHRASES: generalized Abel transform; representation theory of 

SL(2,t); subquotient theorem; Chebyshev polynomial of 

the second kind; principal series; Plancherel fomula; 

theorem of Paley-Wiener type 

This report is submitted to the Proceedings of the Intensive Seminar on 
"Topics in modern harmonic an~lysis", Istituto Nazionale di Alta Mate­
matica F. Severi, Italia, 

University of .Amsterdam, Departement of Mathematics, Roetersstraat 15, 
1018 WB .Amsterdam, Netherlands 



; 



0. INTRODUCTION 

In earlier papers [13], [14] the second author formulated a program for 

a global approach to the representation theory of noncompact semisimple Lie 

groups G and he carried it out for SL(2,JR) • "Global" means that no use of 

the Lie algebra and universal enveloping algebra of G is made. Instead, the 

analysis is based on a more or less explicit knowledge of the canonical 

matrix elements of the principal series representations of G with respect 

to a K-basis, K being a maximal compact subgroup of G. Furthermore, in the 

case of SL(2,JR) it turned out that the subquotient theorem (i.e. the 

Naimark equivalence of K-finite irreducible representations of G to sub­

quotients of principal series representations) can be proved by use of the 

generalized Abel transform. 

It is the purpose of the present paper to give a global proof of the 

subquotient theorem for G = SL(2,~) by use of the generalized Abel trans­

form. Let 100 ~(G) be the commutative topological convolution algebra of K­
oo c, u 

central C -functions with compact support on G which behave as the irre-

ducible representation o of K under left or right action of K. Then the 
00 

generalized Abel transform is an algebra isomorphism of I ~(G) onto a con-
00 C, u 

volution algebra of certain vector-valued C -functions with compact support 

on R. The subquotient theorem follows from a knowledge of all continuous 

characters on this image algebra. So __ we have to know this image algebra. 

This method was earlier used by NAIMARK [19] and the characterization of ,, 
the image algebra follows from WANG's [26] Paley-Wiener theorem. However, 

we will give a probably new proof with side results of independent interest. 

Namely, we write the generalized Abel transform as an integral transform of 

"classical" type and we obtain the inversion formula in a similar form: 

(0. l) 

21T 00 

F(T,t) = (21T)-l J J f(~,w)• 

0 t 

•U2l (~~!cos~ cosT +:~!sin~ sinT)2sh2w d~ dw, 
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(O. 2) f(cp,w) 
-1 

= (4TTsh2w) 

27T co 

f J 
0 w 

U (ch t sh t ) 
zl\ch w coscp cos,+ sh w sincp sin, d, dt. 

In this integral transform pair, l is in {0,½,1,¾,···}, U2l is a Chebyshev 
co 

polynomial of the second kind, and f and Fare C -functions with compact sup-

port, f(¢,x) and F(¢,x) both having the form 

1 
md-l,-l+I, ... ,l} 

( ) -2imiµ cm x e , 

with certain additional conditions. 

Let us summarize the contents of the paper. In section I we give basic 

results about the global approach to finding irreducible subquotients and 

prov.ing Naimark relatedness. Section 2 contains general theorems for the 

generalized Abel transform on a semisimple Lie group, section 3 a discussion 

of earlier results for S1(2,([) and SL(2,JR) . Section 4 gives preliminaries 

on SL(2,t) and the representation theory of SU(2) which will be needed. The 

main work of the paper is done in sections 5,6,7: the derivation of (O.I) 

and an integral representation for related spherical functions of type cS in 

§5, the derivation of the inversion formula (0.2) (also leading to a new 

proof of the Plancherel formula for S1(2,~)) in §6, a characterization of 

the image algebra in §7. Finally, the subquotient theorem is derived in §8 

and we state without proof some fuFther results in §9. 

Notation. rep means representation, 

ir;r. means irreducible. 

I. IRREDUCIBLE SUBQUOTIENTS, NAIMARK RELATEDNESS AND THE ALGEBRAS I ~ (G) 
c,u 

In this section we collect some results which are relevant for the 

global approach to the representation theory of a general locally compact 

group. 

Let G be a locally compact group satisfying the second axiom of count­

ability and let K be a compact subgroup of G. Let, be a K-unitary Hilbert 

rep of G, i.e. a strongly continuous rep, of G on a separable Hilbert 



space H(T) such that •IK is a unitary rep of Kon H(.). Then 

(I.I) 

where the multiplicity m0 equals 0,1,2, ..• or w (countably infinite). Let 

H0 (T) be the closed subspace of H(T) which is the representation space of 

m0 o in (I.I) and let P0 be the orthogonal projection of H(T) onto H0(T). 

For y,o in M(.) define the canonical matrix elements Tyo of.: 

( I • 2) g E G. 
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Then TY0 (g) is a linear operator of H0 (T) to Hy(T). The operator T(g) can be 

written as a (usually infinite) block matrix with blocks •yo (g). Define the 

K-content M(.) of T by 

( I .3) M(T) := {o EK I mo/ 0}. 

A 

The rep Tis called K-finite if m0 < 00 for all_o in Kand Tis called K-

multiplicity free if m0 = 0 or I for all o in K. 

DEFINITION I.I. Let T be a Hilbert rep of G, H0 a closed subspace of H(T) 

and P0 the orthogonal projection of~(,) onto Ho- Let T 0 (g) := P0,(g) IH 

(gEG). If , 0 (g1g2) = T 0 (g 1),0 (g2)(g 1,g2EG) then TO is called a suhquoti~nt 

rep of , on H0 . 
,, 

THEOREM 1.2 (cf.[13,§3.2]). Let T be a K-rrrultiplicity free rep of G. For 

y,o in M(T) write y ~ o 

relation on M(T) and TO 

for some o in M(T). 

iff Tyo IO and T0Y I 0. Then~ is an equivalence 

is an irr. suhquotient rep of, iff Toi = @ Y 
K y ly~o 

DEFINITION 1.3. Two Hilbert reps o and, of Gare called Naimark related if 

there is a closed (possibly unbounded) injective linear operator A of H(cr) 

to H(T) with domain V(A) dense in H(cr) and range R(A) dense in H(T) such 

that V(A) is a-invariant and Acr(g)v = ,(g)Av(vEV(A),gEG). Notation: cr ~ T 
A or o C:! T. 
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Naimark relatedness is an equivalence relation (called Naimark equiv­

alence) on the class of K-finite Hilbert reps of G (cf.[13, Theorem 4.4]). 

LEMMA 1 .4. Let er and -r be irr. Hilbert reps of G. If, for certain nonzero v 

in H(er) a:nd, win H(-r), (er(g)v,v) = (-r(g)w,w) for all gin G, then er C:,! -r. 

rw -] * rw "' 

PROOF. Define er(g) := (er(g )) (gEG), and similarly -r(g). Then er and-rare 

also irr. Hilbert reps of G. Define a linear operator A with 

V(A) := Span{er(g)vlg E G} and R(A) := Span{-r(g)wlg E G} by 

.( I a.er(g.)v) := I a.-r(g.)w 
\j=l J J j=l J J 

for arbitrary n in :N, a 1, ... ,an in¢and g1, .•• ,gn in G. By irreducibility 

of er and -r, V(A) is dense in H(er) and R(A) is dense in H(-r). For the proof 

that A is one-valued and injective note that the following equalities are 

equivalent: 

n 
l. a.er(g.)v = 0, 

j=I J J 

( n 
a . er ( g.) v, '; ( g) v) 0 

' Y. 

