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The convergence rate of multi-level algorithms applied to the convection

diffusion equation*) 

by 

P.M. de Zeeuw & E.J. van Asselt 

ABSTRACT 

We consider the solution of the convection-diffusion equation in two 

dimensions by various multi-level algorithms (MLAs). 

We study the convergence rate of the MI.As and the stability of the coarse

grid operators, depending on the choice of artificial viscosity at the dif

ferent levels. Four strategies are formulated and examined. A method to de

termine the convergence rate is described and applied to the MI.As, both in 

a problem with constant and in one with variable coef":icients. 

As relaxation procedures the 7-point ILU and Synnnetric Gauss Seidel 

(SGS) methods are used. 

KEY WORDS & PHRASES: artificial viscosity, convection-diffusion equation, 

multi-level algorithm, asymptotic stability, Galerkin 

approximation 

*) This report will be submitted for publication elsewhere, 





I. INTRODUCTION 

(I.I) 

We consider the convection-diffusion equation 

Lu 
£ 

au au 
- - £ b. u +b 1 (x,y) ax + b2(x,y) ay = f(x,y) 

2 for (x,y) E Q c IR , £ > O, with Dirichlet and Neumann boundary conditions 

on different parts of oQ. 
In case of a small diffusion coefficient£ in comparison with the mesh

width h, the stability of discretizations of (I.I) by central differences 

(CD) or the finite element method (FEM) can be improved by augmenting£ 

with an artificial viscosity of O(h). This rather crude way of stabilizing 

the discrete problem may form part of more subtle iterative methods for solv

ing (I.I) with small£. (See e.g. HEMKER [3]). 

In section 2 we introduce four strategies for choosing the artificial 

viscosity on the coarse grids in the multi-level algorithm (MLA) (cf. VAN 

ASSELT [I]). 

In section 3 we describe the method which is use~ to determine the con

vergence behaviour of the multi-level algorithm for these strategies. 

In section 4 we compare the convergence rates as measured by the method 

described in section 3. 

Finally, some conclusions are formulated in section 5. 

2. ARTIFICIAL VISCOSITY, STRATEGIES, STABILITY AND ASYMPTOTIC CONVERGENCE 

RATE 

In this section we introduce various strategies for choosing the coarse

grid operators in the MLA. We give a motivation for the choice of these 

strategies, and analyze their stability (cf. (2.14), (2.18),(2.19),(2.24)). 

Further we formulate some· important properties of the different strategies 

(cf.(2.25),(2.26),(2.27)). In the case of FEM discretization we also consider 

the Galerkin-coarse-grid-approximation. In this paper we only consider the 

FEM based on a uniform triangulation of Q with rectangular triangles (cf. 

Figure 2). The trial - and test-space is spanned by the set of piecewise

linear "hat-functions" qi •• which take the value I at x .. and Oat all other 
1J 1J 
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vertices of triangles. 

We consider the MLA (cf. HEMKER [4]) with l+ I levels O, ... ,l and uni

form square meshes on each level with meshwidths hO and hk = hk_ 1/2 for 

k = I , ••• ,l. 

Let {L~'l}k be 
c.. = o, ... ,l a sequence of discretizations of L. For the 

A 2 e: 
constant-coefficient equation we denote by L (w), w E lR the symbol (or 

E 

characteristic form) 
A kl 

of the continuous operator L. 
E 

By L ' (w), w 
E k l 

E Tk = [-n/~,n/~] 2 , we denote the symbol of the discrete 

operator L ' . 
E 

(2.1) DEFINITION. The e:-asymptotic 

e.i.wx is the quantity lim ji (w) I-
E: 4-0 E: 

stability of L with respect to the mode 
E 

(2.2) DEFINITION. The o-do~ain of L is the set of all w E m2 for which 
E: 

lim I£ (w)I > o > 0. 
E-t0 E 

(2. 3) DEFINITION. The E-asyrrrptotic stability of L k,l with respect to the mode 
iwx . . . Lk,l( ) I E e- is the quantity lim I E w • 

EW 

(2.4) DEFINITION. The a-domain of L~,l is the set of all w E Tk for which 

lim I ~k '.t ( w) I > o > 0 • 
dO E 

(2.5) DEFINITION. A strategy for coarse-grid operators is a set 

O I .t . l {Lo,l, ..• ,Ll,l}. {L ,L , .•. ,L , •.• } with L -E E E E E E 

(2.6) DEFINITION. Let S be a strategy for coarse-grid operators then Sis 

E-asyrrrptoticaUy stable with respec; to LE if for every oO> 0 there exists 

a o1 >Osuch that for all O $ k $ l we have o1-domain of L~,l ~ o0 - domain 

of LE n Tk. 

