
,,

stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNDE
(DEPARTMENT OF OPERATIONS RESEARCH)

J.K. LENSTRA, A.H.G. RINNOOY KAN

TWO OPEN PROBLEMS IN
PRECEDENCE CONSTRAINED SCHEDULING

Preprint

BW 170/82 OKTOBER

kruislaan 413 1098 SJ amsterdam

PJun:ted _ctt .the Mctthemat,,i,c.al Cent/Le., 413 KJU.J.b.,laan, Amo.teJuiam.

The Ma:themat,,i,c.al Cen.tJr.e , 6ounded .the 11-.th 06 FebtwaJr.y 1946, 1.1, a non
plC.o oU bu,.tU:u:tio n a)m-lng a;t .the pll.omo.ti.o n o o pu.Jc.e ma:themat,,i,C-6 and .lt6
app.Ucation6. 1.t 1.1, .6pon6oJc.ed by .the Ne.thell.land6 Gove.Jc.nmen:t .thMugh .the
Ne.theJli.an.d6 OJc.gan.lzat,,i,on. ooJc. .the Advancement on Pu.Jc.e Ruea1tc.h (Z.W.O.).

1980 Mathematics Subject Classification: 90B35, 68C15, 68C25

TWO OPEN PROBLEMS IN PRECEDENCE CONSTRAINED SCHEDULING

J.K. LENSTRA

Mathematisch Centrum, Amsterdam

A.H.G. RINNOOY KAN

Erasmus University, Rotterdam

ABSTRACT

The computational complexity of a machine scheduling problem can be affected

in various ways if a partial order is imposed on the set of jobs that has to

be executed. Some typical complexity results for such problems are discussed

in the light of two prominent open problems in this area: the minimization

of total tardiness for unit-time jobs on a single machine subject to chain

like precedence constraints, and the minimization of maximum completion time

for unit-time jobs on three identical parallel machines subject to arbitrary

precedence constraints.

KEY WORDS & PHRASES: machine scheduling, unit-time jobs, precedence con

straints, maximum completion time, total tardiness, polynomial-time algorithm,

NP-hardness.

NOTE: This paper has been written for inclusion in the Proceedings of the

"Conference sur les ensembles ordonnees et leurs applications", organized by

R. Bonnet and M. Pouzet in Lyon, France, July 5-11, 1982.

,,

1

1. INTRODUCTION

The theory of scheduling is concerned with the allocation over time of scarce

resources to activities. In this context, partial orders arise in a natural

fashion: a partial order on the activity set imposes constraints on the order

in which the activities can be executed and as such delimits the set of feasi

ble allocations. The challenge is to incorporate these precedence constraints

as efficiently as possible in algorithms designed to determine a feasible

allocation that is optimal with respect to some criterion.

The effect of precedence constraints can be twofold. If the problem

without precedence constraints can be solved efficiently, their addition will

generally require the algorithm to be adapted. In some cases, this adaptation

does not affect the efficiency of the algorithm; in other cases, it does,

possibly to the point that the new solution method amounts to complete enumer

ation of all feasible allocations. If the unconstrained problem is already so

difficult in itself that an enumeratjve approach seems unavoidable, one may

capitalize on the addition of precedence constraints by exploiting the fact

that they reduce the number of feasible allocations. In the former case,

precedence constraints make the problem harder to solve; in the latter case,

it becomes a little easier.

The theory of computational complexity of combinatorial problems has served

to formalize the preceding informal 4iscussion. We will settle here for a

very brief review of the main concepts of this theory and refer the reader

for more details to [Cook 1971; Karp 1972] (the first two papers on the sub

ject), [Garey & Johnson 1979] (a comprehensive textbook) and [Lawler & Lenstra

1982] (a survey likely to be readily available to the current readership).

The size of a combinatorial problem is defined as the number of bits

needed to encode its data, and the running time of an algorithm as the number

of elementary operations (such as additions and comparisons) required for its

solution.

