
stichting 

mathematisch 

centrum 

AFDELING MATHEMATISCHE STATISTIEK SW 87/82 
(DEPARTMENT OF MATHEMATICAL STATISTICS) 

W.R. VAN ZWET 

AN INEQUALITY FOR RANDOM REPLACEMENT SAMPLING PLANS 

Preprint 

~ 
MC 

SEPTEMBER 

kruislaan 413 1098 SJ amsterdam 



PJr.,[n:te.d a;t :the. Ma;the.maxic..al. C e.n.tJLe., 41 3 Kll.l.L{,6faa.n, Am1.>:tvulam. 

The. Ma:the.ma.uc..al. Ce.n.tJLe. , 6ou.nded :the 11-;th 06 Fe.bJc.uaJc,y 1946, ,u., a. non
p1w6U .,{,nt,.t.,U;u,tion a..i.mlng a;t :the. pft..omotion 06 pu.Jt..e. ma:the.maxie6 a.nd -U6 
a.ppUc..a.tion6. 1:t b., 1.>pon60Jt..e.d by ·;the.,.t,te.:the.Jt..la.nd-6 Gove.Jt..nme.n:t :thfwu.gh :the. 
Ne.:the.Jt..la.nd-6 0Jt..ga.n.,{,zaxion 6oJt.. :the. Acfvante.me.n:t 06 Pu.Jt..e. Rue.Mc..h (Z.W.O.). 

1980 Mathematics subject classification: Primary: 62D05 
Secondary: 62Bl5 



An inequality for random replacement sampling plans*) 

by 

W.R. van Zwet 

ABSTRACT 

In this paper a conjecture of Karlin concerning random replacement 

sampling plans is discussed. 

KEY WORDS & PHRASES: random replacement sampling plans, sampling without 

replacement, sampling with replacement, inequalities 

*) This report will be submitted for publication elsewhere. 



I . INTRODUCTION 

From a population Q = {1,2, ... ,N} a sample I= (I 1,r2 , ... ,In) 

of size n s N is drawn by means of a random replacement scheme as follows. 

Let TI= (TI 1,TI2 , ... ,Tin_ 1) be a vector of real numbers in [0,1] . The random 

replacement scheme R(TI) operates by selecting the first sample element 1 1 

from the elements of Q with equal probabilities. 11 is then removed from 

the population with probability (I-TI 1) and replaced with probability TI! . 

Next 12 is chosen with equal probabilities from the elements remaining in 

the population and removed with probability (I-TI2) and replaced with 

probability TI2 . This procedure is continued, drawing Ik with equal 

probabilities from the elements remaining after step (k-1) and replacing it 

with probability Tik, until a sample I= (1 1, ••• ,In) is obtained. Of course 

R(I, ... ,1) and R(O, ... ,O) denote sampling with and without replacement 

respectively. For any scheme R(TI) , expected values under R(TI) will be 

denoted by E TI 

For any set A , let CAn be the class of real-valued functions ¢ on 

An that satisfy 

( I. I) 

( I. 2) 2¢(u,v,y3 , ... ,yn) s ¢(u,u,y3 , ... ,yn) + ¢(v,v,y3 , ... ,yn) 

for all u,v,y3 , ... ,yn EA. 

The following conjecture was discussed in Karlin (1974). 
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KARLIN's CONJECTURE. 

If ¢ E C~n and TI= (TI 1, ... ,Tin-I) and TI 1 = (Tii,···,TI~-I) are such that 

0 s Tik s Tik s l for k = I, •.. ,n-1 , then 

(I. 3) E ¢ (I) s E I ¢(I) . TI TI 

A seemingly more general but equivalent formulation of the conjecture is 

obtained by introducing arbitrary real variate values into the set-up. Suppose 

that the elements 1,2, ... ,N in the population carry - not necessarily distinct 

variate values a 1,a2 , ... ,aN and define X = (X 1,x2 , ... ,Xn) = (a11 ,a12 , ... ,a1n) • 

Then X is a sample from the more general population ~ (a 1, ... ,aN) generated 

by the same sampling scheme R(TI) that produces I from ~ . For any function 

f on ~ we may define a function ¢ on ~n by taking ¢(i 1,i2 , ... ,in) = 

f(a. ,a. , ..• ,a. ) and then ¢(I) 
ii i2 in 

f(X) Moreover, if f E c~ then clearly 

¢ E C~n. Conversely, for every ¢ E C~n the relation f(a. , ... ,a. ) = 
i I in 

¢(i 1, ... ,in) defines a function f EC~ , provided the variate values 

a 1, ... ,aN arf distinct. The following formulation is therefore equivalent to 

Karlin's conjecture. 

