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The triangular decoupling problem for nonlinear control systems*) 

by 

Henk Nijmeijer 

ABSTRACT 

In this note a solution of the Triangular Decoupling Problem (T.D.P.) 

for nonlinear control systems is presented. This problem has been solved 

completely for linear systems by using the geometric approach. Here we show 

that the differential geometric approach to nonlinear systems enables us to 

solve the nonlinear T.D.P. locally. As a final result a simple but illus­

trative example is given. 

KEY WORDS & PHRASES: nonlinear control systems; differential geometric 

methods; controllability distributions; triangular 

decoupling 

*) 
This paper will be submitted for publication elsewhere. 
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1 • INTRODUCTION 

Consider a control system of the form 

m 
( 1. la) X = A(x) + I B. (x)u. 

i=l 1. 1. 

(I.lb) z. = H. (x), i = I , ••• 'p 
1. 1. 

where x are local coordinates of a smooth n-dimensional manifold M, 

A,B
1

, ••• ,Bm are smooth vector fields on Mand Hi : M + Ni is a smooth output 

map from M to a smooth p.-dimensional manifold N. for i = 1, ••• ,p. We 
1. 1. 

assume that each H. is 
1. 

a surjective submersion. 

In this note we will study the (static state feedback) Triangular 

Decoupling Problem (T.D.P.). That is, we seek a control law of the form 

( 1. 2) u = a(x) + 8(x)v 

m mxm 
where a: M + JR , 8: M + JR are smooth maps, 8(x) = (8 .. (x)) is nonsin-

1.J 
t m ~ gular for all x in Mand v = (v

1
, ••• ,vm) E JR • Let A(x) = A(x) + 

+ I~ 
1 

B.(x)a.(x) and B.(x) = I~ 
1 

B.(x)s .. (x). Then the modified dynamics 
1.= 1. 1. 1. J= J Jl. 

• rv m rv 

x = A(x) + I. 
1 

B.(x)v. should control the output z., i = I, ••• ,p sequen-
1.= 1. 1. 1. 

tially, i.e. v
1 

controls z
1

, possibly changing the values z2 , ... ,zp, then v2 
controls z

2
, possibly changing the values of z

3
, ••. ,zp, with the requirement 

that z
1 

be left unaffected and so forth, with v controlling z without 
p p 

influencing z 1, ••• ,z 1 (here the v. are vectors such that (v , .•. ,v) = 
p- 1. l m 

= (v
1

, ••• ,vp)). For linear systems the Triangular Decoupling Problem has been 

solved completely, see [3,11,12,21]. In the solution we present here we use 

as key tools the so called regular controllability distributions, 1ntroduced 

in [14]. In this way our approach completely fits in the systematic work on 

the generalization of the geometric approach to linear systems, see e.g. 

[6-10,13-18]. Note that in the T.D.P. the partial decoupling of the outputs 

is weaker then achieving complete dynamic interacting, which for a special 

case - the Restricted Decoupling Problem - has been solved in [16]. 
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2. PROBLEM FORMULATION 

Recall the following definitions, see [6-10,14]. 

DEFINITION 2.1. An involutive distribution D of fixed dimension, on M, is 

controlled invariant for the system (I.la) if there exists a feedback of the 
• r,J m _, 

form (1.2) such that the modified dynamics x = A(x) + Ii=l Bi(x)vi leaves D 

invariant, i.e. 

[A,D] C D 

~ [B.,D] c D, i = I, ..• ,m. 
]_ 

DEFINITION 2.2. An involutive distribution of fixed dimension, on M, is a 

regular controllability distribution of the system (I.la) if it is con­

trolled invariant for the system and moreover 

k~ I D = involutive closure of {adABi k E JN, i E I} for a certain subset 

I c { I , ••• ,m}. 

Instead of the above notion of controlled invariance we will use a slightly 

weaker concept, which is much easier to handle. 

DEFINITION 2.3. An involutive distribution D of fixed dimension, on M, is 

locally controlled invariant for the system (I.la) if locally around each 

point x
0 

EM there exists a feedback of the form (l.2) such that the modi-
• r,J m rv 

fied dynamics x = A(x) + E. 1 B.(x)v. leaves D invariant. 
i= ]_ ]_ 

A locally controlled invariant distribution can easily be characterized, 

see [8, 13]. 

