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ABSTRACT 

Hierarchical vehicle routing problems, in which the decision to acquire 

a number of vehicles has to be based on imperfect (probabilistic) information 

about the location of future customers, allow a natural formulation as two­

stage stochastic programming problems, where the objective is to minimize the 

sum of the acquisition cost and the length of the longest route assigned to 

any vehicle. For several versions of this difficult optimization problem, we 

show that simple heuristics have strong properties of asymptotically optimal 

behaviour. 
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I. INTRODUCTION 

Vehicle routing problems, in which customers have to be served from a 

central depot by one or more vehicles, are usually formulated and solved un­

der the assumption that perfect information is available about the number 

of customers, their demands and their locations. In actual practice, this 

assumption is not always justified. In particular, the medium or long term 

planning problem of acquiring a suitable fleet of vehicles usually has to be 

solved with vague and at best probabilistic information about what will ul­

timately be required of these vehicles. 

This problem is a good example of a hierarchical multilevel planning 

problem. These problems typically involve a sequence of decisions over time, 

taken at an increasing level of detail and with an increasing amount of in­

formation. In the above problem, two levels can be distinguished: the ag­

gregate level corresponding to the decision to acquire a certain fleet of 

vehicles and the detailed level corresponding to the actual routing of the 

vehicles that have been acquired. When the latter problem arises, all the 

required information about the customers is available; the challenge of the 

problem as a whole is to incorporate the initially imperfect information 

about the detailed level into the overall procedure, so as to arrive at a 

sequence of decisions that is optimal or near-optimal. Typically, the cost 

of acquiring extra resources at the aggregate level has to be weighed against 

the possible benefit of having these resources available that materializes 

later at the detailed level. 

In an earlier paper [I], it has been argued that the natural way to 

formulate hierarchical problems of this type is as multi-stage stochastic 

integer programming problems, of which the various phases correspond to the 

levels of the hierarchical problem, and of which some parameters of later 

stages are usually only known in probability. The natural objective func­

tion is then to set the decision variables in each phase in such a way that 

the overall decision is optimal in e:x:pectation. 

At the same time, it was pointed out in [I] that the flexibility of 

the stochastic programming formulation comes at a price: there is little or 

no hope to solve such a model to optimality within a reasonable amount of 

time, tf only for the fact that the problem at the detailed level is usually 
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NP-hard [1] for any realization of the parameters. Thus stochastic program­

ming heuristics are called for, and indeed any method to solve these hier­

archical planning problems (e.g., so-called hiemrchical planning systems) 

can rightly be viewed as such a heuristic. The question then is if any rig­

orous statement can be made about the quality of these heuristics beyond the 

familiar evaluation of necessarily arbitrary computational experiments. 

In another paper [2], it was established that such a rigorous analysis 

is indeed possible for certain hierarchical scheduling problems, where the 

initial, aggregate level decision corresponds to the acquisition of ma­

chines, based on probabilistic information on the jobs to be processed at 

the detailed level. It was shown that certain simple and natural heuristics 

for this problem produce asymptotically optimal decisions in some stochastic 

sense, e.g. in expectation, in probability, or almost surely (a.s.). Below, 

we derive similar results for a formulation of the hiemrchical vehicle 

routing problem. 

In this formulation, we assume that the cost of the aggregate level 

decision is proportional to the number of vehicles acquired and that the 

cost of the subsequent detailed level decision is proportional to the length 

of the longest route assigned to any of these vehicles. This criterion is 

convenient since it leads to a reasonable division of labour among the ve­

hicles. We assume initially that at the aggregate level the number of cus­

tomers is known precisely, but that only probabilistic information is avail­

able about their locations: we assume in fact that the customers are uniform­

ly distributed over a circle with the depot at its center. In Section 2, we 

provide a stochastic programming formulation of the problem and we propose 

a heuristic method to solve the first phase (aggregate) problem that is 

based on an estimate of the second phase detailed cost inspired by work of 

BEARDWOOD et al. [3] and STEELE [4]. 

In Section 3, we describe a heuristic for the second phase (detailed) 

problem that is based on the partitioning heuristic for the travelling 

salesman problem developed by KARP [5]. In doing so, we extend the latter 

heuristic to a circular shaped area and more importantly, present a much 
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simplified analysis of its behavior. 