2.7. REMARK. In order to avoid useless residual transfers in the multi-level 

algorithm due to oscillating solutions we require that a strategy is E-asymp

totically stable with respect to L. Besides we need a relaxation-method for 
E 

which the smoothing factors on all grids are less than 1. The usual arguments 

show that these two requirements guarantee convergence of the MLA. 

Another approach would be to admit E-asymptotically unstable strategies 
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and to require that the relaxation-method is such that bad components in the 

residuals are sufficiently smoothed. This makes very strong demands upon the 

relaxation method. 

For fixed h0 and 

egies for coarse-grid 

(I.I) with artificial 

y > 0 (independent of £,k and l) we define four strat

operators. By L +al h we denote a discretization of 
l £ "'k' k 

viscosity Sk and meshwidth hk. 

(2.8) DEFINITION. Strategy 1, denoted by s1, is the set 

{ O 1 I l } . h Ll _ {LO,l 1 I,l Ll,l} h L, , ... ,L , •.. wit - , , ..• , were £ £ £ £ £ £ £ 

L al h-_ and lk = 
£+"'k, k 

k = 0, •.. ,l. 

(2.9) DEFI~ITION. Strategy 2, denoted by s 2 , is the set 

Lk,l = L l and 
£+8k,hk £ 

Bl 
l = y hl 

st = y 11{.+I , k = 0, ••• ,l- I • 

(2.10) DEFINITION. Strategy 3, denoted by s3 is the set 

L l and 
£+Sk,~ 

st= Y ~, k = O, ••• ,l. 

(2.11) DEFINITION. Strategy 4, denoted by s4 , is the set 

o I l l {L ,L , ... ,L , ••. } with L £ £ £ £ 

where 

where 
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1£.,£. - L 8£. h with l = y hf_ e: e:+ f..' £. £. 

L k,f.. - 1\c,k+l 
1k+I ,.l p k = £.-1, ••• ,0. e: e: k+ I ,k ' 

Cl\c,k+l and Pk+l,k are the restriction and the prolongation which are consis

tent with the FEM used.) 

(2.12) REMARK. If we consider a constant-coefficient problem and neglect the 

boundaries, then a coarse-grid operator constructed with the FEM according 

to s1, is identical with the Galerkin approximation of the fine-grid discre

tization (cf. 2.11). 

(2.13) REMARK. It follows from (2.8) - (2.10) that 

for lim .l lim .l 
SI : BO/hk = r/2 = o. 

.l-+«> .l--t«> 

for S2: 
.l 

Rk/hk ~ y/2 uniformly for all k,.l. 

In (2.14), (2. 18) and (2.24) we will prove respectively that s1 and s4 are 

not e:-asymptotically stable and s2 and s3 are. Further we will point out 

that the convergence rate of the MLA with s2 is better than with s3 . 

(2.14) THEOREM. Consider the CD- or FEM- discretizations of (I.I) with arti

ficial viscosity B~ and constant coefficients, then s1 is not e:-asymptotical

ly stable with respect to L. e: 

PROOF. We give the proof only for the CD-discretizations; the proof for the 

FEM-discretizations is similar. 

The CD-discretization of (I.I) with artificial viscosity st and constant 
2 2 coefficients b 1 and b2, b1 +b2 = I, reads 



(2.15) L +Q.t h u -
E µk' k 

Its characteristic form reads: 

(2. I 6) -
L=--+ 0 l h (w) = 

L µk' k 

~ 
f. . . 
1,J 

The characteristic form of L reads: 
E 

-(2.17) L (E) 
E 

~ 
u. . + 

1 ,J+ I 

hence the o0--domain of LE is the set of all w E JR 2 for which 

lb 1w1+b 2w2 1> o0 >0. We have to show that a o0 > 0 exists such that for all 

o 1 > 0 there exist k, l E 2Z, 0 s k s l, such that for an w E JR.2 with 

w E (o 0-domain of LE) n Tk we have z; i o 1- domain of L Q.t . . 
E+µk,hk 

For that purpose we proceed as follows. 

