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ABSTRACT 

By using the recently developed (differential) geometric approach to 

nonlinear systems a feedback decomposition for nonlinear control systems 

is derived. 
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decomposition 
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1. Introduction 

Consider a control system of the form 

( 1. la) 

( 1. lb) 

x = A(x) + \~ 
1 

B. (x)u, 
li= i i 

Z, 
J. 

H. (x) 
J. 

i = 1, ... ,m 

where x are local coordinates of a smooth n-dimensional manifold M, A,B
1

, ..• ,Bm 

are smooth vector fields on Mand H. : M • N. is a smooth output map from M to 
J. 1. 

a smooth p,-(p, ~ 1) dimensional manifold N. for i = 1, •.. ,m. We assume that each 
J. J. J. 

Hi, i = 1, .•• ,m, is a surjective submersion. Furthermore we will assume that the 

system (1.la) is strongly accessible (see [12]). 

In this note we will study the static state feedback noninteracting control problem. 

That is, see [47, we seek a control law of the form 

( 1.2) u a.(x) + 8(x)v 

m mxm 
where a. M • JR , 8 M + JR are smooth maps, 8(x) = (8 .. (x)) is nonsingular 

t m ·~ J.J m 
for all x in Mand v (v1 , ..• ,vm) E JR • Let A(x) = A(x) + li=l Bi(x)a.i(x) and 

B. (x) = l~ 
1
B.(x) 8 .. (x). Then in suitable local coordinates the modified dynamics 

• i J= mJ ~ JJ. 
x = A(x) + l• B, (x)v. should read 

i=a i i 

(1.3a) + ( 

Bl (xl) 

B2(x2) 

x 
m Am(xm)) \ 0 

(1.3b) l z 
m 

H (x) 
m m 

where x = (x
1

, ... ,x) with each x. ana z. being possibly a vector. For linear 
m J. J. 

systems the above problem - the Restricted Decoupling Problem (RDP) - has been 

solved under the additional assumption that the set of outputs .is "complete", 
m 

i.e •. n
1 

Ker D. = 0, see [131. In the solution we present here we use as key 
J.= J. 

tools the so called (regular) controllability distributions, introduced in (8]. 

In this way our approach completely fits in the systematic work on the generaliza

tion ~f Wonham's geometric approach to linear systems, see e.g. [3-10]. We note 

that a parallel decomposition as in (1.3a) has been studied in [11]. We also 
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note that similar results are derived in [4] and, in a different style in [1]. 

The main purpose of this note is to show that the solution of the nonlinear RDP 

also can be derived by directly generalizing the theory of [13]. 

2. Problem formulation 

Recall the following definitions, see [3-9]. 

DEFINITION 2.1. An involutive distribution D of fixed dimension, on M, is 

controlled invariant for the system (1.la) if there exists a feedback of the 

form (1.2) such that the modified dynamics x = A(x) + l~=l Bi (x)vi leaves D 

invariant, i.e. 

[A,D] CD 

[B. ,DJ C D, 
1. i = 1, ... ,m. 

DEFINITION 2.2. An involutive distribution D of fixed dimension, on M, is a 

regular controllability distribution of the system (1.la) if it is controlled 

invariant for the system and moreover 

D = involutive closure of {ad~ Bi I k E JN, i E I} 

for a certain subset I c {1, ... ,m}. 

Instead of the above notion of controlled invariance it is sufficient to use 

a somewhat weaker concept. 

DEFINITION 2.3. An involutive distribution D of ficed dimension, on M, is locally 

controlled invariant for the system (1.la) if locally around each point x
0 

EM 

there exists a feedback of the form (1.2) such that the modified dynamics 
~ m ~ x = A(x) + '. 1 B. (x)v. leaves D invariant. l1.= i. 1. 

Similarly one defines a local version of definition 2.2: the regular local con

trollability distributions. 

In considering the static state feedback noninteracting control problem we 

seek regular local controllability distributions R1 , ... ,Rm defined by 

(2. 1) 
k 

R1.. : = involuti ve closure of { ad~ B. I k E JN } 
A 1. 

where A and B. are as in (1.3a), i = 1, •.. ,m. 
1. 

a 
REMARK: In the local coordinates of (1.3a) we see that R. = Span{-~-}, and clearly 

1. axi 
each ~istribution Ri satisfies [A,Ri] c Ri and [Bj,Ri] c Ri, j = 1, ... ,m, 

i = 1, ... ,m. 