= 
j=l J J 

'v'g E G, 

( n 
-1 ) 0 \ J. a.er(g g.)v,v = 

j=l J J 
'v'g E G, 

( n -1 r a.-r(g g.)w,w) = 0 
j=l J J 

'v'g E G, 

~Jl ~ a. -r (g. )w, -r (g)w) = 0 
J J 

'v'g E G, 

n 
I a.-r(g.)w = O. 

j=l J J 

Clearly, V(A) is er-invariant and Aer(g) = -r(g)A on V(G) for gin G. For the 

proof that the closure A of A is one-valued and injective let 

n(k) 
I 

j=I 



n(k) 
1 

j=1 
a. k .(g. k)w + w0 J, J, 

ask+ 00 • 

'Then v0 = 0 iff w0 = 0, by a similar argument as above. Finally apply [13, 

Lemma 4 • 3] • 0 

THEOREM 1 .5. Let CJ and • be irr. K-unitary reps and let some o in K have 

multiplicity 1 in both CJ and •• Then CJ and. are Naimark related iff 

( 1.4) for all gin G. 

PROOF. If CJ C,:!. and I 0 : H0 (CJ) + H0 (T) is a K-intertwining isometry then 

5 

(cf.[13, 'Theorem 4.5]). 'This proves (1.4). Conversely assume (1.4) and 

choose orthonormal bases e 1, .•. ,ed0 for H0 (.) and f 1, ••• ,fd0 for H0 (T) such 

that 

o .. (k) := (CJ(k)e.,e.) = (T(k)f.,f.), 
1J J 1 J 1 

k EK. 

In (1.4) replace g by gk(gEG,kEK). Then we obtain: 

do I o .. (k)(CJ(g)e.,e.) = 
. • - I 1J 1 J 
l.' J= 

o •. (k) (T (g) f. , f.) . 
1J 1 J 

00 

The spaces C(G) and, if G is a Lie group, C (G) are algebras under con­
e 

volution and, provided with the usual inductive limit topology, they become 

topological algebras. Consider the following closed subalgebras 
00 A 00 A 00 

I (G), I ~(G)(oEK) of C (G) and I (G), I ~(G)(oEK) of C (G): 
C c,u C C c,u C 

(1.5) I(00)(G) := {f E c<00 )(G) lf(kgk-1) = f(g), g E G, k E K}, 
C C 

( I • 6) I(oo) (G) := { f E I~00)(G) ldoJ f(gk)xo(k)dk = f (g) , g E G, k E K} • 
c,o 

K 
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The present definition of I(00 ~(G) corresponds to the 
V c,u 

(o being contragredient too) in [13, p.43]. Here we 

in WARNER [27,§4.5.1]. 

{oo) 
definition of I v 

c,o 
follow the definition 

PROPOSITION 1.6. (cf. WARNER [27, Theor. 6.1.1.2, Prop. 6ot 0 I.6]). Let 

o EK and let the algebra I ~(G) be commutative. Let T be an irr. K-uni-c,u 
tary rep of Gin which o occurs with finite nonzero multiplicity m0• Then 

m0 = I and the linear functional 

(1. 7) 

is a nonzero continuous character on I ~(G). Furthermore, this character c,u 
completely determines trT 00 (.) as a function on G. 

PROOF. By (3, Lemma 5.1] m0 = I iff the rep I of 

(I. 8) K* := {(k,k) E G X KI k EK} 

V 
has multiplicity I in the rep T ® 6 of G x K. By restriction to G x {e} the 

algebra C (K*\GxK/K*) is mapped isomorphically onto I {G). Under this map-
c C 

ping the algebra 

f(g,e),g E G,k EK} 

corresponds to I ~(G). c,u 
For fin C (GxK) define f# by 

C 

# 
f (g,k) := 

KKK 
'k EK. 

Then ft+ f# is a projection of C (GxK) onto 
V V C 

jection of H(T®o) onto H1 (T®'o). One easily 

f E C (GxK): 
C 

A. Let P1 be the orthogonal pro­
v 

verifies that, for v in H1(T®o), 
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V V 
By irreducibility of,, (,®o)(C (GxK)) vis a dense subspace of H(,®o). 

V C 

Hence, since H1(,®o) is finite dimensional, 

V V V 
Thus T ® o is an irr. rep of the commutative algebra A on H1(,®o), so H1(,®o) 

has dimension 1. 

For the proof of the second statement note that, for fin C (GxK) and 
V C 

v in H 1 ( T®O) with II vii = 1 , we have 

f f f(g,k}((t®8) (g,k)v,v)dg dk = d~ 1 J f#(g,e) tr , 00 (g)dg •. 

GK G 

Finally the third statement follows from the observation that 

f f(g) tr , 00 (g)dg = d0 f [ f J f(k 1gk2k~ 1)x0 (k2)dk 1 dk2]tn00 (g).ig, 

G G KK 
f E C (G). D 

C 

The function tr , 00 (.) is called a spherical trace function of type o. 
The theory of these functions goes back to GODEMENT [5]. 

COROLLARY I. 7. Let o E Kand Zet I ~ (G) be commutative. Let a and , be irr. 
c,u 

K-unitary reps of Gin which o has finite nonzero multiplicity. Then a~, 

iff the corresponding characters on I ~(G) (or 100 ~(G) if G is a Lie group) 
c,u c,u 

defined by (1.7) coincide. 

PROOF. Use Theorem 1.5 and Prop. 1.6. ,D 

The pair (G,K) is called a Gelfand pair if the algebra C (K\G(K) is 
C 

commutative. 

* COROLLARY 1.8. If (GxK,K) is a Gelfand pair then each irr. K-finite Hilbert 

rep of G is K-multiplicity free. 
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* * PROOF. Use Prop. 1.6 and the correspondence between C (K \G*K/K) and I (G). 
C C 

D 

2. THE GENERALIZED ABEL TRANSFORM 

Let us restrict attention now to the case that G is a noncompact con­

nected real semisimple Lie group with finite center and that K is a maximal 

compact subgroup of G. Choose subgroups A and N of G such that G = KAN is 

an Iwasawa decomposition of G and let gin G be accordingly factorized as 

(2.1) g = u(g)eH(g)n(g), 

where H(g) Ea, the Lie algebra of A. Let M be the centralizer of A in K. 
- * For, in Mand A in a (the complex linear dual of a) we define the princi-

c 
pal series rep n,,A as the rep of G induced by the rep 

A(log a) man~ e ~(m), m EM, a EA, n EN, 

of the subgroup MAN of G. Let n be the Lie algebra of N and let pin a be 

defined by p(H) := ½tr(adHjn), HE a. In the compact picture the rep n,,A 

is realized on the Hilbert space L~(K;H(,)) consisting of all H(,) -valued 
2 -1 

L - functions f on K such that f(km) = ,(m )f(k), k EK, m EM. Then 

(2.2) 
-1 

( ( )f)(K) -- e-(p+A)H(g k)f(u(g-lk)), 
n,,A g 

2 
'g E G, k EK, f E L'(K;H(,)). 

The rep TI,,A is a K-finite Hilbert rep of G. 

We would like to attempt a global approach to HARISH-CHANDRA's [7, The­

orem 4], [8, Theorem 4] subquotient theorem: 

THEOREM 2.1. Every K-finite irr. Hilbert rep of G is Naimark equivalent to 

some irr. sul.>quotient rep of some principal series rep. 

ro -
Choose a Haar measure dn on N. For fin I ~(G) (oEK) define c,u 



(2.3) 

(2.4) 
,5 

Ff(a) 

:= / (log a) J 
N 

:=ep(loga) I J 
KN 

f(kan)dn, k E K, a E A,. 

V -1 
f(kan) o(k )dk dn = 

= J Ff(k,a) 8 (k- 1)dk, a EA, 

K 
V 
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. o b . the latter function Ff e1.ng L(H(o))-valued. For some choice of an orthonor-
V 

mal basis of H(o), Ff 
0 can be expressed 1.n terms of Ff by 

do 
V oo oo 

= di, I o .. (k)(Ff(a)) .. ,f EI i,(G). 
u • • l.J J l. C, u 

l.' J= 1 
(2.5) 

The transform f ~ Ff or f ~ F; is called the generalized Abel transform (cf. 