THEOREM 2.4. Let D be an involutive distribution of fixed dimension on M 

and suppose that the distribution D n Span{B 1, •.. ,Bm} has fixed dimension. 

Then Dis locally controlled invariant if and only if 

[A,D] c D + Span{B 1, ••• ,Bm} 

[B.,D]c D + Span{B
1

, ... ,B }, i = l, ... ,m. 
i m 



Similarly one defines a local version of definition 2.2: the regular local 

controllability distributions. 
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Finally we need a definition of output controllability, see also [16]. 

Consider the system (I.la) together with an output function H:M • N. Assume 

that His a surjective submersion. Let D be the controllability distribution 

of (I.Ia), see [14,20], i.e. D = involutive closure of {ad~Bi I k E :JN, i = 
= l, .•. ,m}. Then we have 

DEFINITION 2.5. The system (I.la) with output function H:M • N is output 

controllable if H*(D) = TN, where Dis the controllability distribution of 

(I. la). 

REMARK: This notion of output controllability is similar to the notion of 

strong accessibility for a system, [20]. Namely if we denote by Rt(x0) the 

reachable set of (I.la) at time t from x0 , then the system is output control­

lable if H(Rt(x
0

)) has non-empty interior in N. 

It is now easy to see that the local version of the Triangular 

Decoupling Problem can be formalized, as for linear systems, in the following 

way: Given the system (I. la,b) find (if possible) a local feedback law of 

the form (I. 2) and regular local controllability distributions R
1

, ••• ,RP 

such that we have 

(2. I) 

and 

(2.2) 

i-1 
R. C .nl Ker H. 

1 3= J* 

R. + Ker H. = TM. 
1 1* 

i = I, ... ,p 

In (3.2) the vacuous condition at i = I just says R1 c TM. 

Define R~ = supremal regular local controllability distribution in n1-
1
1 Ker H. , 

1 J= J* 

* * REMARK. R. is well defined, see [10,14], but the dimension of R.(x) may 
1 1 

change if x varies in M. 

3. MAIN THEOREM 

THEOREM' 3.1. Under the assumption that eaeh R~ has fixed dimension for 
1 



4 

i = I, ... ,p, T.D.P. is solvable in a local fashion if and only if 

(3. I) * R. + Ker H. = TM, 
l. I.* 

i = I, ... ,p. 

* PROOF. The necessity of (2.2) follows from the maximality of the R .• For 
* l. * sufficiency we have to show that the R. are compatible; although each R. is 
l. l. 

locally controlled invariant, by no means it follows that there exists a 

local feedback law (1.2) which leaves each of them invariant. From (2.1) it 

is clear that 

(3. 2) * J ••• J R 
p 

According to [19] we can choose local coordinates (x
1

, ••• ,xp+l) on M such 

that 

* , cl R = Span .f--} , 
p dXI 

* cl cl R = Span f---, -" -} , ... , 
p-l 'cl xl ox2 

cl cl = Span{-"-,., ... ,;-}, each x. possibly being a vector. 
oXI oXP l. 

* R is locally controlled invariant, so 
p 

{ 
* * + Span {B

1
, ••• ,Bm} [A,R] C R 

p p 
(3. 3) 

* * + Span{B 1, ••• ,Bm}, i [B. ,R ] C R = I, ... ,m. 
l. p p 

By theorem 2.4 this is equivalent to the fact that there exists a local 

feedback u = a(x) + S(x)v, such that 

r· * [A,R] C R 
p p 

(3.4) 

~ * * [B. ,R ] C R ' l. = I , ••• ,m 
l. p p 

(here A and B. are defined as in section I). In our local coordinates this 
l. 

means that 
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~ (3.5) A(x) 

~I i = I, ... ,m, where A, respectively B~, represents the first x 1-dimension-
~ ~ ~2 

al (=dim R*) component 
. 1 ~2 p .. 

of the vector field A, respectively B. and A, respec­
i 

tive y B., the remaining components 
l. 