Take o0 = 0. I n/h0 and let o1 > 0 be arbitrary. 

Take k = 0 and .t > log(4y/h0o1), then for either 

.t = 4y/(h02 ) < o1 hold. 

5 
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Hence s 1 is not £-asymptotically stable with respect to LE.QED. 

This leads us to 

(2.18) COROLLARY. Consider LE with constant coefficients b 1 and b2 , then s4 
is not £-asymptotically stable with respect to L. 

£ 

PROOF. The proof follows immediately from (2.12) and (2.14). QED. 

(2.19) THEOREM. Consider the CD-discretizations of (I.I) with artificial vis

cosity S~ and constant coefficients. Let S be a strategy with S~/hk ~ C > O 

uniformly for aU k,l(k :$;f) E Zl, then S is £-asymptotically stable. 

PROOF. Again we use (2.15)-(2.17). 

We have to proof: V o0 > 0 3 o 1 > 0 V k, l O :$; k :$; l => o0 - domain of 

LE n Tk c o 1 - domain of LE+S~, hk 
1/2 Take o1 - min(l/2,2C/5) o0• In the case o0 > 2 ~/~ the inclusion is triv-

ially satisfied because o0 - domain of LE n Tk = 0. 
l 

If O < o0 :$; 2 2 ~ /hk then w E o0 - domain of LE n Tk implies 

Th 1 . . b2 b2 e norma 1zat1on 1 + 2 = I and the inequality jsinx-xl:$;1x3 j/4 for all 

x E 1R yield 

(2.20) 

We distinguish the two complementary cases: 

[

(i) lw 1hkl 3 :$; o0hk and lw2~1 3 :$; o0~ 

(ii) lw1~l3 > oOhk or j,.u2hkl3 > oOhk. 

Because of (2.16) and (2.20) case (i) implies: 

(2.21) 



To complete the proof we now consider case (ii). It follows from (2.I6) 
,e_ 

and Sk/1\ ~ C that 

(2.22) limjL +o,e_ h (w)j ~ 2C(I-cos WI1\ + I - cos W21\)/~, 
E:-1-0 e: µk' k 

! 
and from condition (ii) and O < o0hk ~ 2 2 ~ it follows that the right-hand-

side of (2.22) is greater than or equal to 

(2.23) limj L +o,e_ h_(w) I > 2C ool 5 ~ o I > o. 
e: -1-0 e: µk' -1< 

7 

Both (2.2I) and (2.23) hold uniformly for all k, l so Sis e:-asymptotically 

stable with respect to L. e: 
QED. 

(2. 24) COROLLARY. Consider the CD-discretizations of (1. I) with artificial 

viscosity S~ and constant coefficients, then s2 and s3 are e:-asymptotically 

stable with respect to L. 
e: 

PROOF. The proof follows innnediately from (2.I3) and (2.I9). QED. 

It is obvious that the e:-asymptotic stability of the operators belonging to 

s2 is larger than in case of SI. Moreover for decreasing y the smoothing 

factors for SI become worse (cf. Table 2). We formulate this in the following 

(2.25) SUPPOSITION. For a fixed number of levels the set of y - values for 

which the MLA with s2 converges, is larger than that for which the MLA with 

SI converges. 

In case of a two-level algorithm (TLA), l = I, a two-level analysis 

shows that the asymptotic rate of convergence for SI or s2, for which the 

artificial viscosity is equal on both levels is better than for s3 , where 

the artificial viscosity corresponds to the meshwidth. (cf. VANASSELT [IJ). 