EQUIVALENT CONJECTURE. 

If f E C~n and TI= (TI 1, ... ,Tin-l) and TI' = (TI;, ... ,TI~_ 1) are such that 

0 s Tik s Tik s I for k = l, ... ,n-1 , then 

( I. 4) E f(X) s E ,f(X) . TI TI 

In fact Karlin discussed this second form of the conjecture. We prefer to consider 

the first formulation because it does not require the additional notation needed 

to distinguish between different population elements carrying the same variate 

value. 

The conjecture was proved in Karlin (1974) for the following special cases. 
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(a) TI= (0,0, .•• ,0) , i.e. R(TI) is sampling without replacement; 

(b) TI'= (I,I, ••. ,I) , i.e. R(TI') is sampling with replacement and either n ~ 12 

or [N/(N-I)]n-I ~ n/(n-3) ; 

(c) TI 1 = (I,I, ... ,I) and either 

or 

(ii) f (x1 , ... , xn) = g (x 1 + ... +xn) , where g is convex and the variate values 

a 1, ... ,aN have only two distinct values. 

These results generalize earlier ones of Hoeffding (1963) and Rosen (1967). 

For a review of the area see Marshall and Olkin (1979). The relation to the 

theory of comparison of experiments is discussed in Torgersen (1981). 

Since the case TI= (0, ... ,0) is settled and no results appear to be 

known for general TI~ TI 1 , it seems prudent to focus on the case TI' = (1, ... ,1) , 

where at least the partial results (b) and (c) are available to sustain one's 

optimism. However, even for this case it is easy to agree with Karlin that the 

matter "appears quite delicate". Rather than to attempt to prove or disprove the 

conjecture, it appears more feasible to try to indicate a reasonably large class 

of functions ~ on Qn for which inequality (1.3) holds for TI'= (1, •.• ,1) • 

The purpose of this paper is to provide such a class. 

Let VQn be the class of real-valued functions ~ on Qn that satisfy 

(I. 5) 

( I. 6) 
2 N I N N 
N l Hi,j,i3 , ... ,i) ~ ~(i,i,i3 , ... ,in) + - 2 l l ~(j,j 1 ,i3 , •.• ,i) 

j=I n N j=I j'=I n 

THEOREM. 

TI 1 = (1,1, .. ,,1) , 



·4 

To see the connection between the classes CQn and VQn consider the in

equality 

N N 
(1.7) I I • (v,v',i3,••·,in) 

v= 1 v' =l 
C C , ~ 0 

V V 

for real numbers with consists of all 

synnnetric functions • satisfying (1.7) whenever, for some i and J , 

c. = -c. = 
l. J 

and c = 0 for v ~ i,j • Since (1.6) may be written in the form 
V 

( 1 • 8) 
2 

N-1 I Hi, j , i 3 , ... , i > + 
. • n 
J~l. 

+ 1 2 I I • (j 'j I 'i3' •.. 'i ) ~ 0 ' 
(N-1) j~i j'~i n 

the class VQn consists of all synnnetric functions • satisfying (1.7) when-

ever, for some 1., c. = 
l. 

and c = -1/(N-l) for v ~ i. Both classes con
v 

tain the set of synnnetric functions satisfying (1.7) whenever Ic = o. 
V 

Special cases of this set were studied in Bickel and Van Zwet (1980). 

2. PROOF OF THE THEOREM 

By a simple induction argument (cf. Karlin (1974), lemma 3.1) it suffices 

to prove the theorem for the case where n = (0,1,1, ... ,1) and n' = (1,1, •.. ,1) . 

Hence the only difference between n and n' is that, when using the scheme 

R(n) , the first element sampled is not replaced. 

For j = l, ••• ,N, let R. 
J 

denote the number of times that element J 

occurs in the sample and let R = (R1, .•. ,~) • Obviously Ij~l Rj = n, the 

sample size. Let 0 •• = 
J,J 

e j = ( o I , j , o 2, j , .•• , oN, j) 

• E VQn. Because of (1.5), 

and o. = 0 if 
1.,J 

i ~ j , so that 

is the j-th unit vector in ]RN. Choose any function 

is a function of R only, say • (I)= ~(R) . 

