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Case-control studies in a Markov chain setting*) 

by 
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¢. Borgan & R.D. Gill 

ABSTRACT 

For some types of retrospective case-control studies we show how non­

parametric estimators of the forces of morbidity for chronic diseases may 

be constructed. For other types of study, estimators of closely related 

quantities may be also derived. In each case non-parametric testing can be 

carried out to investigate whether a certain factor or condition is a "risk­

factor" for the disease. An application is given to the example discussed by 

AALEN et al. (1980). 

KEY WORDS & PHRASES: Case-control studies, retrospective studies, Markov 

process models, counting processes, Aalen-Nelson 

estimator, linear rank tests for censored data 
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1 . INTRODUCTION 

The purpose of many investigations in epidemiology and medicine is to 

determine whether a certain factor or condition is a "risk factor" for a 

specific disease. If the disease is a rare one, it is inconvenient to per­

form a prospective study, or a follow-up study, and one usually has to re­

sort to a retrospective study, most often a case-control study. In such a 

study samples of individuals with and without the disease are selected, and 

one determines whether the individuals are exposed to the risk factor in 

question or not. 

Historically case-control studies have roots back in the 19th century 

(see LILIENFELD & LILIENFELD, 1979), but a thorough investigation of the 

statistical theory for such studies started only 30 years ago with the im­

portant paper by CORNFIELD (1951). This paper, and later works of CORNFIELD 

(1956), MANTEL & HAENZEL (1959), and CORNFIELD & HAENZEL (1960), still con­

stitute the philosophical basis for most works on case-control studies. 

The key idea in this theory is the following: it is an algebraic fact that 

the odds ratio of the risk factor among the diseased and non-diseased equals 

the odds ratio of the disease among those with and_without the factor. 

Since the latter is close to the relative risk of the disease for rare 

diseases, while the former may be estimated from a case-control study, 

case-control studies may be used to investigate the importance of a possible 

risk factor. 

Even if the basic idea is quite simple, a number of problems is of 

great importance in practical investigations. Important problems are how 

to select the cases and controls to avoid biased samples, and how to 

stratify or to "match" cases and controls to take possible heterogeneity 

in the population into account. These and other problems are much discussed 

in epidemiological circles, as can be seen from the recent issue on case­

control studies of The Journal of Chronic Diseases (1979, vol. 32, no. 1/2). 

During the last decade the classical methods in case-control studies 

have been further developed to allow the odds ratio to depend on concomi­

tant information ("covariates"), giving regression type models. This new 

theory, as well as the classical one, is reviewed in the recent book on 

case-control studies by BRESLOW & DAY (1980), which contains a comprehensive 
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set of references. 

In their famous paper of 1959 Mantel and Haenzel stated that "a primary 

goal is to reach the same conclusions in a retrospective (case-control) 

study as would have been obtained from a forward (follow-up) study, if one 

had been done". In our opinion a lot of work still has to be done before 

the goal of Mantel and Haenzel is achieved, our main reason being that the 

usual methods for the analysis of case-control studies only use counts of 

the various events and do not take the timing of the events into account as 

is usually done for prospective studies. Thus, the theory of case-control 

studies applies results from the theory of contingency tables and not from 

the theory of stochastic processes, as we feel should be the case. 

It is the purpose of the present paper to make a first attempt at 

developing a theory for case-control studies for a homogeneous population 

in a Markov chain setting. The paper has been inspired by the recently 

developed non-parametric methods of AALEN (1978) and ANDERSEN et al. (1982), 

and takes the discussion of retrospective observational plans in HOEM 

(1969), AALEN et al. (1980), and BORGAN (1980) as its starting point. We 

show how one may derive non-parametric estimators for (quantities closely 

related to) the forces of morbidity for chronic diseases and how non-para­

metric testing may be carried out for some types of case-control studies. 

An application related to the example discussed by AALEN et al. (1980) is 

also given. 

It turns out that the estimators and test statistics appropriate to 

many types of study all have the same structure. Thus we only give a de­

tailed derivation of large sample properties for the first type considered; 

for the other types one can innnediately write down the analogous properties. 

Moreover, in the body of the paper we only give a heuristic derivation of 

these properties. The technical problems of a rigorous derivation, which 

are surprisingly heavy ones, are deferred to Appendix I. 

It is easy to point out a number of shortcomings in the methods given 

in this paper. Since we are only considering Markov chain models with a 

finite state space, we have to assume that the risk factors only have a 

finite number of levels. 

A more serious limitation in many applications (e.g. cancer research) 

is that Markov chain models do not take the duration of exposure to the 
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factor into account. Finally, we only consider methods applicable to a homo­

geneous population. However, these shortcomings are not specific to our 

methods. Moreover, even for situations where the duration of the exposure 

to the risk factor is considered important, one usually has a Markov chain 

model under the hypothesis that the factor has no effect on the development 

of the disease. Therefore, we believe that the tests suggested in this paper 

will catch most interesting deviations from this hypothesis in such situa­

tions too. Nevertheless, more work needs to be done before a satisfactory 

theory for case-control studies in a stochastic process setting is establish­

ed. One should for instance try to develop a theory for semi-Markov models 

(here the paper of HOEM (1972) may be a starting point), and to discuss 

Markov chain models where the intensities may depend on certain covariates 

so as to model population heterogeneity. 

2. THE MARKOV CHAIN MODELS 

The Markov chain models to be considered in this paper may be exempli­

fied by the simple model given in Fig. I. 

The 
dise 
occu 

0 

chronic 
ase 
rs ·~ 

D 

The individual is 
exposed to the risk 
factor F ~ 

The C hronic 
t disea se occurs 

(Dead) 
,, 

~ DF -
The individual is 
exposed to the risk 
factor 

Fig. I. A simple Markov chain model for the 
evaluation of a certain risk factor 
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In this model an individual may be healthy and not exposed to a certain 

risk factor F. Such an individual is in state 0. Then the individual may 

become exposed to the factor (the model in Fig. I assumes that this is an 

irreversible event) and move to state F. Thereafter the individual may get 

a certain chronic disease and go on to state DF. If the chronic disease oc­

curs before the person is exposed to the risk factor, the individual takes 

the route O • D • DF. A person may also die. This corresponds to a move to 

the state t. 

More generally, in this paper we will consider a non-homogeneous, time 

continuous Markov chain model {S(x) :x20} with finite state space J, which 

may be written as a disjoint union J =Hu I u V. The subset Hof the state 

space corresponds to various exposure statuses for healthy individuals, 

while I corresponds to the same statuses for diseased (ill) individuals. 

The subset V consists of "dead" states. Thus, in Fig. I we have H = {0, F}, 

I= {D,DF}, md V = {tL It should be noted that the theory presented in , 

this paper only assumes that Vis an absorbing subset of states. Thus, the 

states in V may also represent some kind of censoring such as emigration. 

However, we will throughout the paper denote a transfer to a state in Vas 

a death. 

We will assume in most of the paper that the transition probabilities 

P .. (x,y) = P{S(y) = j I S(x) = i}, i,J E J, are absolutely continuous in 
iJ 

(x,y), and that the intensities or forces of transition, defined as 

( 2. I) a .. (x) = lim P .. (x,y) / (y-x) 
iJ y+x iJ 

for i,j E J, i # j, exist and are integrable. So cwnulative (or integrated) 

intensities defined as 

(2.2) 

also exist. 

A .. (x) 
iJ 

X 

= f 
0 

a .. (y)dy 
iJ 

i # J 

In fact all the results we give hold under the simple assumption that 

cumulative intensities exist; they need not be continuous, let alone abso­

lutely continuous. For ease of exposition we have chosen to work in the 

special case of absolutely continuous cumulative intensities. In Appendix 

2 we explain the more general model and point out the significance of this 
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generalization. 