In Section 4, we prove that the stochastic programming heuristic devel­

oped in Sections 2 and 3 satisfies the strongest possible optimality proper-

ty: in the terminology of [ 9 ], it is asymptotically £-clairvoyant almost 

surely, indicating that almost surely the relative loss that can be attri­

buted to imperfect information can be made arbitrarily small. 

In Section 5, we indicate how to extend this result to the case that 

the aggregate level involves a choice between vehicles of different costs 

and speeds. We also show how to cope with the (more realistic) cases in which 

each customer places an order with some fixed probability p and in which the 

number of customers is initially also known in probability only. 

Finally, Section 6 contains some conclusions and topics for future re­

search. 

2. THE AGGREGATE LEVEL 

For a precise formulation of the hierarchical vehicle routing problem, 

we assume that at the aggregate level a decision has to be made about the 

number k of vehicles that have to be acquired at cost c each, to serve n 

customers from a single depot. This decision has to be made when the exact 

location of these customers is not yet given: we assume that all that is 

known is that these will be uniformly distributed over a circle C with ra­

dius rand with the depot at its center. 

Subsequently, at the detailed level, the k vehicles that have been 

acquired have to be routed from the depot through then customers, a reali­

zation of whose locations is now given. If v.(k) is the route assigned to the 
1 

i-th vehicle and IV.(k)I its length, then the objective at the detailed level 
1 

will be to minimize the length of the maximum route U(k), i.e., to minimize 

( I) IU(k)I = maxi=l, •.. ,k {IV/k) I}. 

The minimal value of IU(k) I and the tours in the corresponding solution will 

be indicated by IUO(k)I and v?(k) (i = l, •.• ,k) respectively. 
1 

When the problem 1s viewed as a whole, then the solution value at the 

detail~d level has to be interpreted as a random variable (to be underlined) 
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and hence the overall objective function is a random variable as well: 

(2) ~(k) =ck+ 1.!:!_o(k) ,. 

As observed in Section J, the ~eterministic version of the routing problem 

at the detailed level is already NP-hard, and a heuristic approach is re­

quired. 
Our heuristic for the aggregate problem will be based on a deterministic 

approximation of the objective function (2) that is almost surely a lower 
0 bound. Let T be an optimal travelling salesman tour through all then cus-

tomers, i.e. a tour whose length !TOI is minimal. Clearly, 

(3) 

and we can now apply the following theorem due to STEELE [4], which extends 

earlier work by BEARDWOOD et al. [3]. 

THEOREM I. If n customers are distri!Juted uniformly over a circle c with 

radius r, then there exists a constant S > 0 such that 

(4) lim ~= S 
n-+«> lmrr 

(a.s.) D 

It follows that, if n is large enough, the function 

(5) 

is almost surely a lower bound oni(k). As a heuristic decision at the ag­

gre8ate level, we now choose the number of vehicles equal to the value kLB 

that minimizes this lower bound. Differentiation of (5) yields 

(6) 

so that, if we define 

(7) a = 



kLB is chosen to be equal to L cm 1 I 4 J or r cm 1 I 47, depending on which of 

these two integer values is the most favorable one. 

3. THE DETAILED LEVEL 

s 

At the detailed level of the hierarchical vehicle routing problem, we 

have to route the kLB vehicles that were acquired through then customers so 

as to minimize the maximum route length assigned to a vehicle. 

We propose to solve this problem heuristically by means of a partitio­

ning heu:ristic that is similar in spirit to KAR.P's heuristic [SJ for the 

Euclidean travelling salesman problem. In the first step of this heuristic, 

C is partitioned into smaller subregions, each of which contains no more 

than t customers for some constant t that is yet to be determined. In the 

second step, an optimal travelling salesman tour is constructed in each of 

these subregions. In the third and final step, these tours are combined in 
PLB. LB a suitable manner to form the routes Vi(k ).(i=l, ••• ,k ). 

The partitioning of C in the first step is carried out by means of cuts, 

of which we distinguish two types. Assume that the location of each customer 

is represented by its polar coordinates. A radial cut of a region by defini­

tion splits up the region by means of the radius through the customer in the 

region with median angular coordinate. Similarly, a circular cut splits up 

a region by means of the circle arc (with the depot as center) through the 

customer in the region with median radial coordinate. 