WARNER [27, §6.2.2]). 
V 

From now on assume that o is M-multiplicity free. Then o 1.s also M-mul-
v V 

tiplicity freie. Let ~(o) denote the M-content of o. Note that 

Hence, 

0 
Ff(a) 

V o V -1 
= O(m)Ff(a)O(m ), a EA, m EM. 

o -1 V 
~(m)(Ff(a))~,n n(m ), ~, n E ~(o) 

o o 
(wherev(Ff(a))~,n 1.s the matrix block of Ff(a) corresponding to (~,n)). 

Since o is M-multiplicity free, this implies 

for certain functions 

get 

(2.6) 

= {o if ~.;, n, 

F;,~(a).id if~= n, 
0 V oo 

Ff,~(~EMM(o)) in Cc(A). 

00 

Combining this with (2.5) we 

It can easily be proved that forfinI i,(G) we have a similar formula: there c,u 
exist functions f ~in c:(A) such that 



IO 

V 
f(k 1ak2) = d0 _. l Y tr o~~(k2k 1)f~(a), k 1, k2 EK, a EA. 

~E~(o) 
(2. 7) 

Note that f and Ff (fEI:,o (G)) are comple,te.l.y determined by their restric­

tions to M x A. 

Choose a Haar measure da on A and normalize the Haar measure dg on G 

such that 

(2.8) I f(g)dg = I f(kan)e2p(log a)dk da dn, f E C (G). 
C 

G KxAxN 
.... 

THEOREM 2.2. Leto EK such that o is M-rrrultiplicity free. Then the trans-

form 

has the following properties: 

(i) it is continuous; 

(ii) it is injective if G is a linear Lie group; 

(iii) it is an algebra homomorphism, i.e. 

(2. 9) 
0 

Ff *f ~(a) 
I 2, 

V 
~ E ~(o), 

(iv) for each fin 1:, 0(G), ~ in ~(o) and A in a: we have 

(2.10) -l I _ I o v A(log a) • d0 f(g)tr TI~,A;o,o(g)dg - Ff,~(a)e da, 

G A 

(v) 
00 • • 

I ~(G) ~s a commutat~ve algebra. 
c,u 

PROOF. The proof of (i) is straightgorward. See [13, Theorem 5.17]for the 

proof of (ii) and WARNER [27, §6.2.2] for the proof of(iii). Combination of 

(ii) and (iii) proves (v). Let us prove (iv). From WALLACH [25, Lennna 

8.3.11] we have 



hence 

-] * 
= (1rF,:,-3::Cg )) ' 

-] 
tr 1Tc A·o o(g) = tr 1Tc -i·o ~Cg ). 

s, ' ' s, • ,u 

1 I 

V 
Choose an orthonormal basis e 1, ••• ,ed of H(o) such that e 1, ••• ,ed/:" is anor-

v o 
thonormal basis of Hy(o). Realize 1rF,:,A on the Hilbert space H(1rF,:,) = 

= L2 (K;H(F,:)). Then t~e vector-valued functions fi(i=l, ••• ,d0 ) defined by 

( do)½ V V 
f;.(k) := -d (o.l(k), ••• ,o.d (k)), k EK, 

L F,; 1 1 F,: 

form an orthonormal basis for H0 (1rF,:,A). It follows from (2.2) that 

e-(p+A)H(g-lk) 8 .. (u(g- 1k)) 8 .. (k)dk. 
1] 1] 

Hence 

(2. I I) tr 1Tc A'o o(g) = 
½,, ' , 

Combination of (*) and (2.11) yields: 

d~l f f(g)tr 1TF,:,A;o,o(g)dg = 
G 

= d~ 1 I I f(g)e(A-p)H(gk)tr oF,:F,:(k-lu(gk))dg dk. 

GK 
-1 

Next make the transformation of variables g >+ gk and substitute (2.8) into 

the right hand side: 

UIS of ( 2. IO) ff f a dk da dn. 

KAN 
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In view of (2.4) this yields (2.10). D 

CORALLARY 2.3. If (KxM,M*) is a Gelfand pair then (GxK,K*) is a Gelfand pair, 

I: 0(G) is a commutative algebra and o is M-rrrultiplicity free for each o in , 
K, and each irr. K-finite Hilbert rep of G is K-rrrultiplicity free. 

PROOF. Use Cor. 1.8 and Theorem 2.2 (v). D 

In the following examples (KxM,M*) and (hence) (GxK,K*) are Gelfand 

pairs: 

G K M 

SL(2,1R) SO(2) 0 (I) 

SL(2,d:) SU(2) U(I) 

SO(n, I) SO(n) SO(n-1) 

0 

SU (n,I) U(n) U(n-1) 

Note that the cases G = SL(2,1R), SO (2,1), SU(l,I) are locally isomorphic 
0 

* and also G = SL(2,€), SO (3,1). Since, under the assumption that (GxK,K) 
0 

is a Gelfand pair, each finite-dimensional irr. rep of G is K-multiplicity 

free, it follows from KRAMER [17] that almost all cases with (KxM,M*) 

being a simple linear Lie group occur is the above table. 

We can now formulate the program for a global approach to Harish­

Chandra's subquotient theorem: 

(a) Leto EK such that o is M-multiplicity free. Let A0 be the image of 

I:, 0 (G) under f >+ {F~,s} and provide A0 with the topology which makes 

this transform an homeomorphism. Determine A0 completely, also topolog­

ically, and prove that each continuous character on A0 has the form 

F >+ I Fv(a)eA(log a)da 

A s 
for some sin ~(o), A in a:. Then in view of (2.10) and Cor. 1.7, we 

conclude that each irr. K-unitary rep Tin which o has finite nonzero 

multiplicity is Naimark related to an irr. subquotient rep (namely the 
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one containing o) of some TI~,A• 

00 

(b) In particular, study flM.A°FflMxA (fE:Ic,o(G)) as a "classical" integral 

transform (i.e., as an integral transform given in analytic form without 

group variables) and determine its inversion formula. 

Clearly, o is M-multiplicity free if o = 1 (the spherical case). Then 
00 00 • • • I ~(G) = C (K\G/K). Its image under the generalized Abel transform is known c,u C 

by GANGOLLI's [3] Paley-Wiener theorem: the space of all Weyl group invari-
00 • • 

ant C -functions on A with compact support. However, part (b) of the above 

program in the spherical case has been done only in the rank one case. Then 

f >+ Ff can be written as a Weyl type fractional integral transform or a· com­

position of two such transforms (cf. KOORNWINDER [11]). 

The above programs has been completed for all o in the case G = SL(2,lR) 

(cf. KOORNWINDER [13], [14], TAKAHASHI [20]). Then A= {at:=(;t ~-t)}, 

K = {us := (c~s 9 -sin 0)}. 
sin 9 cos 9 

K consists of 

transform f ~ 

tain 

in9 the reps o (nE7.l), where o (u9) := e In considering the 
n n 

Ff fon fin 100 
0 (G), we can restrict f and Ff to A and we ob­

c, n 

(2.12) 

where Tlnl 

(2.13) 

00 

Ff(at) = I f(aw)Tlnl(:: !)(ch2w-ch2t)-!sh2w dw, 

t 

is the Chebyshev polynomial of degree lnl: 

T (cos9) := cos n 9. 
n 

The inversion formula to (2.12) is 

(2.14) f(a) = -
w 

-1 
TI 

00 

w 

The correspondences f ++ fjA ++ Ff identify the spaces 100 ~ (G), V (:IR) c,u even 
and V (:IR), respectively, with each other. Note that innthe spherical even 
case (n=O) the pair (2.12), (2.14) becomes the classical Abel transform to-

gether with its inversion formula (cf. GODEMENT [6]). There are three dif-
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ferent proofs that (2.14) is the inversion formula to (2.12). 

(i) by Mellin transform techniques (cf. MATSUSHITA [18]); 

(ii) by specializing the inversion formula for the Euclidean Radon trans­

form on lR.2 to functions which behave according to rep o of S0(2)(cf. 
n 

DEANS [2]); 

(iii) by using generalized fractional integrals (cf. KOORNWINDER [13, §5.9]). 