We introduce the notation P. 8 (x,y) = l· BP . . (x,y) for any subset B of 1 ]€ 1J 
J and a. 8 (x) = l· Ba . . (x) for any subset B of J\{i}. Since we only consider 1 ]€ 1J 
chronic diseases in this paper (or only the first occurrence of a disease), 

we assume throughout that a 1.H = 0 for all i € 1. Of couse a .. = 0 for all . 1J 
i € V, j € L =Hu 1. Moreover, we will assume that no individual is diseased 

at birth and that the initial probability distribution at age zero is 

{nh: h € H}, i.e. P{S(O) = h} = nh; h € H; IhEH Tih = 1. 

Now, in connection with the example of Fig. 1, the epidemiological 

problem is the following: is the factor Fin fact a risk factor? In the 

present set-up we will say that this is the case if aF,DF(x) ~ a0D(x) for 

all x > 0, with strict inequality for at least some x. Thus, our statisti­

cal problems are in general to estimate quantities related to the ahi's for 

h € H, i € 1 and test hypotheses concerning these functions. These statisti­

cal problems can be equivalently formulated in terms of the ¾i's. These 

problems will be considered in the succeeding paragraphs for various sampling 

frames for the cases and controls. Before we turn to that, we close thi$ 

section with some results and notation which will be useful in the sequel. 

The notation P .. (x,y), i,j € L =Hu 1, will be u~ed for the transition 
1J 

probabilities of the partial Markov chain with state space L obtained by• 

substituting zero for a .. for all (i,j) with j € V (HOEM, 1969). Moreover, 
1J 

we let Pi(x) = P{S(x) = i} = lhEH nhPhi (O,x) for iE J, P8 (x) = P{S(x)EB} = 

= liEB Pi(x) for any subset B of J, and write Pi(x) and P8 (x) for the similar 

partial quantities. If there is non-differential mortality for live indivi­

duals, i.e. ajV =µfor all j € L, then 

(2.3) 
yr 

PjL(x,y) = exp(- µ(u)du), 

X 

and 

(2.4) 

y 

P .. (x,y) = P .. (x,y)exp(- J µ(u)du) 
1J 1J 

X 

for all i,j € L (HOEM, 1969). It is seen that P .. (x,y) in this situation 
1J 

(and only in this one, COHEN, 1972) is the conditional probability that an 

individual in state i at age x will be in state j at age y ~ x, given that 
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the individual is still alive at the latter age. If there is non-differen­

tial mortality for healthy individuals only, i.e. ahV = µ for all h E H, 

then (2.4) is still valid for i,j EH (BORGAN, 1980). 

3. PREVALENT CASES OF A GIVEN AGE 

3A. Introduction 

Let us assume in this section that the cases consist of a sample of n 

individuals in·some homogeneous population suffering from the chronic dis­

ease in question at a given ager_:. One collects a retrospective account of 

each individual's exposure and disease history. (In this paper, we choose to 

disregard all problems concerning the reliability of the information col­

lected in retrospective studies.) We assume that the sample of cases is 

"representative" in the sense that the observations (from the cases) may be 

considered as independent, identically distributed realizations of the 

Markov chain with state space L =Hu I obtained from the one in Section 2 

by conditioning on being in I at ages (see HOEM, 1969, for details). 

This Markov chain has transition probabilities 

(3. I) 

Q .. (x,y) = P{S(y) 
iJ 

J I S (x) = i, S (r_:) E I} 

= P .. (x,y)P. 1(y,r_:)/P. 1(x,r_:) 
iJ J i 

for i,J EL, x $ y $ r_:. The transition intensities of the chain are 

(3 .2) v . . (x) = a .. (x) P. I (x, r_:) /P. I (x, r_:) 
iJ iJ J i 

for i,j EL, if j, 

Let ~r) (x) be 

and x < s. 

_!__ times the number of transitions directly from state 
n 

h E H to 

with x $ 

state i EI reported by then individuals in the age interval [O,x], 

r_:. Equivalently, N~:) (x) is the relative frequency in the sample 

of the event "a direct transition from h to i at or before age x". Then 

EN~r)(x) = J; vhi (s)Qh(s)ds, where 



By (3.2) this reduces to 

(3. 3) 

X 

EN~~) (x) = f ahi (s)Ph(s)PiI(s,,)ds/Pz('). 

0 

7 

Without any assumptions on the mortality 1.n the various "live states" this 

expression is of little use. However, we get nice results when (i) there 

is non-differential mortality for all live individuals, i.e. ajV =µfor all 

j EL, or (ii) when there is non-differential mortality for healthy indi­

viduals and non-differential mo1•taility for diseased individuals, i.e. 

ahV = µ0 for h EH and aiV = µ 1 for i EI,~ the disease is a rare one. 

We will in Subsections 3.B,C, and D give a careful treatment of (i) and re­

turn to (ii) in Subsection 3.E. 

3.B. Non-differential mortality 

When mortality is non-differential for all live individuals (2.3) and 

(3. 3) give 

(3 .4) 

so that 

(3 .5) 

X 

EN~:)(x) = f ahi (s)Ph(s)ds/P1 (s), 

0 

x _ x dEN~:) (s) 

1\ii (x) = f ahi(s)ds = Pz(') f p (s) 
0 0 h 

Since P.(x) 1.n the present context (cf. the end of Section 2) is the con-
J 

ditional probability of being in state j at age x for an individual who 1.s 

still alive at ages, (3.5) suggests that one should draw the sample of m 

controls among all individuals alive at ages, not only among the non-dis­

eased (as also pointed out by MIETTINEN, 1976). We will assume that the 

control individuals are sampled independently of the cases, aud that they 

form a "representative" sample of the individuals alive in the population 

at ages, in the sense that the observations (from the controls) may be 

considered as independent, identically distributed realizations of the 
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Markov chain with state space L, initial distribution {TTh}, and transition 

intensities P .. (x,y). 

Let Y~m)(~) denote m times the number of control individuals who report 

that they were in state h "just before" age x (i.e. Y~m)(·) is left-con­

tinuous). Then i\ (x) may be estimated by Y~m) (x); the prevalence of the dis­

ease at ages, P7(s), may be estimated by Yjm) Cs) = ljEI Yjm)(s); and con­

sequently an estimator for (3.5) is 

X (n) 
- (m) f dNhi (s) 
- YI Cs) (m) 

0 yh (s) 
~i (x) 

The properties of this estimator may be derived using the theory which we 

present in the following pages. In most applications, however, the studied 

disease will be a rare one, which means that P{Yim)(s) = O} will be close 

to unity. In such situations one will have to be content with the estimator 

(3 .6) 
x dN~:) (s) 

= I y (m) (s) 
0 h 

for Bhi(x) = 1\i(x)/P7(s). (We avoid symbols like B~:,m) (x) in order not to 

overburden the notation.) 

3.C. Nonparametric estimation 

We now give a heuristic derivation of the large sample properties of 

the estimators Bhi(x): h EH, i E I, x E [O,s] given by (3.6). The main in­

gredients of a rigorous proof (using the techniques of BRESLOW & CROWLEY, 

1974) are presented in Appendix I .B. The heuristics are important because 

they lead to the correct expression for the asymptotic distribution of the 

(multivaria~e) stochastic process {Bhi(•): h EH, i E I}, which we denote 

simply by {Bhi}, in the shortest possible way. Both the heuristics here 

and the formal proof in Appendix I.Bare prototypes for the large sample 

analysis of all the other statistical quantities we shall be considering. 

We consider the process {Bhi} as a function of the processes {N~~)} 

and {Y~m)}. The latter are sample averages, and the function applied to 

their expected values {EN~:)} and {EY~m)} yields the quantities being esti­

mated, {Bhi} (cf. below). We now imitate Rao's a-method by approximating the 
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function with its first order Taylor expansion about these expected values. 