In a round of cutting, each subregion existing at the beginning of the 

round is split up exactly one. We carry out d of these rounds, with 

(8) d = f2log ~ l . 
t - I 

d/2 The first d/2 rounds involve only radial cuts, thus creating 2 sectors; 

the last d/2 rounds involve only circular cuts. This cutting procedure is 

simpler than the one proposed in [SJ; it is easy to see that it results in 

subregions containing no more than t customers each. 

We number the 2d subregions by starting with an arbitrary sector, num­

bering the subregions according to increasing distance from the depot, and 

continuing on the adjacent sector in, say, clockwise direction until all 
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subregions have been numbered. The j-th region will be denoted by 

Y.(j=I, .•. ,2d) (Figure I). In each region Y., an optimal travelling salesman 
J J 

tour TO(y.) through its customers (including those on the boundary) is now 
J 

formed by means of some suitable optimization method. The union of these 

tours defines a spanning walk W, i.e. a connected network in which each node 

has even degree, on the set of all customers. It is well known that there 

exists a route through W of length !WI= E.ITO(Y.)I in which each edge is 
J . J 

visited exactly once. It is also easy to see (cf.[5]) that such a route can 

be transformed into an ordinary travelling salesman tour of no greater length. 

We proceed to assign each customer to a specific vehicle, in such a way 

that the routelength for each vehicle is approximately equal to IWl/k1B. 

We do so in the obvious manner, by considering Y
1

,Y2 ,Y3 , ••• until we find 

the greatest l such that 

(9) 

0 If o > 0, we divide T (yl+I) into two parts. The customers on the first part, 
0 0 which has length o, together with the customers on tours T (y

1
), ••• ,T (yl) 

are assigned to the first vehicle. The customers on the second part are the 

first ones to be assigned to the second vehicle. We continue this procedure 

until each vehicle has a set of tours (including at most two partial tours) 

assigned to it whose lengths sum exactly to IWl/k1B. 

The union of these tours does not necessarily define a spanning walk. 

It will generally have the form depicted in Figure 2 in heavy lines. As in­

dicated in the figure, at most eight additional dotted segments may be ne­

cessary to create a spanning walk. Two additional segments undicated by+++ 

are needed to connect the depot to the customer that is closest to it. It is 

easy to see that the total length of these additional segments is bounded by 

a constant y depending only on r. The resulting spanning walk is transformed 

into a tour in the standard manner [ 5 ]. The longest of the resulting routes 

v:(k1B) has length IUP(k1B)I; this is the value produced by the heuristic. 
i 

It is not difficult to see that, subject to the usual assumption that 

each elementary operation on real numbers requires one time unit, the above 

heuristic can be implemented to require a running time that is polynomial 

in the ~umber of customers. 
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In the first step,all customers have to be sorted with respect to their 

angular as well as to their radial coordinates. In addition, each round of 

cutting takes linear time. Altogether, this step requires O (n log n + nd) = 

0 (n log n) time. 

The second step, calculation of the optimal travelling salesman tours 

in each subregion, can be carried out in O(St) time per region, for some 

constant 8 > 2 and hence in O(n8t/t) time overall. 

In the third step, the assignment of each customer to a vehicle takes 

time that is linear in the number of subregions and in the number of vehic­

les. This includes the time needed to create the extra segments, which is 
. l 2kLB proportiona tot . 

t 2 1/4 It follows that the overall running time is O(n logn +ne /t +t n ) 

which is polynomial inn for any fixed choice oft. 

4. Ai.~ALYSIS OF THE HEU~ISTIC 

The value produced by the stochastic programming heuristic described 

in Sections 2 and 3 is the random variable 

Our analysis of this value starts from an error analysis of the detailed 

level partitionine heuristic. 

Consider a subregion Y., and let TO n Y. denote the intersection of 
' J J 

the optimal tour through all n customers with Y j. TO n Yj may consist of var-

ious segments; their total length is denoted by JTO n Y. I. Let per(Y.) be 
J J 

the length of the parameter of Y .• The following lemma is proved in [5]. 
J 

LEMMA I. 

(11) 
0 0 3 per(Y .) • I T (Y . ) I - I T n Y . I $ 2 J J J 

It follows that 

d 2d 3 
d 

I~ I To (Y.) I I Ton I 2 
( 12) ,, $ 

lj=I 
Y. +- l j=I 

per(Y.), 
J=I J J 2 J 
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i.e. 

