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ABSTRACT

By using the recently developed (differential) geometric approach to
nonlinear systems a feedback decomposition for nonlinear control systems

is derived.
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1. Introduction

Consider a control system of the form

(1.1a) x = A(x) + Z? B, (x)u,
i=1 7i i
(1.1b) z, = H, (X) ; i=1,...,m
i i
where x are local coordinates of a smooth n-dimensional manifold M, A,Bl,...,B

are smooth vector fields on M and Hi : M > Ni is a smooth output map from M to

a smooth pi—(pi 2 1) dimensional manifold Ni for i = 1,...,m. We assume that each
Hi’ i=1,...,m, is a surjective submersion. Furthermore we will assume that the
system (1.la) is strongly accessible (see [127).

In this note we will study the static state feedback noninteracting control problem.

That is, see [47, we seeck a control law of the form

(1.2) u = o(x) + B(x)v

m mxm . .
where ¢ : M > R , B : M > R are smooth maps, B(x) = (Bi.(x)) is nonsingular
for all x in M and v = (vl,...,vm)t e R'. Let A(x) = A(x) + Z?=1 Bi(x)ai(x) and
Ei(X) = Zm 1BJ(X)B x) . Then in suitable local coordinates the modified dynamics
% = A(x) ZT —a B (x)v should read

%, / il(xl) B, (x,) ~ (:) \ vy

) By (x)) By (xy) |l -
(1.3a) ﬁ N = + .. IR

: . . v

: . ' . m

% Am(xm)/ O B_(x )

z, = Hl(x )
(1.3b) :

z =H (x)

m m m
where x = (xl,...,x ) with each X, anda z, being possibly a vector. For linear

m

systems the above problem ~ the Restricted Decoupling Problem (RDP) - has been
solved under the additional assumption that the set of outputs is "complete”,

i.e. iﬁl Ker Di = 0, see [13]. In the solution we present here we use as key

tools the so called (regular) controllability distributions, introduced in 1 8].

In this way our approach completely fits in the systematic work on the generaliza-
tion of Wonham's geometric approach to linear systems, see e.g. [3-10]. We note

that a parallel decomposition as in (1.3a) has been studied in [11]. We also



note that similar results are derived in [4] and, in a different style in [17].
The main purpose of this note is to show that the solution of the nonlinear RDP

also can be derived by directly generalizing the theory of [13].

2. Problem formulation

Recall the following definitions, see [3-9].

DEFINITION 2.1. An involutive distribution D of fixed dimension, on M, is

controlled invariant for the system (1.1a) if there exists a feedback of the
form (1.2) such that the modified dynamics X = A(x) + Z?_l gi(x)vi leaves D

invariant, i.e.

[a,D] c D

[Bi,D] c D, i=1,...,m.

DEFINITION 2.2. An involutive distribution D of fixed dimension, on M, is a

regular controllability distribution of the system (1.la) if it is controlled

invariant for the system and moreover
Ko~ ,
D = involutive closure of {adx B, ke N, ie¢ I}

for a certain subset I < {1,...,m}.

Instead of the above notion of controlled invariance it is sufficient to use

a somewhat weaker concept.

DEFINITION 2.3. An involutive distribution D of ficed dimension, on M, is locally

controlled invariant for the system (1.la) if locally around each point Xy € M
there exists a feedback of the form (1.2) such that the modified dynamics

s X m g . .
X = A(x) + zi“l Bi(x)vi leaves D invariant.

Similarly one defines a local version of definition 2.2: the regular local con-
trollability distributions.
In considering the static state feedback noninteracting control problem we

seek regular local controllability distributions Rl""'Rm defined by

k ~
(2.1) R, := involutive closure of {adz Bi ke W}

~

where A and Bi are as in (1.3a), i = 1,...,m.

9
REMARK: In the local coordinates of (l1.3a) we see that R, = Span{gg—}, and clearly
~ ~ i
each distribution R, satisfies [A,R,]J ¢ R, and [B.,R,1J<cR,, j=1,...,m,
s i i i 5774 i

i=1,...,m.



Assuming (2.1, we see that
(2.2) Ry © Ker Hy =:Kj j #i, i,9=1,...,m,

which exactly means thatxg(-) does not affect the output zi(-), for j # 1i.