(The expansion is known in this context as the first order von Mises expan­

sion, see SERFLING, 1980 Chap.6, or BOOS & SERFLING, 1980). This gives an ap-
1 ... 

proximate expression for {n 2 (B" .-Bh.)} which is linear in ni - 1 

{n½(N~:)-EN~~))} and {m½(Y~m)_EY~m1)}. Substituting the asymptotic Gaussian 

distributions of these processes should give the asymptotic Gaussian distri-
1 ... 

bution of {n 2 (Efui-Bhi)}. 

We will first have a brief look at {N~~)} and {Y~m)}. Let us write 

t 

r ENhi ( t) = EN~:) ( t) = f Ph (s)dBhi (s) and 

~ 
0 

(3. 7) 

I 
EY(m) (t) l EYh (t) = = Ph(t). h 

Since there can be, for one individual, at most one transition directly 

from H to I, {N~~)} is quite simply the empirical joint distribution func­

tion of the time of this transition and the pair of states (h,i) EH x I in­

volved. Thus {n½(N~:)-ENhi)} converges in distribution as n + 00 to a zero 

mean Brownian-bridge type multivariate Gaussian process {Uhi} say, with co­

variance functions (equal to those of {N~:)} with n = 1) given by 

(3.8) 

where ohi,kl. is a Kronecker delta and A denotes minimum. One control in­

dividual may enter and leave a state h EH any number of times. So weak con­

vergence of {m½(Y~m)_EYh)} must be established directly. In Appendix I.A 

we show that (precisely under the assumption that integrated intensities 

exist) this process converges in distribution as m + 00 to a multivariate 

Gaussian process {Vh} with zero mean and with covariance functions (equal 

to those of {Y~m)} with m = 1) given by 

where we define P .. (s,t) for s > t as the "backwards" transition probability 
1J 
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of being in state j at time t given that the individual will be in state i 

at times. 

We are now ready to look at {Bhi}. By (3.7) we have 

so that 

(3. 10) 

t 

Bhi (t) = f 
0 

l n 2 - (-) 
m 

So we expect that, as n,m • 00 in such a way that n/m • A E [0, 00 ), we shall 

have (jointly in (h,i) EH x I) 

(3. 1 I) 

where {Uhi} is independent of {Vh} and each has the distribution derived 

above. 

Two remarks are in order here: firstly, it turns out by the analysis 

in Appendix l.B that we do have this convergence in distribution provided 

that EYh(x) ~ c > 0 for all x E [O,sJ and all h EH. (Clearly some assump­

tion is needed to avoid difficulties with the integrands in the above ex­

pressions.) If the condition as it stands is not satisfied, we still have 

analogous results for a time interval [x 1,x2J c [O,sJ and a subset of states 

h EH for which the condition does hold. Secondly, the integral with re­

spect to Uhi cannot be interpreted as an ordinary Lebesgue integral for 

each sample point. It must instead be interpreted (equivalently) either as 

a stochastic integral in the sense of MEYER (1976), or as an L2 integral in 

the sense of DOOB (1953), or by formal integration by parts. However the 



result is a Gaussian process whose covariance functions can be calculated 

in the natural way, as follows. 

I I 

l ~ 
The asymptotic covariance functions of {n 2 (Bhi-Bhi} are clearly the sum of 

components due to {Uhi} and {Vh}. For the contribution due to {Uhi}' we 

use the relation 

(3. I 2) cov 

X 

(,r dUhi 
y I dUkl\ = 

EY, ) f EYh ' 
0 Q K (u,v)E[O,x]x[O,y] 

d(cov(Uhi (u),Ukl(v)) 

EYh (u) EYk (v) 

(Integrating with respect to the signed measure generated by the bivariate 

"distribution function" cov(Uhi (·) ,Uk,e_(·)) given in (3.9) .) Now ENhi (xAy) 

is the joint cumulative distribution function of the pair of random variables 

(X,Y), where X = Y has distribution function ENhi (x). Similarly 

ENhi (x) ENkl (y) is the joint distribution function of the pair (X,Y), where 

X and Y are independent with distribution functions ENhi (x) and ENkl(y). 

Thus substituting (3.9) into (3.12), we find that the covariance in (3.12) 

is equal to 

For 

(3.14) 

xAy f dENh. (u) 
0 I. 

hi,kl O (EYh(u))2 

xAy dB . 

0 f ~-= hi,kl EYh 
0 

the contribution 

X 

cov(A!f 

0 

- A I j 
u=O v=O 

due 

X 
dENhi (u) j dENkl (v) 

- f EYh (u) EYk (v) 
0 0 

Bhi(x)Bk,e_(y). 

to {Vh}, (3. 7) and (3.9) r;ive 

Adding these terms gives an expression for the limiting covariance 
l ~ 

functions of {n 2 (Bhi-Bhi)}. 
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To be able to write down the natural estimators of these covariances we let 
(m) 

Yhk (s,t) be 1/m times the number of control individuals who were in state 

hat times and state k at time t, both for s ~ t ands> t, and write 

EYhk (s, t) 
(m) 

= EYh k (s, t) = 
- -
Ph (s)Phk (s, t). 

By the results of Appendix 1 we can then state the following theorem. 

THEOREM 3.1. Suppose m,n • 00 &n such a way that n/m • A E [0, 00 ) and suppose 

thqt Ph(x) ~ c > O for all x E [O,sJ and all h EH. Then 
{n 2 (Bhi-Bhi):(h,i) EH x I} given by (3.6) converges weakly in (D[O,c])r, 

where r is the number of elements of H x I~ to a zero mean multivariate 

Gaussian process {Whi} 3 with covariance structure 

xAy 

given by 

(3.15) I dBh.(u) 
cov(Whi(x),Wkf(y))= ohi,kf p ~u) 

0 h 

- (l+\)Bhi (x)Bkf(y) + A 
XJ yf 

u=O v=O 

:i\ (u)Phk (u,v) 

Ph (u)Pk (v) 
dBhi (u)dBkf (v). 

This asymptotic covariance can be uniformly consistently estimated by sub-
- (m) - - (m) 

stituting Bhi (u) for Bhi (u), Yhk (u,v) for Ph(u)Phk(u,v), Yh (u) for 

Ph(u), and n/m for A. 

REMARK 3.1. Suppose the Ph's are known functions, so that one could con­

sider estimating Bhi (·) by 

• dN~~) 

f Ph 
0 

Then Theorem 3.1 gives the asymptotic behaviour of these estimators if we 

substitute A= 0 (i.e. m=00 ) in the expression for the asymptotic covariance 

structure. Note that estimation of this structure is very much simpler in 

this case. 

REMARK 3.2. Theorem 3.1 gives directly a weak uniform consistency result for 
-Bhi" Strong uniform consistency can also be proved using some of the tech-

niques of Appendix J.C. 
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3.D. Nonparametric testing 

We now turn to the nonparametric testing problem. Suppose we want to 

test the hypothesis H0 that for a given set R c H x I, Bhi = B for all 

(h,i) ER for some unknown integrated intensity B. Note that the hypothesis 

states equivalently that ¾i is the same for all (h,i) ER. Following the 

line of thought in ANDERSEN et al. (1982), we will base a test for this hy­

p~thesis on the veetvr of statistics Z = (Zhi (s),(h,i) ER), given by 

(3. 16) 

X 

Zhi(x) = n!(f L(Y~m) (u))dN~r) (u)-

0 

X 

- f L (Y ~m) (u)) 
J 

y~m) (u) 

y ~m) (u) 
dN~n) (u)) = 

0 

X y~m) (u) I 

I f (m) { 
= n:z L (Y. (u) \ ohi ,kl 

Y ~m) (u) (k,l) ER O 

where Lis some fixed function, N(n) = l N(n) and Y (m) . (h,i)ER hi . 

\dN(n) 
} kl 

I Cm) 
= (h, i)ER yh . 

Note that since in general some of the summands in the expression for 

Y(m) may be identical, we do not necessarily have Y:m) :C:: I. 

The special choices L(y) = y and L(y) = I give test statistics of the 

Gehan-Breslow type and of the log-rank type respectively (cf. ANDERSEN et al. 