3. SL(2,~), DISCUSSION OF EARLIER RESULTS 

Let us now try to deal with the generalized Abel transform for SL(2,t) 

in the same spirit as for SL(2,lR) above. A global approach to the represen­

tation theory of SL(2,~) can already be found in NAIMARK [19]. He determined 

irreducibility properties of principal series reps by using Theorem 1.2 (cf. 

[19, Ch. 3, §9, no. 15]) and he used the generalized Abel transform for 

proving the subquotient theorem 2.1 (ibidem, no. 16). (In fact, he consid-
• 00 

ered the generalized Abel transform not on the algebras I 0 (G) but oncer-

tain algebras denoted by X~ which are isomorphic to them ~ibidem, no. 6).) 
J 

However, there are certain unsatisfactory points in his approach: (i) the 

formula for the generalized Abel transform is not very explicit (cf. ibidem, 

no. JO, formula (I)), with integration variables defined in an implicit way; 

(ii) the inversion formula (ibidem, no. JO, formula (9)) is derived by using 

the Plancherel formula; (iii) the image under the generalized Abel transform 

is not completely characterized (ibidem, no. 10, IV) but a subalgebra of the 

image is obtained which is big enough to prove that the characters on it 

have the desired form. See BRUMMELHUIS [1] for a more detailed discussion of 

Naimark's approach. 

KOSTERS [16] studied irreducibility, Naimark equivalence and unitariza­

bility for subquotients of the principal series of SL(2,a) by using the 

global methods developed in [13], but he did not give a global approach to 

the subquotient theorem 2.1. 

Finally,, a helpful reference to us was WANG [26~, who derived a Paley-

Wiener theorem characterizing the image of the algebras 100 ~(SL(2,€)) under 
c,u 

the group Fourier transform. Indeed, his result is equivalent to character-

izing the image under the generalized Abel transform. 



4. SL(2,«:), PRELIMINARIES 

Let us fix an Iwasawa decomposition G = KAN for G SL(2,a:) with 

( 4. l) SU(2) a {ka,e'" cii : ) I a,B 
2 2 

K = E «:,la.I + ISi 

(4. 2) A = { at := (et o_t) I t E lR}, 
0 e 

(4. 3) N = {nx+iy :a ( ~ x+iy) I x,y E JR}. 
l 

Then 

(4.4) 

We will also use special elements of K given by 

(4. 5) ( 
cos e -sine) • 

ue := 
sin e cos e 

= 1}, 

15 

K consists of the reps T,e_ (l=O, ½, l, • •• ) of dimension 2l + 1. A model for the 

' f ,e_ • • b h H f h 1 representation space o T is given y t e space ,e_ o om9geneous po yno-

mials of degree 2£ in two complex variables with orthonormal basis consist­
£ 

ing of the functions 1jJ (n= -f,-l+J, ••• ,l): 
n 

(4.6) 

Then 

(4. 7) 

,e_ 
11 (x,y) 

n 
( 2£ )½ l-n l+n 

:= l-n x y • 

defines an irr. unitary rep of Kon H,e_• Note that the orthonormal basis is 

an M-basis: 

(4. 8) 

Let 
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(4.9) 

denote the matrix elements of f(k) with respect to this basis. From (4.6), 

(4.7) and (4.9) one obtains a generating function for these matrix elements: 

! 

(f-~)2(ax-Sy)l-n(Bx+~y)l+n = (4. IO) 

l ( i 
l ti (k ) 2l)2 xl-m l+m. 

m=-l mn a,8 \l-m y 

From this one. can obtain an explicit expression for ti (k) in terms of mn 
Jacobi polynomials A more detailed account of the representation theory of 

SU(2) is, for instance, given in VILENKIN [24, Ch. IIIJ 0 

We will need two special functions associated with the reps Tl. First, 

for the character Xt of Tl we have 

(4.11) 

where 

(4. 12) U ( ~) ·= sin(n+I)~ 
n cos · sin~ 

is the Chebyshev polynonrial of the second kind. Next, for the diagonal ma­

trix element t~.(k) we have: 
JJ 

(4. 13) t~-(k 8) = Ri-· t+·<a), JJ a, J, J 

where 

(4. 14) 

and P(a,B)(x) denotes a Jacobi polynomial. R (x+iy) is an orthogonal poly-
n m,n 

nomial in the two variables x,y, a so-called disk polynomial. It can be com-

pletely characterized by the three conditions 
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R (x+iy) = c.(x+iy)m(x-iy)n + polynomial of degree less than 
m,n 

(4. 15) I I 
2 2 

X +y <1 

R (x+iy)xpyqdx dy = 0 if p+q < m + n; 
m,n 

R (1) = 1. m,n 

See KOORNWINDER [12]. It follows from (4.11) and (4.13) that 

(4. 16) 

.... 
M consists of the reps l;. (jd7l) defined by 

J 

(4. 17) 

m + n; 

Let TI. , (j E!7l,AEi) denote the principal series rep of G induced by the rep 
J , /\ 

-2ij cf> 2).t m~a n . i+ e e .,, t x+iy 

of MAN. Since Tl has M-content {l;jjj=-l,-l+l, ••• ,l}, we obtain by Frobenius 

reciprocity that TI. A has K-content {Tlll=ljl,ljl+l, ••• }. 
J' 

For p we obtain: 

(4.18) 

5. THE GENERALIZED ABEL TRANSFORM FOR SL(2,t) 

00 oo V 
Write Ic,l(G) instead of Ic,T (G), dl := U+ 1. Note that Tl= Tl. Nor-

malize the Haar measure on N by dn!+iy := (2TI)- 1dx dy. Specialization of 

(2.3) to G = SL(2,~) yields 

00 00 

(5. 1) F (k ) (2 .. )-le2t f ,at = II I I 00 

f(katn +· )dx dy, f EI 0 (G). 
X J.y c,~ 

-oo -CX> 

Formulas (2.7) and (2.6) can be written as 
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(5.2) 

(5.3) 
l l 

t. . (k) Ff . ( t) , 
JJ ,J 

00 

for fin Ic o(G). From now on we fix l and I: will mean a sum with m running .,, m 
through the set {-l,-l+l, ••• ,l}. Let us use the notation 

l F. (t) := Ff . (t). 
J ,J 

Then 

(5.4) 

(5.5) 

00 I 00 

Note that, for f EI 0 (G), the f's and F. s are in C (JR). The function f 
c,, m J C 

satisfies an obvious symmetry because of the Weyl group action: 

(5.6) f (cp , w) = f (- cp, -w) • 

00 

Indeed, if f EI (G) then 
C 

f(m~a) = f(u 12m~a u 12 ) = f(m ~a ). 
~ W TI ~ W -TI -~ -w 

Next we want to rewrite (5.1) as a "classical" integral transform. An 

intermediate stage (essentially the same as in NAIMARK [19, Ch. 3, §9, no. 

10]) is as follows: 

00 

LEMMA 5.1. If f EI 0 (G) then c,, 
00 

(5.7) F.(t) = e2t I l f (w)t~ (u0 )tl.(u 6 )zdz, 
J O m m Jm I IDJ - 2 



where, for given z and t, w, e1 and e2 are such that 

(5.8) 

PROOF. 

an = ue a u_e • 
t z l w 2 

F.(t) = I Ff(k,a )t~.(k- 1)dk 
J t J J 

K 
00 00 

l -I 
f(ka n . )t .. (k )dk dx dy 

t x+1.y JJ 
K -oo -oo 

00 21T 

= (21T)- 1e 2t I I J f(m_i/J/ 2kmi/J/ 2atnz)tt(k-l)dk zdz diµ 

KO 0 
00 

2t I I l -I zdz e f(ka n )t .. (k )dk 
t z JJ 

K 0 
00 

2t I I l -1 e f(u 0 ku0 a )t .. (k )dk zdz 

K 0 
- 2 l w JJ 

00 

= d 0 e 2t I I If (w)tl (u_ 8 ku8 )t~.(k- 1) dk zdz 
-<... m mm 2 l JJ 

KO m 
00 

2t I\ l l = e l f (w)t. (u0 )t . (u 0 )zdz. 
0 m m Jm I mJ - 2 • 

A straightforward calculation shows that (5.8) is equivalent to 

cos(e 1-e2) ch w = ch t, 

(5.9) 
sin(e 1-e 2) ch w = -½z 

t e 

cos(e 1+e 2) sh w = sh t, 

sin (01+02) sh w = ½z t e , 

and that it implies 

19 
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(5. 10) 2 h2 I 2t 2 ch w = c t + 2e z. 