Assuming (2.li we see that 

(2. 2) 1, ... , m, 

which exactly means thatvj(•) does not affect the output zi (.), for j f i. 

Secondly we have the nonlinear version of output controllability, that is 

(2. 3) TN. 
J. 

i 1 , ... , m. 

3 

This follows from the fact that the system (1.la) is strongly accessible, so 

also (1.3a) is strongly accessible. But then each of the systems 

x. A. (x.) + B. (x.)v. is strongly accessible and by the fact that the map H
1
. 

J. J. J. J. J. J. 

is a surjective submersion we see that the set of reachable output values has 

nonempty interior in Ni for all i = 1, ..• ,m. 

Thus the static state feedback noninteracting control problem can be stated as 

follows. 

Given the system (1.la,b) find (if possible) a local feedback law of the form 

(1.2) such that (2.2) and (2.3) hold for the distributions R. defined by (2.1) 
J. 

Now, as in the linear case, there is a compatibility problem (see [13]). Clearly 

if we have controlled invariant distributions n
1

, ... ,Dm, then by no means it 

follows that there exists a local feedback (1.2) which leaves each of them 

invariant. Therefore we make the following assumption 

ni 
( 2. 4) i!Jl Ker Hi* o, 

which means that the map 

H (H
1 

(x), .•• ,Hm (x)) 

is locally injective. 

3 . Main theorem 

* Define R. := supremal regular local controllability distribution in 
J. 

.0. Ker H.*, i 
Jri J 

1, ... , m. 

* REMARK: R. is well defined, see [6,8] but probably the dimension is not fixed. 
J. 

* THEOREM 3.1. Under the assumption (2.4) and the assumption that each R. has 
J. 

fixed dimension, i = 1, ..• ,m, the static state feedback noninteracting control 

pro~lem is solvable in a local fashion if and only if 

( 3. 1) TM. 
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* PROOF: Assume (3.1) holds, then (2.2) and (2.3) are true for R .. We show next 
l 

that the K. := n Ker HJ.*' i = 1, ... ,m, are independent. Indeed 
l jfi 

K. n I i<:. = ( n Ker H ) n I ( n 
Ker Hs*) l 

jfi J 'rfi 
r* 

jfi \sfj 

m 
c ( 0 Ker H *) n Ker Hi* n Ker Hr* o. 

rfi r r=l 

Since R~ c K., i = 1, ... ,m, it follows that 
l l 

the R~ are independent. In the next 
l 

step we will show that the R~ are compatible, i.e. there is a local feedback (1.2) 
l 

which leaves each of the distributions R~ invariant. From (3.1) we see that for 
l 

each i = 1, ... ,m R~ f O. For if R~ = 0 for an i E {l, ... ,m}, then K
1
. = TM, which 

l l 

means that z. = D. (x) is constant. Therefore we know, by the independence of the. 
l l 

R~ that locally there exist independent vector fields Of B. with 
l l 

Bi E Rr n Span{B1,···,Bm}, i = 1, ... ,m. So Span{B1,·••rBm} = Span{B1,··-,Bm}. 

We also have tnat dim R~ ~ p. (by assumption R~ has fixed dimension) and thus from 
l l l 

the independency of the R~ we have R* = +~*=TM. Thus the distributions 
l 1 m 

Ri,-·-,R; are simultaneously integrable (see definition 3.1 and lemma 3.1 of [11]). 

such that R~ = Span{-a-} So locally around each point x
0 

EM there exist coordinates 

i = 1, ... ,m, with each x. possibly being a vector. Now from 
l 

tributions R* are locally controlled invariant we have that 
i 

(3.2a) [B. ,R~] 
l J 

C R~ + Span{i\, ... ,Bm}, i 1, •.. ,m 
J 

(3.2a) [A, R~] C R~ + Span{B 1 , ... ,Bm } 
J J 

for all j = 1, ... ,m. 