If a problem of sizes can be solved by an algorithm with running time

O(p(s)) where pis a polynomial function, then the problem is said to be

well solvable; there are good theoretical and practical justifications for

this nobion. Many problems have been shown to be well solvable, simply by

2

the construction of a polynomial-time algorithm.

Only few problems have been proved to be not well solvable, but there

is a large class of problems for which it is strongly suspected that this is

indeed the case. These are the NP-hard problems, which share a notorious

reputation for computational intractability as well as the property that a

polynomial-time algorithm for any one of them would yield polynomial-time

algorithms for all problems in an important subclass, the NP-complete prob

lems - a very unlikely event.

One establishes NP-hardness of a problem P by taking another NP-hard

problem Q and showing that Q is reducible to P (Q ~ P), i.e., that for any

instance of Q a corresponding instance of P can be constructed in polynomial

time such that solving the latter will solve the former as well. This implies

that Q is a special case of P, and since Q is NP-hard, Pis NP-hard too.

(This recipe obviously does not apply to the first NP-hardness proof - for

this, see [Cook 1971].)

Rephrased more formally, then, the addition of precedence constraints may

turn a well-solvable problem into an NP-hard one, or may make an NP-hard

scheduling problem easier to solve in practice.

We shall focus on the former phenomenon, and illustrate it for the case

that the scarce resources correspond to machines M
1

, .•• ,Mm, each of which

can handle at most one of the activities or jobs J 1 , .•• ,Jn at a time. Within

this general setting, many specific problem types have been formulated and

studied. For a detailed problem classification and a survey of the complexity

results in this area, we refer to [Graham et al. 1979; Lawler et al. 1982].

A prominent role in this classification is played by the optimality

criterion to be minimized. With every feasible schedule leading to a comple

tion time C. for J. (j = 1, ••. ,n), the basic assumption is that the criterion
J J

is a function of c
1

, •.. ,cn, nondecreasing in every variable. We shall encoun-

ter various examples below.

Among the various job characteristics that further specify a problem

type, there may be precedence constraints of the form Jj + Jk, signifying

that Jj has to be completed before Jk can start. Such constraints have long

formed a research subject in the area, whereby several types of precedence

constr4ints have been distinguished. In terms of the precedence graph G with

3

vertex set {1, ••• ,n} and arc set {(j,k): Jj + Jk}, separate attention has

been paid to the case that G is a collection of chains, a forest, or series

parallel. Many other special cases inbetween an empty and an arbitrary arc

set have been investigated as well.

In general, the effort has been to draw as sharp a borderline as possible

between well-solvable and NP-hard problems, by identification of the most

general t1'Pe of precedence constraints that can be coped with in polynomial

time versus the simplest type that leads to NP-hardness. For a review of the

results obtained so far, we refer to [Lawler & Lenstra 1982]. In this note,

we concentrate on two prominent open problems in this area, while surveying

known related results.

2. A SINGLE MACHINE PROBLEM

Let us assume that there is a single machine (m = 1) and that each of then

jobs Jj (j = 1, ••• ,n) has to spend an uninterrupted processing time of pj

time units on the machine. Each J. becomes available for processing at time
J

0 and incurs, upon its completion at time C., a tardiness cost T. =
J J

max{O,C.-d.}, where
J J

dj is a given due date. The criterion to be minimized is

the total tardiness '~ 1 T .• lJ= J
This is perhaps the most notorious open problem in single machine sched-

uling theory. It can be solved by dynamic programming techniques in O(n
4
Ip.)

J
time [Lawler 1977]; although the running time is obviously exponential in

problem size (which is O(L(log p. + log d.))), the algorithm in question is
J J

called pseudopolynomial since the running time is polynomial in the problem

data themselves.