( 13) 

Our cutting 

upper bound 

LEMMA 2. 

(14) 

3 
+-

2 

procedure, which is different from the one in [5], yields an 

on E. per(Y.). 
J J 

per(Y .) = o(ln/t) • 
J 

PROOF. After d/2 radial cuts, the sum of the parameters of the sectors is 

clearly equal to 

(15) 2d/Z (2r) + 2nr. 

In the first round of circular cuts, all sect.ors are split by circle arcs, 

the sum of which is certainly smaller than 2nr, so that (15) is increased 

by no more than 4nr. In the second round, the increase is bounded in a sim­

ilar manner by Snr. Hence, the overall increase is bounded by 

(16) (2d/Z_l) 4nr. 

Since d = flog2((n-l)/(t-l))l, (15) and (16) together imply (14). D 

It follows from (13) and (14) that the route length for each vehicle, 

and hence juP(KLB)I, is bounded from above by 

(17) 

and hence 

(18) 

We note that a comparable detailed level heuristic., in which the 

customers are first divided among the vehicles and routes are formed only 

afterwards; would be much harder to analyse: either the shape of a subregion 

or its number of customers would be random, and Theorem 1 could not be ap-
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plied to each individual route. 
We wish to compare the upper bound (I 8) with a lower bound ZD, the value of 

the distribution problem, which is found by defining the random variable kD 

as the number of vehicles minimizing (2) as a function of each realization 

of customer locations and setting 

This random variable represents the minimum cost achievable with perfect fore­

sight into the customer locations, that in our formulation of the problem of 

course become known only after acquisition of the vehicles. Note, however, 

that since 

(20) Z(k) ~ ZLB(k) =ck+_!_ sO 
k 

(cf.(5)), we find that 

(21) ZLB(k) 
k 

(a.s.) 

(a.s.) 

Hence, combining (18), (21) and Theorem I, we obtain the following result. 

THEOREM 2. 

(22) I + O( -
1 

) 
It 

(a.s.) D 

In the terminology of [9], the stochastic progrannning heuristic is asympto­

tically £-QUfl,~'lYl}o.yl'Jtnt almos~ surely: the error that can be ascribed to the 

lack of perfect information at the aggregate level and to the use of a heur­

istic (suboptimal) method at the detailed level can almost surely be made 

arbitrarily small through an appropriate choice oft. This is the strongest 

possible asymptotic optimality result that can be found for such heuristics. 

In particular, it implies [6] that if kO is defined to be the value that 

minimizes the standard stochastic programming objective function -

EZ(k) =ck+ EIUO(k)I, then 

(23) ( 
zH ) lim E =--- = 

n +<n Z(kO) 
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It is not difficult to extend this so as to prove that 

(24) 
H 

1
. EZ 
im -+oo 0 

n E~ (k ) 

and thus the heuristic is also asymptotically c-optimal in expectation. 

Not surprisingly, the lower bound function almost surely provides a 

good asymptotic description of Z(k). 

THEOREM 3. For every k 

(25) 

Z(k) 
lim -----== 

n-+oo ck+ ½ slmrr
21 

-

PROOF. Clearly, as in (17) and (18), the heuristic implies that 

(26) 
l(k) 

lr-'l 
ck+ k Sv'mrr-

ck+..!..1T0
1 + oc! ~) 

k - k t 

ck+½s/mrr2 

(a.s.) 

(a.s.) 

Noting that this inequality holds for any choice oft, the theorem is now 

an immediate consequence of Theorem I. 0 

Theorem 3 provides an almost surely asymptotically exact deterministic 

approximation of the objective function~(k). 

Next, it is also easy to prove that not only the value of the heuristic 

solution but also the solution at the aggregate level itself almost surely 

converges to the optimal one. 

THEOREM 4. 

(27) 

kD 
lim--=- = 

kLB n~ 
(a.s.) 

PROOF. Suppose that there exists an£> 0 such that for each n
0 

there is an 

n;:::: n
0 

with 

(28) (a.s.) 

Since z1 B(k) is a unimodal function of k, this would imply that 
' 



(29) ---- slmrr2 

(1+£)kLB 

i.e., for n sufficiently large, 

(30) 
D I r---f I/ 2 Z > (I+£+ -

1
-)(Sclnnr~) 

- +£ 

and hence from Theorem 3, for some £ 
1 > 0 , 

(31) 

(a.s.) 