From (3.2a) we see that 

l dXi 
the fact that the dis-

(3.3) - * R*] c R* R* Span{B
1

, ..• ,Bm } [Bl ,R 2 
+ ... + + . .. + + 

m 2 m 

R* + ... + R* + Span(a
1

}, 
2 m 

where the last equality follows from the fact that B. ER~, i = 1, ..• ,m. Note also 
l l 

that the distribution R; + •.. + R; is involutive, cf. [11]. Now from (3.3) and 

[5,7] it follows that there locally exists a vector field B
1 

such that Span{a
1

} 

Span{B
1

} and [B
1 

,R; + ... + R;] c R; + ... + R*. Therefore in the cuuLUlnate system 
~ m t 

constructed above we have that B
1 

(x) : (B
1 

(x
1
),0, ... ,0) 

r~B * * Similarly we construct vector fields Bi, i 2, ... ,m, such that L i'Rl + ... + Ri-l + 

+Rr+1 + ... + R;] c R~ + ... + R:-1 + Rr+l + ... + R: and Span{Bi} = Span{Bi}. 

Thus ' 

B. (x) 
l 

t 
(0, ... ,0, B. (x.) ,0, .•. ,0) . 

l l 
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Next from (3.2b) we see that 

(3.4) [AR*+ + R*l c R* + ... + R* + Span{B
1

} 
' 2 • · · m·· 2 m 

and therefore we can construct a local feedback u = B(x)a
1 

(x) such that 
~ * * * * [3]) [A,R

2 
+ ... + R] c R

2 
+ ... +Rm. 

* * m * 
A(x) = A(x) + B

1 
(x)a

1 
(x) satisfies (cf. 

* Similarly for the distribution R
1 

feedback u = B. (x)a. (x) such that 
l l 

+ •·· + Ri-l + Ri+l + ... + Rm we construct a 

the modified dynamics leave this distribution 

invariant. Finally by 

we obtain that A(x) 

applying the total feedback u = B
1 

(x)a
1

(x) + .•. + Bm(x)am(x) 

(A1 (x
1
),A2 (x2 ) , ... ,Am(xm)). So we have established a local 

feedback (1.2) such that the modified dynamics are as in (1.3a) and also from (3.1) 

(1.3b) is satisfied. Furthermore we note that each system xi 

strongly accessible and we have that 

A. (x.) + B. (x. )v. is 

* R. 
J. 

involutive closure of {ad~ B. I k E JN}, i 
A J. 

* 

l l J. l J. 

1, ... ,m. 

Conversely from the fact that the R. are supremal relative to the condition (2.2) 
l 

and from {2.3) - which is equivalent to R. + K .. = TM - it follows that (3.1) is 
J. J. 

necessary. 0 

4. Remarks 

(i) In lemma 3.1 of [11] the distributions 0
1

, ... ,DL should be independent, i.e. 
I I 

for each disjoint subset I
1 

and I 2 of {1, ... ,L} one has that D 1 n D 2 O. 

{ii) fad~ i\, adf Bj] = 0 for all k,l E JN and i 'f j, (see also 111 l). 

(iii) If the number of output channels is smaller than the number of inputs the 

above procedure still works in a slightly modified way. Namely there are 

- * more than one independent vectorfields Bi in Ri: Span{B1 , ... ,Bm} and/or 

there exist some additional input vector fields Bk which do not belong to one 

* of the distributions R. , but .,. after applying f,=edback - also have the form 
~1 ~1 1 ~m t 

Bk(x) = (Bk{x1) ,Bk(x2), ... ,Bk(xm)) . These vector fields are superfluous for 

the whole control synthesis of the system. 

(iv) Each of the systems xi= Ai {xi) + Bi (xi)vi, zi = Hi (xi) is strongly invertible, 

see ~2]. This has also been clarified in a geometric way in [9], and follows 

* di~ectly from the condition that R. + K. 
J. J. 

* TM, so R. is not contained in 
J. 

KerH .. We also note that the situation described 
J.* 

in theorem 3.1 is even 

more special. Namely the system x. = A. (x.) + B. (x.)v. is strongly invertible 
J. 1. J. J. J. J. 

with respect to each of the components of the output z .. 
J. 
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