We will concentrate on the special case of unit-time jobs, i.e., p. = 1
J

(j = 1, ... ,n). The cost c .. of scheduling J.
1] J

in the i-th position is now

given by c .. = max{O,i-d.}, and the problem is to find a permutation
1] J

minimizing l~ 1 c (') .• If there are no precedence constraints, this
J= cr J J

ordinary linear assignment problem, which can be solved in O(n3) time

(J E S
n

is an

(see,

e.g., [Lawler 1976]). If arbitrary precedence constraints between the jobs

are allowed, the problem becomes NP-hard [Lenstra & Rinnooy Kan 1978]. It is

not known, however, what the effect of chain-like precedence constraints is,

and this is our first open problem:

4

Given a directed graph G with vertex set {1, ••. ,n} in which each vertex j

has an associated integer d,, indegree at most one and outdegree at most one,
J

find a permutation a ES n satisfying cr(j) < cr(k) whenever (j,k) is an arc of

G, such that\~
1

max{0,cr(j)-d.} is minimized.
lJ= J

An optimality criterion

of late jobs Iu., where U. =

related to the total tardiness LT, is the number
J

J J
0 if C. ~ d., U. = 1 if C. > d .• Since we know

J J J J J
of no problem type for which minimizing lu, is harder than minimizing LT, and

J J
since the problem of minimizing Iu. for unit-time jobs on a single machine

J
subject to chain-like precedence constraints is NP-hard (Lenstra & Rinnooy

Kan 1980], the most plausible conjecture is that the above problem will even-

tually turn out to be NP-hard.

Three immediate generalizations of our open problem are worth considering:

(1) The processing times p. (j = 1, •.• ,n) are arbitrary nonnegative integers.
J

The resulting problem is NP-hard (Theorem 1).

(2) Each J. (j = 1, •.• ,n) has to be completed no later than a given deadline
J .

e. (not to be confused with the due dated.). This problem is NP-hard as well
J J

(Theorem 2).

(3) Each J. (j = 1, ••• ,n) becomes available for processing at a given release
J

dater .. This problem is still open and, of course, also suspected to be NP
J

hard.

As a preparation for the proofs of Theorems 1 and 2, we recall an NP

hardness result for the total weighted tardiness criterion I;=l wjTj, where

wj is a given weight of Jj (j = 1, •.• ,n}.

LEMMA 1 [Lawler 1977; Lenstra et al. 1977]. The problem of scheduling jobs

with arbitrary processing times on a single machine in the absence of prece

dence constraints so as to minimize total weighted tardiness LW,T. is NP-hard.
J J

Proof [Lenstra & Rinnooy Kan 1980]. We have to show that a known NP-hard

problem is reducible to the Iw.T. problem. Our starting point will be the
J J

following NP-hard problem [Garey & Johnson 1979]:

3-PARTITION: Given a set S = {1, ... ,3t} and positive integers a 1 , ... ,a3t,

b with ¼b <a.< ½b for all j ES and I.Sa.= tb, does Shave a partition
J JE J

into t 3-element subsets S. such that I. s a.= b (i = 0, ••. ,t-1)?
~ 1 JE i J

5

Given any instance of 3-PARTITION, we construct an instance of. the Iw.T.
J J

problem as follows:

there are 4t-1 jobs;

for each j ES, there is a job Jj with processing time pj = a., due date
J

d. = 0 and weight w. = a.;
J J J

for each i E {1, ••• ,t-1}, there is a job J! with processing time p! = 1,
i i

due dated!= i(b+l) and weight w! = 2.
i i

We claim that 3-PARTITION has a solution if and only if there exists a

schedule with value Iw.T.::;; y, where y = Il<"<k<3t a.a + ½(t-l)tb. This
J J -]- - J K

would imply that a polynomial-time algorithm for the Iw.T. problem could be
J J

used to solve 3-PARTITION in polynomial time as well and therefore prove the

theorem.

Let us first ignore the jobs J! (i = 1, ••• ,t-1). Since d. = 0 for all
i J

j Es, we have l· S w.T. = I. S w.C.; moreover, since p.
JE J J JE J J J

= w. for all j ES,
J

the value of I. S w.C. is not influenced by the ordering
JE J J

of S. That is, for

any schedule of the jobs J. (j ES) without machine idle time we have
J

I. S w.T. = ll<"<k<3t a.a. JE J J -]- - J K

Let us now calculate the effect of inserting job Ji in such a schedule.