19 82) . 

We shall have to assume in general that Lhasa continuous derivative 

L' in (c 1-s,c 2+E) for some E > 0 where c 1 and c 2 must satisfy the weak con­

dition 

for all x E [O,sJ. (Of course the differentiability condition is trivially 

satisfied for the L-functions mentioned above.) As in the estimation problem, 

even if this condition does not hold, analogous results can be given for an 

interval [x 1,x2J c [O,sJ on which it does hold. Also as before, we write 

EY for the function EY(m), etc. When we replace the processes Y(m) and 

N~f) in (3. 16) with their expected values, we obtain by (3. 7), u~der H0 , 
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the value zero. Thus under H0 we have the following von Mises expansion: 

l 
n 2 

+ (-) 
m 

\ I. ' (E ) ½ ( (m) E . ( EYh ) E 
L. L Y_ m Y. - Y.J\.ohi kl- EY d Nkl 

(k,l)ER O ' • 

= I l (n) 
L(EY )d(n 2 (Nh. -ENh.))-• 1. 1. I EY I ( ) 

L ( EY ) _____E_ d (n 2 (N n -EN ) ) 
EY • • 

0 0 

I • 

+ (~) 2 J L(EY.)[-m½(Y~m)_EYh)+ ::h m½(Y~m)_EY.)JdB, 

0 

since the third term 1.s identically zero, and since dEN = EY.dB. We expect 

therefore that as n,m • 00 in such a way that n/m • A E [0, 00 ), we shall have 

V { ( ( EYh 
{ Zhi ( ·)} - -. j L (EY.) dUhi - j L (EY _) EY. dU. 

I 
+ ;i,_ z 

0 0 

where {Uhi} and {Vh} are the Gaussian processes described in Section 3.B, 

U.= l(h,i)ER Uhi and V.= l(h,i)ER Vh. Exactly as in that section we com­

pute the two components of the asymptotic covariance structure of {Zhi} 

under H0; the contribution to the asymptotic covariance of ~i(x) and 

Zkl(y) due to {Uhi} by (3.8) is 

xAy 

0hi,kl J 
0 

0 0 



X X EY 

+ ( f L(EY_)dEl\i - J L(EY_) EY~ dEN.)• 
0 0 

y y EY ) 
( J L(EY .)dENkl - J L(EY.) EY~ dEN. 

0 0 

Similarly {Vh}'s contribution, by (3.9), is 

X y_ 

;\ J J L(EY.(u))L(EY.(v))[Ph(u)Phk(u,v) 

u=O v=O 

u=O v=O 

Rather than write down the analogue to Theorem 3.1, we go one step 

further and formulate a theorem on the asymptotic distribution of a test 

statistic based on the row vector Z = (2tii(~): (h,i) ER). Let C be the 

15 

... 
natural estimator of the asymptotic null-hypothesis covariance matrix of Z, 

(3.17) 

u=O 

(m) (n) 
(m) 2( yh (u)f(m) dN. (u) 

(L(Y. (u))) oh. 1.11- () k (v) () 
1,JM.. y m (u) y m (u) . . 

~ ~ yCm)(u) 
+ n f f L(Y(m)(u))L(Y(m)(v))[Y(m)(u v)- _h~-Y.(mk)(u,v) 

m • • hk ' (m) 
u=O v=O Y. (u) 
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yCm) (v) 
k (m) 

__,(----,-)--Y.h (v,u) 
Y.m (v) 

Y~m) (u)Y~m) (v) dN(n) (u)dN(n) (v) 
+ ---,---,------,---,--- Y (m) ( U , V) ] • • 

Y ~m) (u)Y~m) (v) • • Y ~m) (u)Y ~m) (v) 

This covariance matrix has rank at most equal to one less than the number of 

elements of R (the sum of all its elements is identically zero). In the 

following theorem, C denotes a generalized inverse of C, and ZT is the 
-transpose of the vector Z. 

THEOREM 3.2. Suppose that m,n • 00 &n such a way that n/m • A E [0, 00). Sup­

pose that Lis continuously differentiable on (c 1-c,c 2+E) where E > O and 

0 < c 1 ~ EY.(x) ~ c 2 for all x E [O,~]. Suppose that EYh(x) > 0 for all 

(h,i) E Rand for aU x in a suhset of [O,r;] of positive dB-measure. Then 
~--~T under H0 , the test statistic zc Z is asymptotically chi-squared distri-

buted with number of degrees of freedom equal to one less than the number 

of elements of R. 

REMARK 3.3. A proof of Theorem 3.2 can be based on the results of Appen­

dix I. The condition on positivity of EYh ensures that the asymptotic co­

variance matrix of Z has fullest possible rank. Intuitively speaking, the 

condition requires that there is some subinterval of [O,r;] during which 

all states h corresponding to (h,i) ER are occupied by some individuals 

in the control group, and during which some of the cases make a transition 

from h to i, (h,i) E R. 

REMARK 3.4. The estimator (3.17) will clearly be tedious to compute, since 

the second term is a double integral with a contribution at (u,v) whenever 

a transition in R occurs at both time u and time v. In some situations the 

test statistic simplifies considerably: 

(i) In a number of practical applications each state h EH is represented 

once, and once only, together with a state i E I in R. Moreover, the disease 

is a rare one so that PH(x) is close to unity for all x E [O,r;], and hence 

Y~m)(x) too. (If the control sample consists entirely of individuals in H 

h 11 h Y(m) - I ) Then for all choices of L the statistics at ages we s a ave • = • 

Zand C simplify to (setting 1(1) = 1) 

s 
(3. 18) Zhi (r;) = n½(N~:)(r;) - f Y~m) (u)dN~n) (u)) 

0 



and 

(3.19) 

r; 

Sii,ki = f (ohi,ki-Y~m) (u))Y~m)(u)dN~n) (u) 

0 

0 0 
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(ii) If A is small, i.e. the control sample is relatively large compared to 

the sample of ~ases, the second term of (3.17) is of less importance. The 

first term only consists of a single integral. Moreover, the first term has 

exactly the same form as in the situation described by ANDERSEN et al. 

(1982). Thus when the size of the control sample is large compared to the 

sample of cases, we may (approximately) compute the test statistic as if 

we had a sample of size n from the original Markov chain model. This be­

comes an exact computation when the functions Ph are known (i.e. we take 

A = O). 

----T -REMARK 3.5. ZC Z may be computed by deleting the last component of Zand 

the last row and column of C, to give z0 and c0 say, and then using the 

relation 

3.E Differential mortality 

Let us no longer assume non-differential mortality as in Subsections 

3.B,C, and D, but only that ahV = µO for all h EH and aiV = µ 1 for all 

i E I. For this situation we have by (3.3), the remark at the end of Sec­

tion 2 and the obvious relation PiI(x,y) = exp(-J~ µ 1 (u)du) that 

X 

(n) f -ENhi (x) = ahi(s)Ph(s)f(s)ds/PI(r;), 

0 

where f(s) = exp{- J~ µ0 (u)du-J; µ 1 (u)du} is independent of h c H, i E I. 

Hence 
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(3. 20) 

In this subsection we will assume that the disease is a rare one, so that 

P._/r;) ~ 1 and PhH (x, r;) ~ 1 and therefore 

X 

Chi(x) ~ J ahi(s)f(s)ds/PI(r;). 

0 

Even if the Chi's are not proportional to the integrated intensities it will 

be useful to get estimates for these quantities, e.g. for assessing the 

relative size of the intensities and for a graphical check of the assumption 

of proportional intensities. 