locally controlled invariant, so 

~ ~ * of A respectively B .. Also R 
1 

is 
i p-

(3 .6) l
[A,R;_IJ c R;_] + Span{B1,···•Bm} 

~ * * ~ ~ [ B . , R 
1 

] c R 1 + Span {B 
1 

, ••• , Bm} , i = I , ... , m. 
i p- p-

By using the second component of the vector fields A and B. as in (3.5), we 
i 

deduce, according to [6,8,13], that we can find a local feedback 

v = a(x) + S(x)v such that the new vector fields A and B. satisfy (3.4) as 
i 

well as 

JcA,R;_ 1 J c 
* R p-1 

(3. 7) 

lcB.,R* 1J * 
C R I i I , ••• , m. i p- p-, = 

Or, in our local coordinates 

-I 
B.(x1, .•• ,x 

1
) 

i p+ 

(3. 8) A(x) = B. (x) = 
i 

-2 B.(x
2

, ••• ,x 
1

) , 
i p+ 

-3 
B. (x

3
, ••• , x l) 

i p+ 

. -I -1 . * i = 1, ••• ,m, where A (Bi) is the first x 1-dimensional (=dim RP) component 

of A(B.), A2 (B:) is the second x2-dimensional (=dim R* 1-dim R*) compo-
i - - i -3 -3 p- p ~ -

nent of A(B.) and A (B.) represents the remaining component of A(B.). Notice 
i i i 

that this second local feedback law V = a(x) + S(x)v is independent of XI' 

i.e. v = a(x2 , ..• ,xp+l) + 8(x2 , •.. ,xp+l)v. Repetition of the above argument 

yields 
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(3.9) A(x) = 

A?(x ,x 
1
) p p+ 

Xl>+l (x ) 
p+l 

B. (x) = 
1. 

-1 
B.(x

1
, ••• ,x 

1
) 

1. p+ 
-2 
B. (x

2
, ••• , x 

1
) 

1. p+ 

Bp(x x ) 
i ps p+l 

-p+l 
B. (x l) 

1. p+ 

i = l, ... ,m, where Aj(B~) represents the j-th x.-dimensional component of 
1. J 

A(B.). That is, we have shown that the distributions R: are compatible. Next 
1. 1. 

* we will use the fact that the R.'s are regular local controllability dis-
1. 

tributions. Using this we see that (eventually after a permutation on the 

new input functions (~
1

, ••• ,~m)) there exists a partitioning of the set 

· {l, .•. ,m} into p subsets Ik, k = l, ..• ,p such that 1
1 

=· {l, ... ,m
1
}, 

12 = {l, •.. ,m
1

, ••• ,m2}, ... ,lp = {l, ... ,m} with the property j Elk~ R;_k+l 

fork= l, ... ,p. Therefore our system after applying feedback has the form 

-1 -1 
xi A (x 1 , ••• ,xp+l) B.(x

1
, ... ,x 

1
) 

J p+ 
-2 -2 

X A (x2 , ... ,xp+l) Bj (x2 , ... ,xp+I) 
I (3.10) = + v-. + 

jdl J 

X p 
7ii?(x ,x 

1
) p p+ 

w?(x ,x 
1
) 

J p p+ 

X p+l xr+l(xp+l) 0 

-1 
Bj (x1, ••• ,xp+l) 

-1 
Bj (x 1 , ••• ,xp+l) 

-2 
Bj (x2 , •.. ,xp+l) 0 

I 0 I 
jE12\ll v. + ... + 

jEl \1 l 
v. 

~-1 J J 
B. (x 

1
,x ,x+ 1) p p-

J p- p p 

0 0 

0 0 



* i-l Furthermore we obtain from R. c n. 1 KerH.* for the output functions the 
1 J= J 

following partitioning 

(3. I I) 

z 1 = H1 (xp,xp+l) 

z 2 = H2 (x 
1
,x ,x 

1
) p- p p+ 

zp-l = Hp-I (x2' •.. ,xp+l) 

z = H (x
1

, ••• ,x 
1

) 
p p p+ 

* Finally we note that the condition (3.1), R. 
1 

+ KerH. = TM, automatically 
1* 

leads to the notion of output controllability. 