In view of (1.6), or equivalently (1.8), ~ satisfies 
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(2. 1) ijJ(s+2e.) - - 2- l ijJ(s+e.+e.) + 1 2 I l ijJ(s+e.+e.,):?: 0 
1. N-l j.ci 1. J (N-1) j.ci j '.ci J J 

having integer co-ordinates s. :c: 0 with 
J 

Is.= n-2 and for 1. = 1, ... ,N. Because every random replacement scheme 1.s 
J 

invariant under permutation of the population elements, it is no loss of 

generality to assume that 1jJ is also invariant, i.e. that ijJ(r 1 , ••• ,rN) 1.s 

a syrmnetric function of its N arguments. Hence it suffices to show that 

(2.2) E 1jJ (R) :-::; E I 1jJ (R) 
'TT 'TT 

for any syrmnetric function 1jJ satisfying (2.1) and for TI= (O,I,l, ... ,l) and 

'TT 1 = (l,l, ... ,1) 

Define 

(2.3) 

Since R(n') 1.s sampling with replacement, 

x(r+2) - 2x(r+l) + x(r) E{ijJ((r+2)e 1+S) + 

(2.4) N N N 
2 l ijJ((r+l)e 1+e.+S) + I 

I l ijJ(re 1+e.+e.,+S)} N-1 j=2 J (N-1) 2 j=2 j '=2 J J 

where S = (O,s2 , ... ,SN) and (S 2, ... ,SN) has a multinomial distribution with 

-] -] 
cell-probabilities (N-1) , ... ,(N-1) and sample size (n-r-2) . It follows 

from (2.1) that the right-hand side in (2.4) is nonnegative and hence that x 1.s 

a convex function defined at the points 0,1, ... ,n. If we extend the definition 

of x to the interval [O,n] by linear interpolation, 1..e. 

x(r+a) = (1-a)x(r) + ax(r+I) for a E (0,1) , then x 1.s convex on [O,n] . 

Because of the syrmnetry of 1jJ 

E ijJ(R) 
'TT 



and because the conditional distribution of 

the same as the conditional distribution of 

we find 

(2.5) X ( 1) • 

Obviously, 

R given 

R given 
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under R ( 7f) I. s 

under 

where R1 has a binomial distribution with expected value n/N under R(1r') • 

Since x 1.s convex on [O,n] , Jensen's inequality yields 

(2.6) 

On the other hand, since ijJ 1.s symmetric 

where B has a binomial distribution with expected value (n-1)/N. Another 

application of Jensen's inequality gives 

(2. 7) 

As n/N :o=: 

X that 

n-1 
~ x(I + tr) 

:o=: I + (n-1)/N, we conclude from (2.6), (2.7) and the convexity of 

(2.8) E I ijJ (R) ~ X ( I ) • 
7f 

In view of (2.5) this proves (2.2) and the theorem. 

3. COMMENTS 

Two final remarks should be made. The first is that the proof of the 

theorem can also be based on a modified form of lemma I.I in Bickel and 

Van Zwet (1980). The proof given here needs less notation and is perhaps a bit 

more elegant. 
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The second remark 1.S that it 1. s easy to construct examples of functions 

belonging to one of the two classes Cnn and Vnn but not to both. Take 

N = 3, so Q = {1,2,3} and n = 2 and consider the functions cp 1 and cp2 

on Q2 defined by 

4 if 1. = J or 1. = J = 2 

cpl(i,j) = -4 if 1. = j 3 

-5 if i = I ' J = 2 or i = 2, j = 

0 otherwise, 

if 1. = I , J = 2 or 1. = 2, J = 

cp2(i,j) = 4 if i = J = 3 

0 otherwise. 

It 1.s easy to check that cp 1 E CQ2 but cp 1 i VQ2 and that cp 2 E VQ2 but 

cp 2 rf_ Cn2 • 

The functions 

and 

= (Ya. )2 

j= I ij 

g( fa.) 
• I i . 
J= J 

for convex g and only two distinct values among a 1, ... ,aN, that were dis

cussed by Karlin in special cases (c i) and (c ii) , belong to both 
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