Secondly we have the nonlinear version of output controllability, that is
(2.3) H.,(R,) = TN, i=1,...,m
i i i

This follows from the fact that the system (1.la) is strongly accessible, so
also (1.3a) is strongly accessible. But then each of the systems
ki = Zi(xi) + 'I\B'i(xi)v:.L is strongly accessible and by the fact that the map Hi
is a surjective submersion we see that the set of reachable output values has
nonempty interior in Ni for all i = 1,...,m.
Thus the static state feedback noninteracting control problem can be stated as
follows.
Given the system (1.la,b) find (if possible) a local feedback law of the form
(1.2) such that (2.2) and (2.3) hold for the distributions Ri defined by (2.1)
Now, as in the linear case, there is a compatibility problem (see [13]). Clearly
if we have controlled invariant distributions Dl,...,Dm, then by no means it
follows that there exists a local feedback (1.2) which leaves each of them
invariant. Therefore we make the following assumption

m
(2.4) igl Ker Hi* = 0,

which means that the map

H: M> N1 @ N2 ® ... @ Nm, H(x) = (Hl(X)""’Hm(X))

is locally injective.

3. Main theorem

*
Define Ri := supremal regqular local controllability distribution in

jQi Ker Hj*' i=1,...,n.
REMARK : RI is well defined, see [6,8] but probably the dimension is not fixed.

*
THEOREM 3.1. Under the assumption (2.4) and the assumption that each Ri has
fixed dimension, i = 1,...,m, the static state feedback noninteracting control

problem is solvable in a local fashion if and only if

(3.1) Rz + K, = TM.



*
PROOF: Assume (3.1) holds, then (2.2) and (2.3) are true for Ri' We show next
that the Ri = 'Q. Ker Hj*’ i=1,...,m, are independent. Indeed
IJ#i
K. n z K, = ( N Ker Hr*) n z ( N  Ker Hs*)
3 3 N s#3
m
c ( ﬂ- Ker H 4 ) n Ker H , = N Ker H , = 0.
r#i r=1
Since Rz = Ri' i=1,...,m, it follows that the R; are independent. In the next
step we will show that the R; are compatible, i.e. there is a local feedback (1.2)
which leaves each of the distributions R; invariant. From (3.1) we see that for
each i = 1,...,m Rz # 0. For if RI =0 for an i € {1,...,m}, then K, = M, which
means that zi = Di(x) is constant. Therefore we know, by the independence of the.
R; that locally there exist independent vector fields 0 # Ei with
Ei € R; n Span{Bl,...,Bm}, i=1,...,m. So Span{Bl,...,Bm} = Span{El,...,ﬁm}.
We alsoc have that dim R; 2 pi(by assumption R; has fixed dimension) and thus from
the independency of the RI we have RT = ...+ R; = TM. Thus the distributions
RT,...,Rg are simultaneously integrable (see definition 3.1 and lemma 3.1 of [111).
So locally around each point x

0
i=1,...,m with each X, possibly being a vector. Now from the fact that the dis-

€ M there exist coordinates such that R; = Span{sgz}
tributions R; are locally controlled invariant we have that

(3.2a) [éi,jo c R; + sPan{ﬁl,...,Em}, i=1,...,m

(3.2a) [a, jo c R; + 5pan{51,...,ﬁm}

for all 5 =1,...,m.

From (3.2a) we see that

= * * * * = r
(3.3) [B /Ry + ... + Rm] SRS+ ...+ RE+ Span{Bl,...,Bm}
RE + ... + R + Span{Bl},

where the last equality follows from the fact that ﬁi € R;, i=1,...,m. Note also

that the distribution Rz + . + R; is involutive, cf. [11]. Now from (3.3) and

[5,77 it follows that there locally exists a vector field B, such that Span{gl} =

1
Span{ﬁl} and [Bl,R;+-... + R;] c R; + ...+ R;. Therefore in the cuuruinate system
~ ~ t

constructed above we have that Bl(x) = (Bl(xl),O,...,O) .

Similarly we construct vector fields Ei' i=2,...,m such that [Ei,RI + ... F R:—l +
+R* 4+ ...+ R*]cR*+ ... +R', + R, + ... +R* B,} = B,}.

RY 1 Rm] Ry R, + R g R and Span{ l} Span{Bi}
Thus *

t
Bi(x) = (0,...,0, Bi(xi),O,...,O) .