The final version of our Abel transform. is given in the following 

theorem: 

00 

THEOREM 5.2. If f EI 0 (G) then c,-c., 

(5. I 1) 

and 

(5. I 2) 

271" 00 

F ( T, t) = ( 2,r) - I I f f (<I>, w) • 

0 t 

U ( ch t ~ + sh t . ~ . )2 h2 a~ d 
2.t ch w cos~ cosT sh w sin~ sinT s w ~ w 

F(T,t) = F(-T,-t). 

PROOF. B"y (5.7), (5.4) and (4.8) we obtain: 

2,r 00 

Fj (t) • ;::l ff f(• ,w) 

00 

l l l 
It. (u0 )tmm(m ~)t .(u 0 )d</> zdz 
m Jm I -~ mJ - 2 

2,r 00 

. l:J I 
0 0 

l 
f(</>,w)t .. (u0 m ~u 0 )d</> zdz. 

JJ 1 -~ - 2 

Now, by (5.9), we have 

with 

a= cos(e 1-e2)cos <I> - i cos(e 1+e 2)sin <I>= 

ch t ~ . sh t . 
= ch w cos~ - i sh w sin</>. 

Hence, by using (5.5), (4.11) and (5.10) it follows that 

2,r 00 

F(T,t) = e2t(2,r)-l ff f(</>,w). 

0 0 



. (ch t ~ sh t . ~ . ) d d .u2l ch w cos~ cosT + sh w sin~ s1nT ~ z z = 
21T 00 

= (21r)-1 I .r f(cj,,w). 

o It I 
( ch t sh t . ) • u2l ch w cos¢ cosT + sh w sin¢ sinT 2sh2w dcj, dw. 

21 

This shows (5.12) and also (5.11) fort 2 O. Finally, (5.11) holds fort< 0 
00 t 

because the right hand side of (5.11) with ft replaced by J_t (t>O) equals 

0 (use (5.6)). D 

Because of (4.11) and (4.13) we have the following two variants of 

(5.11). 

(5. 13) 

(5.14) 

21T 00 

1 
F. (T,t) = -2 d 

J 1T l I I f(cj,,w). 

0 t 

( ch t .sh t . ) 2 h2 d d .R0 • 0 • -h- cos¢+ ish w sin¢ s w cp w, , -{..-J,-{..+J C W 

00 

F(T,t) = dl J l fm(w). 
t m 

( ch t 
.R0 o -h- COST+ -{..+m,-{..-m C W 

.sh t . )2 h2 d ish w sinT s w w. 

00 

For a function F of the form (5.5) (F .EC (JR)) define 
J C 

21T 00 

(5. 15) -F(2j,2A) ·= _1 J I F( ) 2ijT -2Atd . 21T T,t e e T dt, 

0 -co 

J d-l,-l+l, ..• ,t}, A E IC. 

Then, by Fourier inversion: 

00 

(5. 16) F'(T t) = -1 J , 21T l F(2j,2i>.)e-2ijTe2i~td>.. 

-co J 

Normalize the Haar measure on A by dat := dt, and the Haar measure dg on G 

by (2.8). It follows by specialization of (2.10) that 
00 

G -co 
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where we wrote 1r., .o O instead ·of 1T. '·T T. Hence, by combination with 
J,A,,(,.,,(,. J,A, l' l 

(5.5), (5.15) and (5.12): 

(5. 17) I f(g)tr 1rj,:>.;l,l(g)dg = 
G 

... 
F(2j,2A). 

Formulas (5.17) and (5.11) together will yield an integral representation 

for 1rj,A;l,llMxA• We need a few preparations. 

First observe from (HELGASON [9, Prop. X. 1.17] that, for G = SL(2,~), 

the left hand side of (2.8) equals 

00 

c I I I f(k 1awk2)sh22w dw dk 1 dk2 
0 K K 

for some positive constant c. It follows easily that: 

LEMMA 5.3. Let f 1 E Cc(G), f 2 E C(G) and let both functions have the form 

(5.2). Then 

(5. 18) I fl (g)f2(g)dg = J f](g)f2(g-l)dg = 

G G 21r 00 

= 2:dl f I f 1(m~aw)f 2 (m~aw)sh22w d~ dw. 
0 0 

By a closer look at the Cartan decomposition G = KAK (cf. HELGASON [10, 

Ch. IX, §I]) we obtain: 

LEMMA 5.4. Let f_.e.,f-l+J'"""'fl be c00-functions on JR with compact support 

included in (0, 00). Then (5.2) with k 1,k2 EK, w ~ 0 unambiguously defines a 
00 

function fin I 0 (G). c,,(,. 

Apply (5.18) to (5.17) and use (5.12) and (5.11): 

2rr 00 

21rcdl I I 
0 0 

21T 00 

2 
f(~,w)tr 1T. ,.o 0 (a m~)sh 2w d~ dw = J,A,,(,.,,(,. W 'I' 

= ;1T I I F(T,t)(e2ijTe-2At+2-2ijTe2At)dT dt = 

0 0 
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2,r 00 21T w 

= i1r I I f(~,w)[i1r I I (e2ij.e-2At+e-2ij.e2At). 

0 0 0 0 

.u2l(~: ! cos~ cosT +::!sin~ sin.)d. dt]2sh 2w d~ dw. 

The first and the last member of the above equalities are equal to each 
00 

other for all fin I o(G). Hence, in view of Lemma 5.4, the expression in 
c,-<-

square brackets in the last member will be equal to 

c sh2w 
2d tr ,r. -..o 0 (a m,i,)• 

l J , /\ ,-<-,-<- w "' 

Divide both sides by sh2w and put w = ~ = O. We get c = 2. Thus we have 

derived: 

LEMMA 5.5. If f EC (G) then 
C 

00 00 00 

(5.19) I f(g)dg 

G 
== ;1T I I I I 2t 

f(katn +· )e dk dt dx dy = 
X 1y 

K -00 -00 -00 

00 

= 2 I I I f(k 1a2k2) sh22w dw dk 1 dk2• 

0 K K 

THEOREM 5.6. (integral representation). 

(5.20) 

6. THE INVERSION FORMULA 

In order to invert the transformation f + F given by (5.11) we will 

first express f (e) (f I 00 
0 (G)) in term • Let 

C ,-<-
} 

(6.1) am(A) := I Pi~i!lml)(2r2-l)r2lml+A+ldr, 

0 
!'IT 

(6.2) b~(A,µ) := f e2im$(cos$)A(sin$)µd$, 

0 
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where P(a,S) denotes a Jacobi polynomial. 
n 

LEMMA 6.1. 

(6. 3) 

co 

If f E Ic,.e (G), Re>.., Reµ > -1 then 

j 1 F(T,t) (ch t cos,/(sh t sim)"{ch2t-cos2,)dt dT • 

0 0 

= 4do l a (Hµ)b (A,µ) -t... m m 
m 

co I fm(w)(ch w)>..+2 (sh w)µ+ 2dw. 