(a.s.) 

(a.s.) 

which contradicts the definition of z0 . Thus, there is an n
0 

such that for 

all n > n
0 

(32) 

We prove similarly that 

(33) 

which establishes the desired result. D 

We finally obtain the following analogue of Theorem I. 

THEOREM 5. 

(34) lim -.-/i~=2=.-1~/-2 = 
n-+<x> 2 (Sc nnr ) 

PROOF. Immediate from Theorem 3 and 4. D 

5. EXTENSIONS OF THE MODEL 

(a.s.) 

(a.s.) 

(a.s.) 

I I 

In this section, we consider three natural extensions of the hierarchi­

cal vehicle routing model introduced in Section 2. 

We first consider the case that, at the aggregate level the problem is 

to select a subset K of vehicles from a set K, where the i-th vehicle now ,. 
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has a specific cost c. and a speeds .. At the detailed level, the problem 
i i . 

is to form routes Vi(K) (iEK) for the i-th vehicle, so as to minimize the 

maximum time to traverse any route 

(35) I U(K) I = max iEK { I V. (K) I / s . } • 
i i 

If !UO(K)I denotes the minimum value of (35), the overall objective function 

is given by 

(36) W(K) = }:. K c. + l.!:!o (K) I • iE i 

If th t th · t t t L U sL and su, such that we assume a ere exis cons ans c, c, 

cL ~ c. ~ cu and sL ~ s. ~ sU for all i EK, it turns out that this extension 
i i 

can be analyzed in the same fashion as the extension from identical to uniform 

machines in the case of hierarchical machine scheduling models [2], although 

the final result here is stronger. 

Proceeding as we did in Section 2, we first define c(K) = E. Kc. and iE i 
s(K) = E. Ks. and observe that the following function is an obvious lower iE i 
bound (a.s.) on W(K): 

(37) ~B(K) = c(K) + 
s (K) 

As in [2], it is easy to see that finding a subset KLB that minimizes (37) 

over all choices Kc K is an NP-hard problem. Hence, a greedy heuristic is 

applied to solve the problem at the aggregate level: vehicles are selected 

in order of nondecreasing c./s. ratio until the lower bound function starts 
i i 

to increase. The same arguments as in [2] will yield that the subset KG se-

lected in this way satisfies 

and hence the absolute error caused by using the greedy heuristic is bounded 

by a constant. 

In the second phase, at the detailed level, we first apply the same 

heurist~c as described in Section 3 to construct a spanning walk W through 

the customers. 
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Rather than cutting the walk into pieces of equal length, we allocate a 
G part of length s.]Wl/s(K) to the i-th vehicle and transform this part into 

1 

a rowte in the manner described in Section 3 as well. 

It is easily verified that the value of this stochastic programming 

heuristic rJ-1- is related to the value of the corresponding distribution 

problem JJ by 

wH 
(39) 1 + 

G Analogously to Lemma 6 in [2], we can prove that c(K) 

s(KG) = 8(n 114), to conclude that 

(40) I + 0 (-.!...) 
It 

(a.s.) 

(a.s.) 

so that the extended heuristic is also asymptotically E-clairvoyant almost 

surely. 

The two other extensions of the original model that are dealt with in 

this section allow for additional uncertainty about the detailed level, when 

the decision to acquire vehicles has to be taken. We first consider the sit­

uation in which it is no longer certain that each of then customers has to 

be visited; rather, each customer places an order with some fixed probability 

p. Subsequently, we consider the more difficult case in which the number of 

customers is itself a random variable. 

If each customer orders with fixed probability p, the number of customers 

to be visited is a random variable m, distributed according to a binomial 

distribution with parameters n and p. 

To bound m from above and below, we apply Chernoff's inequalities [7] 

according to which, for all E > O, 

(41) 

(42) 
,n n i n-i 2 
l · (I+ ) (

1
. )p (1-p) < exp(-E np/3). 

1= E np 

Applying the Borel-Cantelli lemma [6], we obtain that 
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(43) (1-E)np ~ m ~ (l+c)np (a.s.) 