(a H1 /ax (x ,x 
1
)) has full rank and so forth. p p p+ 

For example the matrix 

• 
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* REMARKS. (i) The system (I.la) is strongly accessible, see [20], if R., the 
1 

supremal controllability distribution, equals_ TM. If R~ = TM we can skip the 

x 
1 

component in (3.10) p+ and (3.11). (ii) The decomposition given here is 

different from the cascade decomposition given in [19] (see also [9]). (iii) 

In some cases one can derive conditions for invertibility for the 'subsystems' 

with v . as input function and z. as output function; see [15] for a geo-
p-J J 

metric interpretation of invertibility. 

4. AN EXAMPLE; THE RIGID BODY 

We will illustrate the Triangular Decoupling Problem by a simple exam­

ple of controlling the rigid body. For a mathematical description of a 

control system on the rigid body together with various results on con­

trollability of the system we refer to [l,2,4,5]. The setting used here is 

similar as in [18]. Consider the system on S0(3) x JR.
3 

. 
R = S(w)R 

r•t~I [ 0 w3-w2] r•twl] ( 4. I) a2w2 = -w
3 

0 w
1 

a2w2 
+ . 

a3w3 w2-w 1 0 a3w
3 

,. 
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where R E SO 

inertial set 

of the rigid 

(3) represents the position of a riged body with respect to an 

f 
. 3 o axes in lR , w 

t body, (u
1

, u2 , u
3

) 

t 3 = (w 1 ,w2 
,w

3
) E lR i::. the angular velocity 

are the controls of the system and 

As output functions we consider 

r 
= H1 (t,w) = last row of the matrix R 

(4. 2) 

z2 = H2 (r,w) = second row of R, 

S0(3) ]R. 3 • 2 S0(3) X ]R. 3 • S2 s2. Similar [18] i.e. HI: X S and H2: X as in 

we will first solve a simpler namely t T.D.P., let r = (rl,r2,r3) be the 

first column of R. Then ( 4. 1) reduce to 

rl w3r2-w2r3 0 0 0 . 
r2 -w3r tw1 r3 0 0 0 . 
~3 w2rl-wlr2 0 0 0 

(4. 3) = + -I ul + u2 + u3 
WI blw2w3 al 0 0 . -1 
w2 b2wlw3 0 a2 0 . 

0 
-1 

w3 b3wlw2 0 a3 

-1 -1 -I 
(4. 2) where b 1 = al (a2-a3), b2 = a2 (a3-al) and b

3 = a3 (al-a2). Instead of 

we obtain: 

zl H1 (r ,w) = r3 
(4 .4) 

zl = H2 (r,w) = r2 

According to theorem 3.1 we only have to compute the supremal regular con­

trollabity distribution R; in Ker H1*. For this we first compute the su­

premal controlled invariant distribution Din Ker H1*. 
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Then, see [18], D = Span{X
1
,x

2
} where 

0 r2 
0 -rl 

(4. 5) x
1

(r,w) = 0 , x2(r,w) 0 

0 w2 
0 -wl 

0 

Now it is straighforward to show that Dis also a regular controllability 

distribution and therefore we obtain R; = D (see also [10]). Note that the 

dimension of R; is not fixed on S0(3) x ]R 
3 , but on the open submanifold of 

S0(3) x ]R 
3 where r 1r

2
w1w2 ~ 0 we certainly have that R; has fixed dimension 

and R; + KerH2* = T(S0(3) x ]R 
3
). Finally we note that the system (4.3) is 

strongly accessible, i.e. R~ = T(S0(3) x JR 
3
), see e.g [4,5], and thus 

* ~ 3 R
1 

+ KerH
1
* = T(S0(3) x ]R ). Therefore by theorem 3.1 the T.D.P. is solv-

able. The decoupling feedback law is given by", see (18], 

(4.6) == 

. al (l-b l )w2w3 

-a2(I+b2)wlw3 

0 

+ 

0 

0 

Finally we see that by the same coupe de grace as in [18] this feed­

back law (4.6) also solves the Triangular Decoupling Problem for the system 

(4.1,2) on the open and dense submanifold of S0(3) x ]R 
3 where 

r
1
r

2
w

1
w

2 
~ 0. 

5. CONCLUSION 

By generalizing the geometric approach to linear systems theory, we 

were able to solve the Triangular Decoupling Problem for nonlinear systems. 

Although it takes some more effort we think that several other 'geometric' 

synthesis problems can be formulated and solved - in a local fashion - by 

the same techniques used in this paper. 
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