Suppose that Ji is completed at time Ci and define Li= Ci-di· Since all jobs

Jj (j ES) that are processed after Ji are completed one time unit later, the

value of I. S w.T. is increased by the total weight of these jobs, and we have
JE J J

ljES wjTj + wiTi = li::;;j:s;k::;;3t ajak + (t-l)b - Li+ 2max{O,Li}

= li::;;j:s;k::;;3t aj¾ + (t-l)b + !Lil·

It is easily seen that insertion of all jobs J! resulting in completion times
i

C! = d!+L! (i = 1, ••• ,t-1) yields a schedule with value
i i i

Iw.T. = ll<'-•<3t a.a + I~:1
1

((t-i}b + IL!J) = y + I~:
1
1!L~l-J J -J~h- J K i i i i

It follows that a schedule has value Iw.T. ::;; y if and only if there is
J J

no idle time and moreover the jobs J! are completed at times C! = d! = i (b+l}
i i i

(i = 1, ••• , t-1) • Such a schedule exists if and only if the jobs J.
J

(j E S)

can be divided into t groups, each containing 3 jobs and requiring b units of

processidg time, i.e., if and only if 3-PARTITION has a solution. D

6

The proof of Lemma 1 provides the basis for our proofs of Theorems 1 and 2.

We will specify reductions from 3-PARTITION to both IT. problems in which
J

the number of jobs created is O(tb) and O(tb2) respectively. This may raise

some eyebrows, as the size of an instance of 3-PARTITION is only O(t log b).

However, 3-PARTITION has been shown to be NP-hard even when problem size is

measured in a pseudopolynomial fashion as O(tb) [Garey & Johnson 1979], and

hence the reductions below suffice to establish NP-hardness.

THEOREM 1. The problem of scheduling jobs with arbitrary processing times on

a single machine subject to chain-like precedence constraints so as to mini

mize total tardiness IT. is NP-hard.
J

Proof. Given any instance of 3-PARTITION, we first construct an instance of

the Iw.T. problem as in the proof of Lemma 1 and then transform it into an
J J

instance of the IT. problem with chain-like precedence constraints as follows.
J

Each job J. with processing time
J

p . , due date d . and weight w. (whether it
J . J J

is a "partition" job J. (j E S) or a "splitting" job J~ (i = 1, .•• ,t-1)) is
J i

replaced by a chain of w. unit-weight jobs. The first job in the chain has
J

processing time p. and
J

0 and due dates d .•
J

due dated., the next w.-1 ones have processing times
J J

The resulting problem instance has tb+2(t-1) jobs. Given any feasible

schedule in which the jobs of some chain are not scheduled consecutively,

one can obtain another schedule by processing all the zero-time jobs of that

chain directly after its first job. This schedule is still feasible, and its

IT. value has not increased. Hence,
J

as a single job with weight w., and
J

each chain of length w. can be considered
J

we are back at our original construction.

The reader who dislikes zero-time jobs could quite easily replace them

by unit-time jobs and multiply the lengths of the other jobs by a factor

polynomial int and b such that the equivalence argument still carries

through. D

THEOREM 2. The problem of scheduling unit-time jobs on a single machine sub

ject to arbitrary deadlines e. and chain-like precedence constraints so as
J

to minimize total tardiness LT, is NP-hard.
J

Proof. Our proof is again related to the proof of Lemma 1, although it is

not such a straightforward extension as the proof of Theorem 1. Given any

instance of 3-PARTITION, we construct an instance of the lT, problem with
J

unit-time jobs, deadlines and chain-like precedence constraints as foll9ws:
2

there are n = tb +t-1 jobs;

for each j ES, there is a chain J. of ba. unit-time jobs:
J J

with due dates and deadlines defined by

d~k) (k 1 , ••• , (b-1) a .) ,
(ba ·-!/,)

-.(/, (!I, a.-1, ••• ,0), = n = d. J = =
J J J J
(k)

(k = 1, ••. ,ba.) ; e. = n
J J

7

for each i E {1, ••• ,t-1}, there is a unit-time job J' with due date and
i

deadline defined by d! = e! = i(b
2
+1).