As suggested by (43), we obtain a stochastic programming heuristic for this 

model by choosing the number of vehicles at the aggregate level equal to the 

most favorable integer approximation kH(p) of 

(44) ( s/4":2 \112 
1/4 

\ C ) n • 

Note that - not surprisingly - kH(p) • kLB as p • I. 

The detailed level heuristic remains the same one as described in Section 3. 

We now use the lower and upper bounds implied by (43) in conjunction 

with Theorem I to analyze the quality of this heuristic H(p): 

(45) 
) I Ii I (/

(l+E)np \ 
ZH(p) <_ ckH(p + -- o (I ) 2 . 

kH(p) µ +E np1rr + kH(p) 0 \ t ) 

(a.s.) 

In a similar fashion, we derive for the value ZD(p) of the distribution 

problem that 

(46) (a.s.) 

We conclude that 

(47) (a.s.) 

By appropriate choices of E and t, the right hand side of (47) can be made 

arbitrarily close to I, and once again, the heuristic is asymptotically 

E-clairvoyant almost surely. 

The final extension, in which the number of customers is a random 

variable E_, is more complicated. We assume that n has meanµ and variance 

cr
2

• We shall prove that forµ sufficiently large and cr 2 fixed, we can ob­

tain a heuristic H' that is asymptotically optimal in expectation. This 
H' heuristic is based on selecting the number k of vehicles at the aggregate 

level to' be equal to the most favorable integer approximat:fon of 



(48) 
( B E UE) fu2 \ I /2 

\ C ) 

the natural generalization of kLB_ The analysis of this heuristic is based 

on appropriate lower and upper bounds on E(ITOI) for this model. 

We first observe that for every£> 0, we can find n(£) such that for 

n > n(£) the conditional expectation of the optimal tour length satisfies 

(49) (a.s.) 

Hence, 

E(IT
0

1) = I:=I E(II.0 1 I ~=n)Pr{~=n} 

= I:~~) E ( l!O I I n = n)Pr{n = n} + 

+ \
00 

E( l'T'O I / _n = n}Pr{_n = n} ln=n(£)+1 -=-

(50) ~ I:~~) E ( l_!O I I~= n)Pr{n = n} + E (/2) s/2r2' 
\n(£) ~ \oo 

- ln=I Blmrr~ Pr{~= n} - ln=n(£) Pr{~= n} 

~ I:~~) [ E ( l!O I I ~ = n) 

+ E(lii)BQ - £. 

The first term of (50) can be bounded from below by 

(51) 

~ - s/n(£)wr2 Pr {n < n(£)} - £. 

We can chooseµ(£) 1n such a way that forµ>µ(£) 

£ 
(52) Pr { n < n ( £) } < 

15 
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More specifically, if we choose 

(8 I 2)1/2 
(53) µ(£) = n(£) + \£ ✓n(E)Tir cr 

then Chebyshev's inequality implies that (52) is satisfied. 

Together, (SO), (51) and (52) imply that forµ sufficiently large 

In a similar fashion we can also prove that 

(ss) E(IT
0 1) s; E(~)s/4l + 3£. 

Based on (54) and (55), it is once again easy to prove that the error pro­

duced by the stochastic programming heuristic H' can be made arbitrarily 

small in expectation by suitable choices for£ and t. 

6. CONCLUDING REMARKS 

In the previous sections we have seen that simple and natural heuristics 

have very strong asymptotic optimality properties in solving various diffi­

cult hierarchical vehicle routing problems. 

It is interesting to observe that the routes produced by the heuristic 

at the detailed level are very similar in structure to those produced by the 

well known sweep heuristic [8]. If it is important to divide the workload 

evenly among the vehicles, as in the case of a minmax objective, such a 

heuristic is attractive. If the objective would be to minimize the sum of 

all distances, this would not necessarily be the case. 

In the model as formulated in Section 2, it would not be fruitful to 

consider this modified second phase objective function: there is no incen­

tive to use more than one vehicle. Such a minsum objective is only relevant 

if capacity constraints are imposed on every single vehicle. These constraints 

may refer to the maximum distance or time to be allowed for any vehicle, or 

to the maximum number of customers or more generally, the maximum delivery 

load that a vehicle can be assigned to. 

We have been able to analyze the latter model in more detail; it turns 

out to be closely related asymptotically to certain familiar plant location ,, 
problems. These results will be the subject of future publications. 
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