By (3.20) it is seen that one now should draw a random sample of m 

controls among those alive and non-diseased at ager;. We assume that this 

sample of controls is "representative" in the same manner as indicated in 
. (~ ~ Subsection 3.B, and let Yh (x) and Yhk (x,y) refer to these control indi-

viduals. Then estimators for the Chi's are 

(3.21) C hi (x) 
r dN~:)(s) 

= j y(m) (s) 
0 h 

for h E H, i E I. Their properties follow by substituting Chi for Bhi and 
* * -Ph(x) and Phk(x,y) for Ph(x) and Phk(x,y) in Theorem 3.1. Moreover, to 

test the hypothesis that for a given set R c H x I, Chi= C for all 

(h,i) ER (which is (almost) the same as the equality of ¾i for (h,i) ER), 

we may use the results of Theorem 3.2 with the obvious modifications. 

4. SOME OTHER SAMPLING FRAMES 

In this section we will have a brief look at some other sampling 

frames for the cases and the controls. We will first consider sampling from 

a specific cohort. Thereafter we will comment upon some problems related 

to the sampling of new or incident cases of the disease in question. 

Let us assume that then cases are a sample of the individuals in a 

given cohort who are dead with the disease at a given "age" r;; sampled in 

such a way that all of these individuals have the same probability of being 
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selected. Moreover, assume that information on their individual exposure 

and disease histories may be obtained, e.g. from a national health register. 

To model this situation we split the set V of "dead" states into a disjoint 

union VH u VI' where VH contains the "dead" states for people who never get 

the disease, and VI contains the "dead" states for diseased individuals. 

One example of such a model is the extension of the model of Fig.I shown in 

Fig.2. Here VH ={tH} and VI= {t1}. Now, our sampling scheme is such that 

tH (Dead) 

0 F 

D DF 

tI (Dead) 

Fig.2 The Markov model of Fig.I extended with two death states 

all cases will be in one of the states in VI at "age" r;;. Hence, the observa­

tions (from the cases) come from the Markov chain obtained by conditioning 

on being in VI at "age" r;; • 

Let N~~) (x) denote 1/n times the number of transitions directly from 

state h EH to state i EI among then cases in the age span [O,x]. Then, 

by calculations similar to those giving (3.3), 
(n) fx 

ENhi (x) = O ahi (s)Ph(s)PiVz(s,r;;)ds/PVz(r;;). If 

for all h EH and aiVz = µ 1 for all i E I, then 

X 

we assume that ahVH _ µ 0 
as in Subsection 3.E 

EN~~) (x) = I ahi(s)Ph(s)g(s)ds/Pvr(r;;), 

0 
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where 

s ~ 

g(s) = exp(- f µ0 (u)du) (I-exp(- f u 1(u)du)), 

0 s 

so that 

X 

= I _d_EN_~_i_c_s_) 

0 Ph(s) 

Here P~ is defined just below (3.20). Hence, Dhi has the same structure as 

Chi in Subsection 3.E and may be estimated and interpreted more or less as 

described there. 

Note that if the cases consist of a sample of those alive or dead with 

the disease at age~ the analysis above goes through with VI replaced by 

I u VI and g(s) = exp(- J~ µ 0 (u)du). Moreover no assumptions on the aiVI's 

for i E I are necessary. 

A quite connnon procedure in practice is to collect a sample of new cases 

of the disease in question together with a sample of controls selected ran­

domly among those alive without the disease (irrespectively of age). In 

such a situation the cases as well as the controls come from various birth 

cohorts, possibly of varying sizes. We are presently investigating the pos­

sibilities of applying our techniques to this situation as well, and there 

seem to be no insurmountable difficulties in this. We intend to report on 

these results later. 

5. AN ILLUSTRATION: PUSTULOSIS PALMO-PLANTARIS AND MENOPAUSE 

To illustrate the methods of this paper we will reanalyse in part the 

data in Section 3 of AALEN et al. (1980). This example concerns the possible 

influence of menopausal hormonal changes or similar artificially induced 

changes in ovarian function ("induced menopause") on the intensity of the 

outbreak of the chronical skin disease pustulosis palmo-plantaris; i.e. 

the medical question is whether menopause is a "risk factor" for this skin 

disease. The present example is in fact too simple to really motivate the 

rather complicated procedures we propose. Nevertheless it should illustrate 



the type of results one may obtain by our methods. 

Since pustulosis palmo-plantaris is a relatively rare disease, with 

a reported prevalence of 0.05 per cent in a Swedish study (HELLGREN & 

MOBACKEN, 1971), the data of AA.LEN et al. (1980) are based on interviews 

with 85 females at the Department of Dermatovenerology, Finsen Institute, 
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Copenhagen, all suffering from the disease in question. No controls were 

sampled, and their analysis was performed separately for natural and in­

duced menopause. However, from "The cardiovascular disease study in Nor­

wegian counties", performed by the National Mass Radiography Service, Oslo, 

they obtained information on the age distribution of menopause for ages 

between 35 and 50 years. AA.LEN et al. (1980) used this information on on-

set of menopause only to determine the intensity with which menopause occurs. 

Here we will show how the Norwegian menopause data also may be used as 

"controls". To this end we omit the Copenhagen induced menopause women to 

make the Norwegian and Copenhagen female populations more comparable. How­

ever, it should still be kept in mind that the two female populations we 

consider may have different age distributions for natural menopause, which 

may make it somewhat misleading to use the Norwegian data as controls. 

Nevertheless the main patterns should be the same, so that the data are 

appropriate for our mainly illustrative purposes. 

The Norwegian menopause data are given in Table I together with the 

number of occurrences of pustulosis palmo-plantaris before and after natu­

ral menopause in the Copenhagen female population (extracted from Table 1 

of AA.LEN et al., 1980). It is assumed that for the three women who reported 

menopause and the outbreak of the disease to happen simultaneously, the 

disease was the last event. Since the Norwegian-menopause data are based on 

interviews with around 25000 women we assume below that the age-specific 

prevalence of menopause is known and equal to the numbers in Table 1. 

We will analyse the data by means of the Markov chain model of Fig. 1, 

where F now stands for menopause. As explained by AA.LEN et al. (1980) none 

of the sampling frames discussed in Sections 3 and 4 of this paper give a 

satisfactory description of the process of data selection from the diseased 

population. A more appropriate description is to assume that any given 

patient has a fixed intensity of being sampled per unit of time in which 

the patient is diseased and still alive. The combined biological and sampling 
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Table 1. Age distribution of menopause for the Norwegian female population 

and occurrences of pustulosis palmo-plantaris in the Copenhagen 
a) 

sample before and after menopause 

Age Prevalence 
menopause 

35 .024 

36 .029 

37 .036 

38 . 021 

39 .055 

40 .056 

41 .076 

42 .099 

43 . 1 12 

44 . 16 7 

45 .224 

46 .282 

47 .364 

48 .449 

49 .579 

of Occurrences of pustuloris palmo-plantaris 
Before menopause After menopause 

2 

5 

2 

2 2 

2 

3 

a) The data include only natural menopause. For the three women who reported 

the same age for menopause and the disease, the disease is assumed to 

be the last event. 

process may then be approximated by the model described in Section 2C of 

AALEN et al. (1980). If we assume non-differential mortality it then follows 

that we may think of the data on the diseased individuals as coming from 

a Markov chain model with intensities ahi (x)f(x)/nh(x) for h E {O,F}, i E 

{D,DF}, where f(x) only depends on x, the sampling intensity\, and the 

common force of mortalityµ, while nh(x) denotes the probability that a 

female in state hat age x will eventually get sampled (after being diseased, 

cf. AALEN et al., 1980, Section 2C). 

By an argument similar to the ones given in Section 3 of this paper it 
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then follows that 

X 

Dhi (x) = f ahi(s)f(s)p(s)ds/TI0 (0), 

0 

with p(x) = exp(- J~ µ(s)ds), is equal to J~ (dEN~~)(s)/Ph(s)), where N~~{x) is 

1/n times the number of transitions directly from state h E {0,F} to state 

i E {D,DF} reported by then= 66 female patients in the age span from 0 

to x years. (We have omitted the 19 induced menopause women.) 