J_ J_

We claim that 3-PARTITION has a solution-if and only if there exists a

feasible schedule with value lT, ~ z, where z = bll<"<k<3t a.a + ½<t-1)tb.
J -J- - J K

Before we prove this claim, we make some introductory remarks on the way in

which the job weights occurring in the proof of Lemma 1 have been simulated

in the present construction. For each chain J. (j ES), the due dates have
J

been specified such that in any schedule without machine idle time only the

last a. jobs in the chain contribute to the criterion; if all these jobs are
J

completed one time unit later, this adds a. units to LT,, which corresponds
J J

to the original weight w. = a .• For each
J J

job J! (i = 1, ••• ,t-1), we previously
J_

used a weight w~ = 2 in combination with an
J_

upper bound yon Iw.T. to enforce
J J

an implicit deadlined!; we now simply have an explicit
J_

Consider any feasible schedule with value LT,~ z.
J

deadline e! = d!.
J_ J_

Without loss of gen-

erality, we assume that the schedule contains no machine idle time, that each

job J! (i = 1, •.• ,t-1) is completed at timed!, and that the chains J. (j ES)
J_ J_ J

do not preempt each other; the latter two statements can be proved by means

of simple interchange arguments. The jobs J! (i = 1, ••• ,t-1) do not contribute
J_

to the LT, value of the schedule. The contribution of the chains J. (j ES)
J J

consists of two terms.

First, there is the total tardiness of all jobs in the chains when the

chains are processed from time O onwards without interruption. It is not hard

8

to see that this term is given by bLl<"<k<3t a.a, irrespective of the order-
-]-- - J .K:

ing of s.

Secondly, there is the increase in total tardiness due to the insertion

of the jobs J! in the intervals [d!-1,d!] = [d!
1
+b

2
,d!] (i = 1, ••• ,t-1),

i i i i- i

where do= 0. Let Sics denote the index subset of chains that are completed

in the interval [d!,d!+b
2
], and let A.= I. S a. (i = O, .•• ,t-1). Note that

1 1 1 JE i J
bAt-l is equal to the total length of all chains completed in the final inter-

2 \t-1
val [d~_1 ,d~_ 1+b], so that At-l ~ b. More generally, we have that lh=t-i ~

~ ib (i = 1, ••• ,t-1). Since all chain lengths as well as the interval lengths

are integer multiples of b, we know that, if j ES., the last b jobs
i

of J.
and in particular the last a. ones (the only

J
ones that contribute to LT.)

J

J

must be processed in [d!,d!+b
2J, so that J. contributes

i i J
ia. additional units

J
to LT,. Thus, the second term is given by

J

\t-1 \t-1 \t-1 \t-1
l·-o iA. = l·-1 lh-t. A. ~ l·-1 ib = i- i i- - -i --h i-

½(t-l)tb.

It follows that LT,~ z if and only if A. = b (i = O, •.• ,t-1), i.e., if
J i

and only if 3-PARTITION has a solution. •

3. A PARALLEL MACHINE PROBLEM

We now assume that there are m machines and n jobs J. (j = 1, ••• ,n). The
J

machines are parallel in the sense that each job can be assigned to any one

of them, and they are identical in the sense that, when J. is assigned to
J

some machine, it requires an uninterrupted processing time p., irrespective
J

of the machine. The criterion to be minimized is the maximum completion time

c = max1<.< {c.}.
max -J-n J

If arbitrary processing times are allowed, the problem is already NP-

hard if m = 2 and no precedence constraints are specified. This generalizes

the PARTITION problem of splitting a set of numbers into two subsets with

equal sums, which is known to be NP-hard [Karp 1972].