0 

PROOF. It follows from (5.14) that the left hand side of (6.3) equals 

where 

co 

C (>..,µ) 
m 

:= wI ½I1r R (ch t cos, 
i+m,i-m ch w 

0 0 

.sh t . ) + 1.sh w sin, • 

( ch t cos,)>..(sh t sin,)µ(ch 2t-cos 2t) dt d, = 
• ch w sh w ch w sh w 

I I a (Hµ)b (>.., µ) m m 
2 2 

X +y <l 
x,y>O 

by (4. 14). D 

There is some similarity of formula (6.3) with the formula in 

MATSUSHITA [18, p. 115] which is obtained by taking Mellin transforms at 

both sides of (2.12). Matsushita could invert his formula and thus, by 

taking inverse Mellin transforms, obtain (2.14). We did not succeed in in­

verting (6.3). However, we can prove: 

00 

PROPOSITION 6.2. If f ~ I 0 (G) then 
c,-t... 

( a2 a2) - 2 + - 2 F(O,O) = -4f(O,O). 
a, at 

(6.4) 

PROOF. By integration by parts and application of (6.3) we obtain: 
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00 ½1r 2 2 I I (7 + 7 )F(T,t)(ch 
0 0 aT at 

00 ½1r 

.;,;lid I I F(T,t)D-(>..-1) (ch 
loo 

>..-2 µ t COST) (sh t sinT) + 

+ µ(µ-l)(ch t cosT)A(sh t sinT)µ- 2J(ch2t-cos 2,)dt dT = 

00 

=la (;>..+µ-2)[µ(µ-l)b (>..,µ-2) If (w)(ch w);>..+2 (sh w)µdw + m m m 
m 00 0 

+ >..(>..-l)b (>..-2,µ) ff (w)(ch w)A(sh w)µ+ 2dw] = m m 
0 

2 = 4dl L am(;>..+µ-2)[(((>..-l) -4m )bm(>..-2,µ) + 
m 

00 

-2im(>..-2)b (>..-3,µ+l)) If (w)(ch w);>..+2(sh w)µdw + m m 
00 0 

+ >..(>..-l)b (>..-2,µ) If (w)(ch w)A(sh w)µ+ 2 dw]. 
m m 

0 

By analytic continuation in>..,µ, the first member of these equalities equals 

the last member for Re A> 2, Reµ> -1. Now let f have support inside 

[0,2,r] x [-M,M], then the same holds for (-a~+ a~)F. Divide the first and 
clT at-

last member by 

M ½1r I I (sh t sinT)µdt dT 

0 0 

and letµ+ -1. Then we obtain 

(6.5) ( a2 a2 ) 2 - 2 + - 2 F(O,O) = -4d 0 La (>..-3)(->..+l-4m )f (0). 
aT at .(, m m m 

Let ;>.. + 00 in this identity. Then 

( a2 a2) 
- 2 + - 2 F(O,O) = -4dl L fm(O) = 
aT at m 

-4f(O,O). • 

REMARK 6.3. It is evident from (6.5) that a system of functions {f} deter­
m 

mined oy, fjiP..I00 
0 (G) must satisfy certain additional conditions at O. In 

C ,.(. 

Prop. 9ol we will make a more precise statement about t4is. 
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00 

PROPOSITION 6.4. If f 1,f2 E Ic,l(G) then 

(6.6) 

2,r 00 

ff f 1($,w)f2($,w)sh22w d$ dw = 

0 0 
21T 00 

-¾ J f F1 (-r,t)( a22 + a22)F2(-r,t)d-r 
0 0 a. at 

dt. 

PROOF. First observe that (5.18) (with c=2) yields: 

.21r 00 

ir! JI f 1($,w)f2($,w)sh22w d$ dw = (f 1*f2)(e). 
l o o 

Next, by (2.9) and (5.5): 
00 

Thus, by (6.4) and (5.12): 

2,r 00 

=-:-s;d- ff F1<·1,t1)(a
2
2 + a

2
2)F2<·1,t1)d-r1 

i O _00 a-r I at l 

A second application of (5.12) yields (6.6). 0 

THEOREM 6.5 (inversion formula). 

If f E 100 
0 (G) then 

c,,{_. 

-1 I 2f1rwf ( a2 a2) 
<6• 7) f($,w) = 2sh2w 2,r -2 + -2 F(-r,t). 

O O a-r at 

( ch t ~ sh t . . ) d .u2l ch w coso/ cos-r + sh w sin$ sin-r d-r t. 

PROOF. Substitute (5.11) for f = f 1 into the right hand side of (6.6) and 

interchange the order of integration: 
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21T a, 

I I 

a, a, 

For fixed:f:l_inic,l(G) this formula holds for all~;inic,l(G). By Lennna 5.4 

we conclude that (6.7) is valid. D 

REMARK 6.6. The proof of the inversion formula (6.7) uses the group theore­

tic property that the generalized Abel transform is an homomorphism with 

respect to convolution. We did not succeed in finding a direct analytic 

proof for the inversion formula. 

a, 

REMARK 6.7. Prop. 6.4 implies that f ~ Ff is injective on Ic,l(G), which we 

already knew from Theorem 2.2 (ii). 

a, 

COROLLARY 6.8. If f EI 0 (G) then 
c,,{.. 
a, 

f(e) =¾?I [ I f(g)tr 1rj,iA;l,l(g-1)dg](A2+j 2)dA. 
J O G 

(6. 8) 

PROOF. It follows from (5.16) that 
a, 

( a22 + a:)F(O,O) = 
oT ot 

- 21T-l I i i(2j,2iA)(A2+j 2)dA. 
-a, J 

Now substitute (6.4) and (5.17) into this formula and use (5.12). D 

The above corollary immediately implies the Plancherel formula for 

SL(2,€). This formula was first obtained by GELFAND & NAIMARK [4], see also 

the very readable proof (for SO (3,1)) in TAKAHASHI [21]. 
0 

7. CHARACTERIZATION OF THE IMAGE OF THE GENERALIZED ABEL TRANSFORM 

Let A..e. denote the image of I:,..e.(G) under the transform f ~ F. We al­

ready know that all Fin A0 have the form (5.5) with F. in Cm(lR) and that 
,{.. J C 
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F satisfies the symmetry (5.12). Now we will derive an additional condition 

satisfied by each Fin Al. 

PROPOSITION 7.1. If FE Al then 

(7. I) 
A 

F(2p,2q) = F(2q,2p), p, q E{-l,-l+l, 0 .. ,l}. 

PROOF. We will prove that 

(7. 2) 

By (5.17) and Lemmas 5.3, 5.4 this is equivalent to the proposition. It fol­

lows from (5.20) and (4.16) that 

-I 
d 0 (tr1T .o o(m,1.a) - tr1T .o 0 (m"'a )) = .(.. p,q,-<-,-<- 'I' w q,p,-<-,-<- 'I' w 

21T w 

= l e-2imqi1T-I[ If Rl+m,l-m(~~ ! cos,+ i:~ ! sin,). 
m O 0 

( 2ip,-2qt -2ip,+2qt 2iq,-2pt -2iq,+2pt dT dt] 
• e + e - e - e 2sh2w • 

The part in square brackets, with new integration variables 

ch t sh t . 
x = ch w cos,, y = sh w sin,, 

equals 

I I R 0 + 0 (x+iy)f (,,t)dxdy, -<- m,-<--m p,q 
2 2 

X +y <I 

where 

f ( t) ·= ch(2ip,-2qt)-ch(2iq,-2pt) 
p,q '' • ch2t-ch2iT • 

Now, by using the recurrences 



ch(t+iT)f (T,t) p,q 

ch(t-iT)f (T,t) p,q 

together with 

I 
= -2(fp+l q+l(T,t) + f l 1(T,t), 2, 2 p-2,q-2 

ch(t+iT) = x ch w + iy sh w, 

ch(t-iT) = x ch w - iy sh w, 

29 

we conclude that f is a polynomial in x,y of degree 2lplvlql-I. Now.use p,q 
the orthogonality property of the disk polynomials R0 0 (x+iy). D -l-+m,-l--m 

DEFINITION 7.2. Let Bl be the space of all functions Fon [0,2~] x lR of the 

form 

_ \ -2ijT F(T,t) - le F.(t), 
j J 

with F. E C00 (lR) (jd-l,-l+I, ••• ,l}), such that 
J C 

(i) F(T,t) = F(-T,-t), 
.... .... 