Hence Dhi (35, x) · = Dhi (x) -

X 

Dh i (35 'x) = I 
35 

Dhi (35) may be estimated by 

dN~~) (s) 

Ph (s) 

where PF(·) = 
(n) 

- P ( ·) is given in the second column of Table I and 
(n9 

ndNOD ( ·) and ndNF DF(·) in the third and fourth column, respectively. The 
' statistical properties of these estimators follow from Theorem 3.1 and Re-

mark 3.1 after the appropriate substitutions are made. 

Plots of DOD (35,x) and DF,DF(35,x) are given in Fig.3. The plots give 

the impression that aF DF is greater that a 0D at least for ages above 40 , 
years. To test the hypothesis H0 : a 0D(x) = aF DF(x) for 35 s x s 50, or , 
equivalently n0D(35,x) = DF,DF(35,x) for 35 s x s 50, we may use the test 

statistic (cf. Remark 3.4) 

49 

= n½(N~:bF(49) - N~:bF(34) - f PF(s)dN:n) (s)), 

35 
(n) (n) (n) 

where N = NOD + NF,DF (Thus we take the time interval (34,49] instead 

of [0,~] in (3.18) .) An estimate of its variance, putting m = 00 in (3.19), 

1S 

49 
-V = C (F, DF) , (F, DF) I - - (n) 

= PF(s)P0 (s)dN. (s). 

35 
-1 

By Theorem 3.2 it follows that SV 2 is asymptotically normal (0, I) under the 
-1 

hypothesis, as the number of patients increases to infinity. Now, SV 2 takes 
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the significant value 2.45. (If for the three women who reported 

the same age for menopause and the disease, the disease is assumed to be the 

first event, we instead get the value 0.81 corresponding to a (one-sided) 

significance probability of 20.9%.) Thus, this new analysis seems to con­

firm the conclusions of AALEN et al. (1980) that menopause is a "risk factor" 

for pustulosis palmo-plantaris. In addition the new analysis gives infor­

mation on the size of the increase in the intensity of the disease after the 

occurrence of menopause (comparing the slopes in Figure 3, it appears that 

the intensity is approximately doubled). 

Cumulative intensity 

. 7 

. 6 

. 5 

. 4 

. 3 

. 2 

• l 

0 + D 

------- F+DF 

r---

35 40 

1 
I 
I 
I 

r-- J 

I 

I 

I 
r--..J 
I 
I 

,-----J 
I 
I 

I 
I 

I 

r-----...J 

45 

Fig. 3. Estimated cumulative intensities for occurrence of pustulosis 

palmo-plantaris (D) before menopause (0) and after menopause (F). 

so 
Age 



APPENDIX 1 

TECHNICAL LEMMAS FOR PROOF OF THEOREMS 3 • 1 AND 3 • 2 

In order to facilitate the extension to discontinuous cumulative in­

tensities in Appendix 2, we are careful in this appendix to distinguish 

left continuous and right continuous versions of processes and functions, 

and we draw attention to the single point where the extension to the dis­

continuous case is non trivial. 

1 .A. Weak convergence of {m!(y~m)_EYh): h EL} 
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Recall that Y~m)(x) is the fraction of them control individuals who 

are in state h just before time x E [O,z-;], where each individual's path is 

a Markov chain on L =Hu I with cumulative intensities A .. , i I j EL. The 
1J 

m individuals travel independently of one another on this chain, and each has 

the same initial distribution over L. Clearly the finite dimensional distri­

butions of the multivariate process {m½(Y~m)_EYh): h EL} converge to multi­

variate normal distributions as m • 00 • In order to show that this process 

converges in distribution in (D[O,z-;])r, where r =#Land elements of D[O,z-;] 

are here defined to be left continuous with right hand limits, it suffices 

to show that left continuous functions Fh and Gh exist such that, for 

0 ~ s ~ t ~ u ~ z-; and h EL 
2 . 

(i) E((Yh(u)-Yh(t)) ) ~ Fh(u) - Fh(t) 

(ii) E((Yh(u)-Yh(t)) 2 (Yh(t)-Yh(s)) 2) ~ (~(u)-Gh(t))(Gh(t)-Gh(s)) 

( 1) 
where Yh = Yh (cf. BILLINGSLEY (1968) Theorem 15.6 and the remarks on page 

133, and HAHN (1978) Theorem 2). If Fh and Gh are:actually continuous, then 

the limiting process has paths which are a.s. continuous too. 

From now on we restrict attention to the case m = 1. For i,j EL, i I j, 

let N .. (x) be the number of transitions directly from i to Jin the time 
1J 

interval [O,x]. Write N1. , N •. , A. , A. for'·~· N .. etc. Note that for • 1 1• •1 lJri 1J 
t < u 

since Yh(u) and Yh(t) can only differ (and then only by the amount ±1) 
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if there has been a transition out of or into h in the interval [t,u). By 

AALEN's (1978) theory of counting processes (extended to possibly discon­

tinuous A .. by GILL, 1980b), conditional on the state just before time t, 
1-J 

we have 

N .. (•) - N .. (t-) - I Y. (u)dA .. (u) 
1-J 1.J 1. l.J 

[ t, • J 

1.s a martingale on [t,1;;] for all i,j E L. Thus in particula,- we have 

(A. 1 .2) E[N .. (u-)-N .. (t-) I Yk(t):k E LJ 
1.J l.J E[ I Y. (u)dA .. (u)] 

]_ 1. J 
[ t, u) 

::; A .. (u-) - A .. (t-). 
1.J 1-J 

Thus we obtain from (A.I .1) and (A.I .2) 

(A (u-)-A (t-))+(A (u-)-A (t-)) -b• -b• !h •h 

and 

2 2 
E((Yh (u)-Yh (t)) (Yh (t)-Yh (s)) ) 

2 2 = f(E((Yh(u)-Yh(t)) !Yk(t) :k E L)E((Yh(t)-Yh(s)) IYk(t) :k E L) 

2 
::; (¾.(u-)-¾.(t-)+A.h(u-)-A.h(t-))•E((Yh(t)-Yh(s)) ) 

(A (t-)-A (s-)+A (t-)-A (s-)). 
-b• -b • •h •h 

Thus (i) and (ii) hold with Fh(t) = Gh(t) = A.h(t-) + ¾.(t-) for all t 

and h. Also we see that the limiting multivariate Gaussian process has con­

tinuous paths if each A .. is continuous. 
1.J 

Note that from (A.I.I) we see that 

1;; 

j JdY~m) (t) I ::; N~~) (z:;)+N~:) (z:;) ! EI\. (?;;)+EN.h (1;;) 

0 



Therefore there exists a constant C < 00 such that 

s 

r{ f I dY (m) ( t) I c} p 
:,; • as m • 00 • 

h 
0 

1.B. Weak Convergence of Certain Functions of {Y~m): h EH} and 

{N~~): (h,i) EH XI} 
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In order to concentrate on the important parts of the problem, we con­

sider here a "one-dimensional" problem concerning Y~m) and N~~) for a single 

h EH and i E I, and we shall henceforth denote these processes by Y(m) and 

N(n). The only new difficulties in the multivariate case are notational 

ones. 

We shall consider the problem of proving weak convergence of 

{n!( f f(Y(m))dN(n) - f f(EY)dEN)} 

0 0 

where f is any sufficiently smooth function. The structure we need concerning 

the processes Y(m) and N(n), and the functions EY,EN and f, is contained in 

the following list of asstnnptions: 

(i) As n,m • 00 in such a way that n/m • A E [0, 00 ), (n!(N(n)_EN), 

m½(Y(m)_EY)) £ (U,V) in (D[0,~]) 2 (whose second component is considered 

to be the space of left continuous functions with right hand limits). 

(ii) 3C < 00 s.t. I{f6 ldY(m) I ~ C} g 1 

(iii) f6 ldN(n) I < 00 almost surely for each n 

(iv) f6 JdENI < 00 , f6 ldEYI < 00 

(v) £ has a continuous derivative f' on [c 1-s,c 2+s] where E,Cl and c 2 
satisfy E > 0 and c 1 :,; EY(t) :,; c2 for all t E [O,z;J. 