We will, once again, concentrate on the case of unit-time jobs. We first

state three classical results on minimizing C for unit-time jobs on m
max

identical parallel machines subject to precedence constraints, specified in

the fomn of a directed graph G:

9

(1) If m is arbitrary (i.e., specified as part of the problem instance)· and

G is an inforest (each vertex has outdegree at most one) or an outforest

(each vertex has indegree at most one), the problem is solvable in O(n) time

[Hu 1961].

(2) If m = 2 and G is arbitrary, the problem is also well solvable; algo

rithms that have subsequently been developed require O(n3) time [Fujii et al.

1969,1971], O(n
2

) time [Coffman & Graham 1972], "almost linear" time [Gabow

1982A], and O(n) time [Gabow 1982B].

(3) If m and Gare arbitrary, the problem is NP-hard [Ullman 1975].

These results do not resolve the complexity status of the problem if G

is arbitrary and mis fixed but greater than 2. In particular, the case that

m = 3 has withstood all attacks, and this is our second open problem:

Given a directed graph G with vertex set {1, ... ,n}, find the minimum value

of C for which there exists a function a: {1, •.• ,n} + {1, ••• ,c} satisfying

a(j) < a(k) whenever (j,k) is an arc of G and. j{j E {1, ••• ,n}: a(j) = t}I ~ 3

for all t E {1, ... ,c}.

In the course of research on this problem, progress has been made for

several special types of precedence constraints other than forests. We mention

the following results.

(4) Let the height h of G be defined as the number of arcs in a longest path

in G. If mis arbitrary and h = 2, the problem is still NP-hard, and there

exists no polynomial-time (approximation) algorithm that guarantees a relative

error less than one third of the optimal C value unless all NP-complete
max

problems are well solvable [Lenstra & Rinnooy Kan 1978]. If both m and hare

fixed, the problem is well solvable in O(nh(m-l)+l) time [Dolev & Warmuth

1982B].

(5) Suppose G is an interval order: each vertex j corresponds to an interval

[a.,b.] on the real line and (j,k) is an arc of G whenever b. < ~- In this
J J 2 J

case, the problem is solvable in O(n) time [Papadimitriou & Yannakakis 1979].

(6) Suppose G is a level order: any two incomparable vertices with a common

predecessor or successor have identical sets of predecessors and successors.

If mis fixed, this problem is well solvable in O(nm-l) time [Dolev & Warmuth

1982C].,

10

(7) Suppose G is an opposing forest, consisting of the disjoint union of an

inforest and an outforest. If mis arbitrary, this problem is NP-hard [Garey
2m-2 et al. 1981]. If mis fixed, it is well solvable in O(n log n) time [Dolev

& Warmuth 1982C]. If m = 3, there is an O(n) algorithm [Garey et al. 1981;

Dolev & Warmuth 1982A].

These results have led most researchers to believe that the three-machine

problem is probably well solvable and that any polynomial-time algorithm for

its solution should be extendable to the case that mis any fixed constant.

Recent rumors on a proof of this conjecture have not been substantiated so

far. Nevertheless, the problem stands a good chance to be the seventh one to

be removed from the list of twelve open problems in [Garey & Johnson 1979].

4. CONCLUDING REMARKS

The above discussion has illustrated that very detailed insights exist on

the way in which partial orders on the job set affect the computational com

plexity of machine scheduling problems. The two problems considered in the

preceding two sections figure prominently on the list of open problems that

is produced by the computer program MSPCLASS [Lageweg et al. 1981,1982].

This program keeps track of the complexity status of 4,536 machine scheduling

problems, 390 of which are currently still open. Resolution of many of these

problems, in particular of the two above ones, would seem to require the

development of new algorithmic approaches or transformation techniques.

ACKNOWLEDGMENT

This research was supported by NSF grant MCS78-20054.