(ii) F(2p,2q) = F(2q,2p) (p,q E{-l,-l+I, ••• ,l}). 

Clearly, Al c Bl (cf. (5.5), (5.12), (7.1)). If FE Bl then define the 

function EF on [0,2~] x lR by 

(7.3) EF($,w) := RHS of (6.7). 

Thus, if f E I:,l(G) and F := Ff then EF = flMxA• We will show that the map­

ping Fl+ EF is a bijection of Bl onto I~,l(G) (restricted to MxA). Thus it 

will turn out that Al= Bl. 

·_PR:_O_P_O_S_I_T_IO_N_7_._3_. Let F E Bl, f := EF. Then 
2~ 00 

f(O,w) = 2s!2w }. ! l (::2 + ::z)F(,,t), (7.4) 
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( ch t sh t · ~ · )d d .u2l ch w cos<j> cosT + sh w sin~ s1nT T t, 

00 

and f is the restriction. to M· x A-of a function f -on G b<{longing. to 1 0 .(G) c,.(.. 
and given by 

(7.5) 

00 

f(g) = _I_ l I 
dlir j 

0 

PROOF. (7.4) follows from (7.3) because of condition (i) of Definition 7.2 

and because 

2,r 00 

ff (::2 + ::2)F<,,tluu(~: ~ sh t ) . 
cos4> cosT + -h sin<!> sinT dT dt = O • 

. s w 
0 -oo 

To prove this identity, observe that 

ch t sh t 
-h- cos<j> cosT + --- sin<!> sinT c w sh w 

is invariant under (t,T)-+ (iT,-it) and that u2l(-x) = (-1) 2lu2l(x), so 

u2l( ••• ) is multiplied by (-I)U under T-+ T + ir. Hence Uu_( ••• ) is a finite 

linear combination of terms e2ipTeZqt + e2iqTeZpt(p,q E{-l,-l+I, ••• l}) with 

coefficients depending on <1>,w. Now if we write 

( a 2 a2 ) \ -2imT -2 + -2 F(T,t) = l Hm(t)e , 
dT at m 

then condition (ii) of Def. 7.2 implies: 

and our claim is clear. 

Formula (7.5) is proved for g EMA by substituting (5.16) into (7.3) 

and next combining this with (5.20). Now observe that A-+ F(2j,2iA) is ra­

pidly decreasing (jE{-l,-l+l, ••• ,l}), since FE C00 ([0,2ir]xlR.), and that, by 
C 

(2.11), all partial. derivatives w.r.t. g of the function 

(A,g)-+ tr ir. ·~.o 0 (g) exist and are of polynomial· growth in A. Hence 
J,1A'.(..'.(.. 00 

(7.5) defines a function fin C (G). Next, f is invariant under K-conjuga-

tion and behaves like the rep Tl of K because of similar properties of the 



function g >+ tr TT . . ,.u 0 (g). Thus f will have the form (5.2). Finally, 
J 'l.11. ',{.,',{., 

since flMA has compact support
00
because of (7.4), we conclude that f has 

pact support on G. Hence f EI 0 (G). D 
c,,{., 
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com-

Next we want to prove that F • EF is injective on Bl. For this we need: 

THEOREM 7.4. 

(a) If I :>t I - I j I r/. IN then TT. A is irr. If I A I - I j I E 1N then TT. A has two 
,. J' J ' 

irr. subquotient reps er . , and T • , ., with 
J,11. J,11. 

(b) There e:xn:st precisely the foUowing nontrivial Naimark equivalences 

between the above irr. reps: 

1r • , "' T, • , TT . , "' T , • ( I j 1-1 A I E JN) • 
J,11. 11.,J J,11. -11.,-J 

PROOF. The matrix element TT. :>t ·l l ·l l (a ) (.t 12::.t2) can be easily eva­
J, ' l' 2' 2' 2 t 

luated in terms of a2F1 hypergeometric function (cf. KOSTERS [16, (3.11)]). 

This shows that, if TT, ,.u O = 0 then l:>tl - Jjl E 1N and J,11.,.{..1,.{_,2 
l 1 2 l:>t], .t2 < !:>ti or .t 1 < l:>t!, .t2 2:: l>i.J. Thus, by Theorem 1.2, TTj,:>t 1.s irr. 

if ] A I - I j I r/. 1N and TT. , has at most the irr. subquotient reps er. , and 
J,11. J,11. 

Tj,:>t if l:>tl -- ]j I E JN. However, by (7.2) and Theorem 1.5 it follows that 

T, ,(l:>tl-ljJdN) is indeed an irr. rep being Naimark equivalent to the irr. 
J,11. 

rep TT, .• This settles (a). The other equivalences in (b) follow from the 
11.,J 

evident iden1ti ty 

tr TT. ,.u 0 (m~a) = tr TT . , 0 0 (m~a ), J,11.,.{..,.{_, ~ w -J,-11.;.{..,,{., ~ w 
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together with Theorem 1.5. Finally, to prove that this exhausts the possible 

Naimark equivalences, observe: 

(cf. KOSTERS [16, p. 16]). 0 

The above proof simplifies the proof by KOSTERS [16] because of our new 

proof of (7.2). The above proof that~- , is irr. if 1>..I - ljl i lN also 
J ,A 

occurs in NAIMARK [19, Ch. 3, §9, no. 15]. 

PROPOSITION 7.5. The mapping F ~ EF: Bl+ I:,l(G) is injective. 

PROOF. then 

To see this, substitute formula (5.11) with f = f 2 into the left hand side 

for F2 and interchange the order of integration. Substitution of (5.16) into 

the above formula and application of (5.12) yields: 
00 

~ I i1(2j,2i>..)F2(2j,2i>..)(>..2+j 2)dl = o. 
J 0 

Let Al denote the set of functions Fon {-U,-U+2, ••• ,2l} x i[0, 00 ) for 

which FE Al. One easily verifies that Al is an :lgebra under p~intwise mul­

tiplication, consisting of continuous functions Fwhich satisfy F(2j,2i>..) >+ 0 
A A 

as>..+ 00 , and that Al is closed under complex conjugation. Next, Al separates 

points. Indeed, if F(2j 1,2i>.. 1) = F(2j 2,2i>..2) for all FE Al then 

tr n. -~ o o(g) = 
J1,1Al;,{_.,,(_. 

because of (5.17) and Lemmas 5.3, 5.4, so (j 1,i>.. 1) = (j 2,i>..2) by Theorems 

7.4 (b) and 1.2. Finally, another application of (5.17) and Lennnas 5.3, 5.4 
A 

shows that no (2j,2i>..) is annihilated by all FE Al. Thus, by the version 

of the Stone-Weierstrass theorem for a locally compact Hausdorff space (cf. 

SIMMONS [23, §38, Theorem B]), each continuous function on 
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{-U, ... ,U} x i[0, 00 ) vanishing at 00 can be uniformly approximated by func-
A ~ 

tions in Al. In particular, the (rapidly ~ecreasing) function F1 can be 

uniformly approximated by functions F2 E Al, so 
00 

? I IF1(2j,2iA)l 2 (A2+j 2)dA = o. 
J 0 

This shows that F1 = O. D 

(i) 

(ii) 

~ . 2b1 Define Bl to be the algebra of all functions in V(:JR;t ) such that 

F.(-t) = F .(t), j = -l,-l+l, ••• ,l, 
J -J 

Joo F.(t) e-2ktdt = J00 F (t)e-2jtdt 
-oo J -oo k ' j,k = -l,-l+l, ••• ,l, 

with componentwise convolution as multiplication, and the topology inherited 

from V (lR; t 2l+ 1 ) • N<iYt·e: Bl and Bl are isomorphic as vector spaces under the 

mapping F ~ {F.} defined by (5.5). From (5.1) and (5.3) we have: 
J 

(7.6) Ffl. (t) := (21r)- 1e 2t I I I f(katn +· )t~. (k- 1)dk dx dy. 
,J X iy JJ 

K lR lR 

Now we arrive at the main theorem: 

l oo ~ 
THEOREM 7.6. The mapping f >+{Ff.}: I 0 (G) + B0 is an isomor-phism of topo-

' J C ,-c... ,c.. 

logical algebras. 