(vi) U and V have continuous sample paths with probability I • 

Under these assumptions we have 

THEOREM A. I. As n • 00 , 

0 0 
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{ f 
.o 

I 

f(EY)d'J + \ 2 f f I (EY)VdEN} 

0 

in D[O,sJ, where the integral with respect to U is defined by formally in­

tegrating by parts. If it is also defined as a stochastic integral, then 

the two definitions coincide. 

PROOF. We closely follow BRESLOW & CROWLEY (1974). First we apply a 

Skorohod construction to the sequence of random elements of (D[O,sJ) 2 x JR: 

s 
~ (n) = {n!(N(n)_EN),m!(y(m)_EY),1{ j ldY(m) I < 

0 

c11 
ff 

which converge3 in distribution to~= {U,V,I}. Thus there exists a sample 
(n) I 

space with defined on it~ , n = 1,2, ... and~' such that 

and 

~(n)' ~ ~(n) \'n 

(n) I 

~ 

in the topology of (D[O,i;:]) 2 x JR. Since U and V have continuous sample 

paths, we actually have convergence in the supremum norm (rather than just 

in the Skorohod metric) of the first two components of ~(n)'. (This is the 

one and only point at which continuity of the A .. 'sis crucial.) On this 
iJ 

new sample space we shall prove almost sure convergence in the supremum 

norm of the functional of interest. This implies convergence in distribntion 

(in D[O,sJ) in the original set-up. 

So we now work with the stronger assumptions (i)' to (v)' obtained by 

1 . V d P. (") d (~~) b a.s. ( h rep acing • an • in i an ~~ y __ __,. w.r.t. tote supremum norm 

in (i)). Note first that by (v)', f' is bounded and uniformly continuous 

on [c 1-E:,c 2+d. Write 11•11 for the supremum norm on [O,sJ. On the event 
(m) } {Y (t) E [c 1-E:,c 2+E:] we have by the mean value theorem 



where Y(m)*(t) lies between Y(m)(t) and EY(t). Therefore by (i)', on the 

above mentioned event, 

Since almost surely, for all large enough m we do have Y(m) E [c 1-E:,c 2+E:], 

it follows that 

almost surely as m • 00 • 

Now we have 

n!(f f(Y(m))dN(n)_ f f(EY)dEN) 

0 0 

I 

= f f(Y(m))d(n!(N(n)_EN)) + (~) 2 f m!(f(Y(m))-f(EY))dEN 

0 0 

and the limiting process is a sum of two corresponding components. We see 

directly that 

0 0 

Moreover, we have on the event {Y(m) E [c 1-E:,c 2+E:]} that 

f6 ldf(Y(m))I:,:; llf'II J~JdY(m)I and f6 ldf(EY)I:,:; ilf'II f6 JdEYI where 

II f'II = sup{f' (y): y E [c 1-E:,c 2+sJ}. Therefore by GILL (1980a) Lemma 5 (an 

abstract version of part of BRESLOW and CROWLEY, 1974, Theorem 4) 

nf f(Y(m))d(n!(N(n)_EN)) - f f(EY)dUII • 0 a.s., 

0 0 
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which proves the stated weak convergence. The remaining part of the theorem 
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is a direct consequence of Lemma 5 in GILL (1980a). D 

J.C. Consistency of estimators of asymptotic covariance structure 

An analysis of the problem of establishing uniform consistency of the 

estimators of covariance functions in Theorem 3.1 and 3.2 show that the 

following two Lemmas on random signed measures in ]RP cover all the diffi­

cult points. To motivate the Lemmas, we point out that we will apply Lemma 

2 in Theorem 3.1, considering m = m(n), by taking p = 2, µ(n) to be the 
(n) (m) (n) 

random signed.measure defined byµ (dx 1,dx2) = Yhk (dx 1,dx2), and v to 

be the random measure defined by 

First we introduce some notation. For a measureµ on the Borel sets of 

]RP and points x = (x 1, ... , xp) and y = (y 1, ... ,y p) E i.P we define 

p 
(x,y] = • TT I (x. ,y.] (empty if x. > y. for some i) 

i= i i L i 

p 
(x,y) = TT (x. 'y.) (empty if x. ;:,: y. for some i) 

i=l i i i i 

µ(x) µ((-oo,x]) 

µ (x) = µ ( ( --oo, x)) 

(note that µ(x) # µ ({x})!). Define two norms on the space of measures by 

llµII = sup Iµ (x) I = sup Iµ Cx) I 
(X) 

XE::JR XE:JR 
p p 

and 

llµII = f Iµ (dx) I • 
V 

XE:JR 
p 

LEMMA I. Let µ 1,µ 2 , ••• be an i.i.d. sequence of random measures on ]RP and 

define µ(n) = ¾ L~=I µi · 



Suppose that EllµillV < 00 and define µ 

as n-+ 00 and. 

= Eµ .• Then u/n)_µII -+ O a.s. 
i 00 

lim sup 
n• oo 

f lµ(n)(dx) I < 00 

xe:lR.p 

a .s. 
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PROOF. This result can be established by generalizing many of the standard 

proofs of the Glivenko-Cantelli lennna. In particular, the proof of RAO's 

(1962) Theorem 7.2 lends itself very easily to this extension. D 

LEMMA 2. Let (µ(n)),(v(n)) be two sequences of random measures and µ,v be 

two fixed measures on lR.P such that 

as n-+ 00 

as n -+ 00 

Ct00 n-+oo 
lim lim sup P[llv(n)u > C] = 0 

V 

Define ,<n) and, by ,<n)(dx) = µ~n) (x)v(n) (dx), ,(dx) = µ (x)v(dx). 

Then 

as n -+ 00 

and 

lim lim sup P[ II, (n) II V > CJ = 0 . 
Ct00 

PROOF. The second assertion is easy to verify so we only consider the first 

one. Note the relation 

J 
ye: (-co, x] 

µ_ (y)v(dy) = f 
ye:(-oo,x] 

( f µ(dz))v(dy) 

ZE (-oo,y) 
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= f 
ZE(-oo,x) 

( J 
yE(z,x] 

v(dy)\ µ(dz) 
) 

= I 
ZE(-oo,x) 

I (-l)s(<D,z)v(w)µ(dz), 
wEP(z,x) 

where P(z,x) = {w ERP: w. = z. or x. for each i} is the set of zP corners of i i i 
the hyper rect .ngle (z,x], and s(w,x) = p - (number of components of w equal 

to the corresponding component of x). Thus 

Since 

II !;II s 2P11 µII II vii . 
co V oo 

l;(n)(x) - s(x) = f 
yE(-00 ,x] 

+ I 
yE(-oo,x] 

(n) 
µ (y)(v -v)(dy) 

we obtain 

II i; (n) -!;II s IIµ (n) -µII II v (n) II + 2P11 µII II v (n) -vii 
oo oo V V oo 

and the required result follows irrnnediately. D 

Applying Lerrnna 2 to Theorem 3.1 as indicated above, we must verify the 

d . . . . d (n) h (n) . h con itions pertaining toµ an µ wereµ is t e measure generated by 

Y~:). These conditions will follow from Lerrnna I since Y;;) is 1/m times a 

sum of m i.i.d. random measures. Therefore we must check that 

f I (I) I yhk (dxl,dx2) < oo 

2 
xdO, s) 

E 

(n) (n) 2 
(we setµ ,v zero outside [O,sJ ). 