Next from (3.2b) we see that

(3.4) [a,R: + +R7cRrR + + R" + spaniB,}
. 1Ry R " 2 .o - paniB,

and therefore we can construct a local feedback u = ﬁ(x)al(x) such that

~ - ~ % * * *

A(x) = A{x) + Bl(x)al(x) satisfies (cf. [3]) [A,R2 + ... F Rm] SR, + ...+ R.
* * *

Similarly for the distribution R1 + ... + Ri—l + Ri+1 + ...+ R; we construct a

feedback u = gi(x)ai(x) such that the modified dvnamics leave this distribution
invariant. Finally by applying the total feedback u = Bl(x)al(x) + ...+ Bm(x)am(x)
we obtain that A(X) = (Al(xl)'AZ(XZ)""'Am(xm))’ So we have established a local
feedback (1.2) such that the modified dynamics are as in (1.3a) and also from (3.1)
(1.3b) is satisfied. Furthermore we note that each system ii = Ai(xi) + Bi(xi)vi is

strongly accessible and we have that
* . . k ~ .
Ri = involutive closure of {adg Bilk e N}, i=1,...,n.

*
Conversely from the fact that the Ri are supremal relative to the condition (2.2)
and from (2.3) - which is equivalent to Ri + Ki‘= ™ - it follows that (3.1) is

necessary. 0
4. Remarks

(1) In lemma 3.1 of [11] the distributions D,,...,D_ should be independent, i.e.

L 1 I
for each disjoint subset I, and I, of {1,...,L} one has that D Lap 2 = 0.

2

(ii) fadg gi' adé Ej] = 0 for ail k,£ ¢ N and i # j, (see also l117).

(iii) If the number of output channels is smaller than the number of inputs the
above procedure still works in a slightly modified way. Namely there are
more than one independent vectorfields ﬁi in R; n Span{Bl,...,Bm} and/or
there exist some additional input vector fields Bk which do not belong to one
of the distributions Rz, but - after applying fzedback -~ also have the form
gk(x) = (Bi(xl)’gi(XZ)""’EE(Xm))t' These vector fields are superfluous for
the whole control synthesis of the system.

(iv) Each of the systems ii = Xi(xi) + Ei(xi)vi, z, = Hi(xi) is strongly invertible,
see (2], This has alsc been clarified in a geometric way in [9], and follows
directly from the condition that R; + Ki = TM, SO Rz is not contained in
KerHi*. We also note that the situation described in theorem 3.1 is even
more special. Namely the system ii = Ai(xi) + Bi(xi)vi is strongly invertible

with respect to each of the components of the output z; -



References

r1]

[21

r3]

41

~
Ut
L

7]

rel

9]

[10]

fii]

127

r13]

CLAUDE, D., Decoupling of nonlinear systems, Syst. Contr. Lett. 1,
pp 242-248 (1982).

HIRSCHORN, R.M., Invertibility of nonlinear control systems, SIAM J. Contr. lZJ
pp 289-297 (1979).

HIRSCHORN, R.M., (A,B)-invariant distributions and disturbance decoupling of

nonlinear systems, SIAM J. Contr. Opt. 19, pp 1-19 (1981).

ISIDORI, A, A.J. KRENER, C. GORI-GIORGI & S. MONACO, Nonlinear decoupling via
feedback: a differential geometric approach, IEEE Trans Aut. Contr. 26,
pp 331-345 (1981).

ISIDORI, A., A.J. KRENER, C. GORI-GIORGI & S. MONACO: Locally (f,g)-~invariant

distributions, Syst. Contr. Lett. I, pp 12-15 (1981).

KRENER, A.J. & A. ISIDORI, (Ad £,G) invariant and controllability distributions,
in feedback control of linear and nonlinear systems, Lect. Notes in Control

and Information Sciences 39, pp 157-164.

NIJMEIJER, H., Controlled invariance for affine control systems, Int. J. Contr.

34, pp 825-833 (1981).

NIJMEIJER, H., Controllability distributions for nonlinear systems,
Syst. Contr. Lett., vol. 2, pp 122-129, 1982.

NIJMEIJER, H., Invertibility of affine nonlinear control systems: a geometric

approach, to appear in Syst. Contr. Lett.

NIJMEIJER, H. & A.J. VAN DER SCHAFT, Controlled invariance for nonlinear
systems, IEEE Trans Aut. Contr., vol. 27, pp 904-914, 1982.

RESPONDEK, W., On decomposition of nonlinear control systems, Syst. Contr.

Lett. 1, pp 301-308 (1982).

SUSSMANN, H.J. & V. JURDJEVIC, Controllability of nonlinear systems. J. Diff.
Eg. 12, pp 95-116 (1972).

WONHAM, W.M., Linear multivariable control, a gecmetric approach, 2nd ed.

Springer (1979).