REFERENCES

E.G. COFFMAN, JR., R.L. GRAHAM (1972) Optimal scheduling for two-processor

systems. Acta Informat. 1,200-213.

S.A. COOK (1971) The complexity of theorem-proving procedures. Proc. 3rd

Annual ACM Symp. Theory of Computing, 151-158.

D. DOLEV, M.K. WARMUTH (1982A) Scheduling flat graphs. Research Report

RJ3398, IBM, San Jose, CA.

11

D. DOLEV, M.K. WARMUTH (1982B} Scheduling precedence graphs of bounded height.

Research Report RJ3399, IBM, San Jose, CA; J. Algorithms, to appear.

D. DOLEV, M.K. WARMUTH (1982C) Profile scheduling of opposing forests and

level orders. Research Report RJ3553, IBM, San Jose, CA.

M. FUJII, T. KASAMI, K. NINOMIYA (1969,1971) Optimal sequencing of two equi

valent processors. SIAM J. Appl. Math. 17,784-789. Erratum. 20,141.

H.N. GABOW (1982A) An almost-linear algorithm for two-processor scheduling.

J. Assoc. Comput. Mach. 29,766-780.

H.N. GABOW (1982B) Unpublished result.

M.R. GAREY, D.S. JOHNSON (1979) Computers and Intractability: a Guide to the

Theory of NP-Completeness, Freeman, San Francisco.

M.R. GAREY, D.S. JOHNSON, R.E. TARJAN, M. YANNAKAKIS (1981) Scheduling

opposing forests. Bell Laboratories, Murray Hill, NJ.

R.L. GRAHAM, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1979} Optimization

and approximation in deterministic sequencing and scheduling: a survey.

Ann. Discrete Math. 5,287-326.

T.C. HU (1961) Parallel sequencing and assembly line problems. Oper. Res. 9,

841-848.

R.M. KARP (1972} Reducibility among combinatorial problems. In: R.E. MILLER,

J.W. THATCHER (eds.} (1972} Complexity of Computer Computations, Plenum,

New York, 85-103.

B.J. LAGEWEG, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1981} Computer

aided complexity classification of deterministic scheduling problems.

Report BW 138, Mathematisch Centrum, Amsterdam.

B.J. LAGEWEG, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1982) Computer

aided complexity classification of combinatorial problems. Comm. ACM,

to appear.

12

E.L. LAWLER (1976) Combinatorial Optimization: Networks and Matroids, Holt,

Rinehart & Winston, New York.

E.L. LAWLER (1977) A "pseudopolynomial" algorithm for sequencing jobs to

minimize total tardiness. Ann. Discrete Math. 1,331-342.

E.L. LAWLER, J.K. LENSTRA (1982) Machine scheduling with precedence constraints.

In: I. RIVAL (ed.) (1982) Ordered Sets, Reidel, Dordrecht, 655-675.

E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1982) Recent developments in

deterministic sequencing and scheduling: a survey. In: M-.-A.H. DEMPSTER,

J.K. LENSTRA, A.H.G. RINNOOY KAN (eds.) (1982) Deterministic and Sto

chastic Scheduling, Reidel, Dordrecht, 35-73.

J.K. LENSTRA, A.H.G. RINNOOY KAN (1978) Complexity of scheduling under pre

cedence constraints. Oper. Res. 26,22-35.

J.K. LENSTRA, A.H.G. RINNOOY KAN (1980) Complexity results for scheduling

chains on a single machine. European J. Oper. Res. 4,270-275.

J.K. LENSTRA, A.H.G. RINNOOY KAN, P. BRUCKER (1977) Complexity of machine

scheduling problems. Ann. Discrete Math. 1,343-362.

C.H. PAPADIMITRIOU, M. YANNAKAKIS (1979) Scheduling interval-ordered tasks.

SIAM J. Comput. 8,405-409.

J.D. ULLMAN (1975) NP-Complete scheduling problems. J. Comput. System Sci.

10,384-393.

36279