(I) (I) (I) 
Now Yhk (x 1,x2) = Yh (x 1)Yk (x2). Also we have 



jYh(l) (dx 1) I = Yh(I) (O) + N(l) (z_;-)+N(I) (z_;-) • 
h • •h ' 

similarly for state k. Thus it is sufficient to show that 

2 E[N .. (z_;) J < 00 for all 
1] 

1,J E L 
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Now by AALEN (1978) (extended to possibly discontinuous A .. by GILL, 1980b) 
1] 

(A. I . 3) 

and 

(A. I • 4) 

M . . ( • ) = N . . ( • ) - I y . ( s) dA . . ( s ) 
1] 1] 1 1] 

2 
M •• ( •) 

1] -I 
0 

0 

Y . ( s ) (I - L'IA . . ( s ) ) dA. . ( s ) 
1 1] 1] 

are zero mean martingales on [O,z_;], where L'IA .. (s) = A .. (s) - A .. (s-) ~ 
1] 1J 1J 

(see Appendix 2). Thus we have from (A.I .3) 

E[ N . . ( z_; ) J ~ A. . ( z_;) 
1] 1J 

and from (A. I .4) 
z_; z_; 

2 E[N .. (z_;) -2N .. ( z_;) 
1] 1] I Y . ( s ) dA. . ( s ) + ( I Y . ( s ) A . . ( s ) ) 2) 

1 1] 1 1J 

0 0 

Y. (s) ( 1-L'IA .. (s) )dA .. (s)] ~ A .. (z_;). 
1 1] 1J 1] 

This gives 

2 E[ N . . ( z_; ) J ~ 2A . . ( z_; ) E[ N . . ( z_;) ] + A. . ( z_; ) ~ A. . ( z_;) ( 2A . . ( z_;) + I ) < 00 

1] 1] 1] 1] 1] 1] 

The rest of the application to Theorems 3.1 and 3.2 is left to the 

reader. (Note that the conditions on the derivative of Lin Theorem 3.2 

will be needed when considering the covariance estimator (3.17) .) 
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APPENDIX 2 

GENERALIZATION TO CUMULATIVE INTENSITIES 

We mentioned previously that all the results of this paper hold under 

the simple assumption that cumulative intensities A .. exist; they need not 
1.J 

be continuous, let alone absolutely continuous. In this appendix we explain 

what we mean precisely by cumulative intensities when the a .. 's do not 
1.J 

exist, and we sketch how the extension may be carried out. Finally we dis-

cuss the importance of such an extension. 

Consider then a non-homogeneous, time continuous Markov chain 

{S(x) :x ~ O} with finite state space J. We suppose that the sample paths of 

Sare piecewise constant and right continuous, and that there are only a 

finite number of jumps in any finite time interval. Then S 1.s equivalently 

described by random jump times O = T0 < T1 < T2 < ••• such that Tit 00 

(Ti= Ti+I if Ti= 00 ) and random states I 0 ,I 1, ••• such that S(x) = Ij 

throughout the interval [T.,T. 1), j = 0,1,2, •.. , T. < 00 

J J+ J 
Cumulative intensities are functions A .. : [0, 00 ) • [0, 00), i / j, which 

1.J 
are nondecreasing, right continuous, and zero at time zero (A .. (0) = O). 

1.J 
Defining A. = \·~· A .. , we also suppose that 

i• lJrl. 1.J 

t;A. (x) = A. (x)-A. (x-) ~ I for all x. 
1• 1· 1• 

Then the functions A .. are the cumulative intensities of the Markov chain 
1.J 

s if 

(I) 

and 

( 2) 

P[Th+l > V I Th= u and ~ = i] = 

P[Ih+I = J I Th+l 
dA .. 

= v] = ~ (v) 
dA. 1.. 

TT 
tE ( U, V] 

for al 1 i, j E J, i / j, 0 ~ u < v, and h = 0, I , . . . . 

(1-dA. (t)) 1. • 

By JACOBSEN (1972) the distribution of Sis determined by the initial 

distribution (of S(O)) over J) and by the A .. 's via (I) and (2): property (I) 
1.J 
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gives the distribution of the sojourn time in a particular state, given the 

time of entry; property (2) gives the distribution over J of the new state 

given that a jump out of state j occurs at time v. Conversely, most Markov 

chains posses cumulative intensities. (Let T(u) be the time of the first 

transition in (u, 00). Then we must assume that if for any u and 1 the distri­

bution of T(u) given S(u) = i has bounded support in (u, 00), then its support 

terminates in an atom of positive probability. In other words if 

0 5 u < v < 00 and i E J exist such that P[T(u) 5 v I S(u) = i] = 1, then 

there exists v•· > u such that 

P[T(u) < v' I S(u) = i] < l and P[T(u) 5 v' I S(u) = i] = l .) 

Two special cases are included in this set-up: 

(i) When integrable forces of transition or intensities a .. defined by 
1J 

a .. (s) = }t P .. (s,t) I 1J a 1J t=s 

exist, then A .. (t) = J 0t a .. (s)ds, and the probabilities (1) and (2) are 
1J 1J 

equal to exp(-Jva. (s)ds) and a .. (v)/a. (v) respectively, where 
U 1• 1J 1• 

ai• = l.j,&i aij. 
(ii) When the Markov process Sis actually a discrete time Markov chain, 

i.e. the jump times Tk are integer valued, then A .. is constant on each 
1J 

interval [t-1,t), tan integer, and 

P .. (t-1,t) = P .. (t-,t) = /'iA .. (t), 
1J 1J 1J 

for integer t. Probabilities (1) and (2) now become TT ( J (1-M. (t)) 
tE u,v 1° 

and tiA .. (v)/l'iA. (v) respectively. 
1J 1 • 

We now discuss the extension of our results from absolutely continuous 

A .. 's (example (i)) to arbitrary A .. 's. We have appealed to results of 
1J 1J 

HOEM (1969) and AALEN (1978) which in these papers are stated for the ab-

solutely continuous case (in fact, continuity assumptions on the a .. 's are 
1J 

also made). However, by the results of JACOBSEN (1972) and GILL (1980b) 

respectively, all these results can be innnediately transferred to the case 

of arbitrary A .. 's. 
1J 
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Given this fact, all our derivations go through in the case of continuous 

A .. 's just as in the case of absolutely continuous A .. 's. 
iJ iJ 

When we extend to A .. 's with jumps, only two problems arise, one of 
iJ 

which is purely notational. When transitions can occur at fixed times with 

positive probability, the function P. (x) = P [S(x) = i I S(s) ,/_ VJ of 
i 

Section 3 is no longer continuous in x and y, but only right continuous. 

However we defined Y~m)(x) as the fraction of control individuals in state 

h just before time x; thus 

E[y (m) (x) J = p- ( ) h h x- . 

-
This means that in Theorems 3.1 and 3.2 we must redefine Ph and Phk by 

Ph(x) = P[S(x-) = h I S(s) ef VJ 

phk(x,y) = P[S(y-) = k I S(x-) = h, S(s) ,/_ VJ. 

The second problem unfortunately is highly technical. In Appendix 1 .B 

we needed condition (vi), on continuity of the sample paths of U and V, in 

order to carry out a Skorohod construction with respect to the supremum 

norm rather than just with respect to the Skorohod metric for D[O,sJ. 

This difficulty can be overcome in the discontinuous case by inserting small 

intervals at each jump point of the A .. 's, linearly interpolating the Y~m) 
iJ i 

and N~~) processes across each interval, and proving weak convergence with 
iJ 

a continuous limiting processes on the extended time axis. This technique 

is shown to work for a similar problem in GILL (1980a), and we do not wish 

to repeat the details here. 

Finally we discuss the importance of such extensions. In the first 

place there is a clear mathematical importance, since the assertions of 

e.g. Theorem 3.1 can be made without assuming any smoothness of the cumu­

lative intensities. It would be very unsatisfactory if smoothness assump­

tions had to be made. There is some practical importance too. In the 

literature one often comes accross the claim that for practical purposes 

it is suffcient to work with continuous intensities. In practice however 

one cannot empirically discern a smooth A .. for a nonsmooth A ... Thus we 
iJ iJ 



rather have exactly the opposite situation: because the theorems hold in 

the nonsmooth as well as in the smooth case, it does not matter that we 

imagine intensities as being continuous functions. 
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