PROOF. The mapping is an injective continuous algebra homomorphism by Theorem 

2.2 and it is surjective by Proposition 7.3 and 7.5. The only thing left to 
00 

prove is that the inverse E: Bl>+ Ic,l(G) is continuous. This is done as 

follows.Denote by llgll(gESL(2,t)) the operator norm of g acting on the 

Hilbert space ~2• The elements of K(=SU(2)) have norm I, so, if g = k 1atk2 
then llgll = Ila II = max{e\e-t}. If R > 0 then let 100 o.R(G) denote the space 

t 00 c,-c..., 
of functions in I 0 (G) which vanish on all gin G with logllgll > R; simi­

c,-c... 
lary, let Bl;R consist of all functions in Bl with support included in 

00 

[0,21r) x [-R,R]. Let f EI 0 (G), R > 0. In view of (5.2), (5.11) and (7.4) 
c,-c... 

we have: 



34 

so f ~ Ff: I::,l;R(G) + Bl;R is a continuous linear bijection with inverse 

EIB • Because of the open mapping theorem for Frechet spaces (cf. RUDIN 
f•R oo ro 

[22,'Gor. 2. 12(b)]), E: Bl;R(G) +Ic,l;R(G) is also continuous. Since Ic,l(G) = 

R~O I:,l;R(G), endowed with inductive limit topology, and similary for B1, 
00 

we conclude that E: I 0 (G) + B0 is continuous. D 
c.-t- ,c:. 

8. THE SUBQUOTIENT THEOREM FOR SL(2,CC). 

In order to derive the subqoutient theorem from Theorem 7.6 we have to 

find all continuous characters on Bl" As a preparation we need two lemmas. 

Identify {Fj} in B1 with Fin Bl by means of (5.5). Thus (5.15) can be re­

written as 
00 

-~ 
( 8. 1) F(2j,2A) = di 

-oo 

-1 A ~ 
and F >+ di F(2j,2A) defines a continuous character on Bl for each J 

j in {-l,-l+l, ••• ,l},A in cc. 

LEMMA 8. 1. Let 

iB1 0 := {F E B1 1F(2p,2q) = 0 for p,q 
' 

-l,-l+l, ••• ,l}. 

Then BO' is a closed subalgebra of Bl and every nonzero continuous character 
~ ,{_~ -1 -

on Bl,O has the form F 1-r di F(2j,2A) for some j in {-.t, ... ,l}, A in CC. 

PROOF. See NAIMARK [19, Ch. 3, §9, no. 13]. The lemma is easily reduced to 

the two problems of finding all nonzero continuous characters on the con-

volution algebras V(JR) and V (JR), respectively. In both cases these are , even 
I -1\t 

of the form f >+ 1R f(t)e dt for some A in CC (see also [13, Prop. 5.6]). D 

The next lemma is also given by NAIMARK, see [19, Ch. 3, §9, no. 14], 

but there is an error in his proof, so we will give here the full correct 

proof. 

LEMMA 8.2. 

tionals on 

Let A be an algebra, f, g, f 1, ••• ,fn multiplicative linear func-

A, Ao:= {x E Alfl(x) = fn(x) = O}, flAo = gjAo" Then 
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f = g or f = fk for some kin {1, ••• ,n} or f =O. 

PROOF. Without loss of generality we may assume that the f. 's are linearly 
1 

independent. By a simple inductive argument we can find~ in A (ISksn) 
n 

such that fj(~) = ojk(lsj,ksn). If x EA then x - Ej=Ifj(x)xj E A0 , so 

n 
f(x) - r 

j=I 
f. (x) f (x. ) = 

J J 

n 
g(x> - r 

j=I 
f . (x) g (x. ) • 

J J 

On putting a. := f(x.)-g(x.) we see that 
J J J 

(*) 
n 

f(x) = g(x) + l 
j=] 

a. f. (x). 
J J 

Substitution of x = y~ with yin A0 yields, 

f(y) ak = 0 

Now there are two possibilities: 

(i) ak = 0 for all k. Then f = g by (*). 

(ii) ak 'f 0 for some k. Then flA = 0 and 
0 

(**) f(x) = L f. (x)f (x.). 
J J J 

If f :/: 0 then f(xl) # 0 for some land(**) with x = xlxi will yield 

f(xl)f(xi) = olif(xl). So f(xi) = oil and f = fl. • 

PROPOSITION 8. 3. Each nonzero continuous character on Bl has the form 
-I .... 

F >+ a1 F(2j,2A) for some j in {-l,-l+I, ••• ,l} and some A int. 

PROOF. Let x be a nonzero continuous character on Bl. Then x0 := xl-x is. a 
~ ~o continuous character on Bl 0• It follows from Lemma 8.1 that x0 = 0 of 

-I.... ~, 
x0 (F) = dl F(2j,2A) (FEBl 0) for some j in {-l,-l+I, ••• ,l} A int. Now ap-

, -1 .... 
ply Lemma 8.2 with f = Xo and g: Fi+ dl F(2j,2A), Then 

x(F) = a:e1 F(2j ,2A) (FEB1) or x(F) = a.:e1 F(2p,2q) 

(FEBl) for some p,q in {-l,-l+I, ••• ,l}. 0 
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THEOREM 8.4 (subquotient theorem for SL(2,~)). 

Let G = SL(2,~), K = SU(2). Then every K-finite irr. Hilbert rep of G is 

NaimaY'k equivalent with an irr. subquotient rep of a principal series rep. 

PROOF. Use Theorems 1.5, 2.2 (iv), 7.6 and Propositions 1.6 and 8.3. D 

9. FURTHER REMARKS 

Obviously, Theorem 7.6 together with (5.17) and the Paley-Wiener theo­

rem for the classical Fourier transform yields a characterization of the 
00 

image of I 0 (G) under the group Fourier transform. This provides a new 
c,,{.. 

proof of the Paley-Wiener theorem in WANG [26, Prop. 4.5]. 
00 

Next we state without proof a characterization of functions fin I 0 (G) 
c,,{.. 

in terms of functions f. 
m 

PROPOSITION 9.1. Formula (5.2) together with 

o+n o_n tl (u 14)f (w) 
(9.1) ~ (w)(sh w),{.. (ch w),{.. = l mn TI m 

n l 
m ((l-m) ! (l+m) ! ) 2 

defines a one - to - one correspondence f +-+- (~-l'~-l+l'"··,~.t) between 
00 00 U+I 

I 0 (G) and (C (:IR)) • c,,{.. c,even 

Finally, we would like to remark that similar results as in this paper 

for SL(2,~) can be derived for the corresponding Cartan motion group 

SU(2) o lR.3 • Let G be a noncompact connected real semisimple Lie group with 

finite center, Ka maximal compact subgroups, g and k the corresponding Lie 

algebras, and g = k +pa Cartan decomposition of g. Consider the semidirect 

product K O p, where K acts on p by Ad. Let a be a maximal abelian subspace 
.L of p, a the orthoplernent of a in p w.r.t. the Killing form Bong. For o 

A 00 0 

in K let I ~(G) be defined as in (2.3), (2.4). Then the analogue for Kap c,u 
of the generalized Abel transform (2.3) becomes 

(9.2) Ff(k,H) := I f(k,H+Y)dY, k 

a.L 

00 

EK, HE a, f EI ~(G). c,u 

Now it can be proved that, if G 
00 

= SL(2,~), f EI 0 (K 0 p) and a= 
c,,{.. lR HO then 



(9.3) 

~w 

Ff(m,,tH0) =canst.I I f(m$,wH0). 

0 t 

Compare this formula with (5.11). 
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