Hence we consider in SI an equal artificial viscosity on all levels. For this 

strategy however on coarser grids stability problems may occur (cf. 2.I4). 
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s3 is E-asym.ptotically stable (cf. 2.24), but the two-level analysis indicates 

that the convergence rate is slower. s2 is an intermediate strategy where on 

level ,f and .f-1 the artificial viscosity is the same, and it is also E-asym.p

totically stable (cf. 2.24). These arguments lead to the following 

(2.26) SUPPOSITION. s2 combines the rapid convergence rate of s 1 with the 

stability of s3 • 

At level ,f the discrete operators .L a,e. h using S 1, s2 , s3 are equal. 
E+µ,e_•' ,f 

At level .f-1 the discrete operators L ,f h using s1 \ s2 are equal (S3 is 
:+S,e.-1 ' f-1 

not), and the relative order of consistency of the s 1 and s2 operators on 

level ,f and .f-1 is the same and higher than that of s3 • 

Further consider the part of T,e. where the smoothing effect of the relaxation

method applied to s2 and s3 is the same as in case of s1• Fo~ s2 this part 

is larger than for s3 (cf. Figure I). 

-n 1T TT 

h,e. _ 2 

Figure 1. Parts of T,e. where for s2 and s3 the smoothing-effect is the same 

as for S 1• 

This leads us to formulate the following 

(2.27) SUPPOSITION. For a finite number of levels and y sufficiently large 

the difference between the asymptotic rate of convergence of the MLAs using 

s1 and s2 is smaller than that between s2 and s3 • 
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The properties stated in (2.14), (2.18) and (2.24) - (2.27) will be confirmed 

by numerical experiments in section 4. 

3. NUMERICAL APPROXIMATION OF THE CONVERGENCE RATE 

In this section we give a description of the method that 1.s used to 

determine the asymptotic rate of convergence of the MLA. Let 

(3. I) ¾ vh = fh be a discretization of (1. 1). The MLA to solve (3.1) 

can be described as a defect-correction-process (cf. HEMKER [4]: 

(3. 2) [
-vh (O) given start 

--(i+I -(i) 
vh = ~ vh 

approximation 

1.=0,l, ... 

-1 
with amplification-matrix~= Ih - Bh ¾· Ih is the identity-matrix, and 

B~ 1 is an approximate inverse of¾• determined by coarse-grid- and smoothing 

operators, prolongation and restriction. We suppose¾ and Bh to be non

singular. For the error e~i) = vh, i = 0,1, ... the following relation holds: 

-(i+l) -(i) 
eh =~eh . 

The convergence behaviour of the MLA 1.s considered in the following way: 

(3.3) DEFINITION. The asymptotic rate of convergence of the MLA (3.2) is 
10 - log p (:t:-l ) where p (:r:-l ) = max I 11., I is the spectral-radius of 1~ • 11.. are the 

~ --h j J . ~! J 
eigenvalues of 111. 

(3. 4) THEOREM. 

sup lim ( j I ~x 11 / 11 x 11 ) 1 /k = P (:r:-l ) , with 11 • II an arbitrary 
x#O k~ --h 

norm. 

PROOF. See STOER, BULIRSCH [6], Satz (8.2.4).QED. 

Because of (3. 4) we compute an approximation Pm,k (¾, e~) of P (Mh) defined 

by 
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(3.5) 

the Euclidean norm. Note that 

(3.6) 

In numerical computations vt,j = m, ••• ,m + k are obtained by the iterative 

method under consideration. When for increasing m and k, 11 e} 11 2 reaches 
Il • • 

values near the square root of the machine accuracy, we replace ei by e~,n 

(3. 7) - (j) 
n -J (n» I) and replace e - eh h,n 

vJ 
h 

by VJ : 
h,n 

(3. 8) vJ vh + 
-j 

- e h,n h,n 

Thus II ej+1 
h,n II 2 1 II e J h,n 112 = llet+ 1 11 2 1 11 ej II 2 , and as 

(3.9) 

in this way values of Pm,k(~,eg) can be computed for large m and k. 

By this method ultimately the eigenfunctions of~ corresponding to non

dominant eigenvalues will decrease exponentially relative to the dominant 

eigenfunctions. Note that for small m and k Pm,k depends strongly on fh while 

p does not. 

4. NUMERICAL RESULTS 

In this section we give the results of numerical experiments to compare 

the strategies s 1,s2,s3 and s4 and to verify the properties stated in (2.14), 

(2.18), and (2.24) -(2.27). We take three testproblems. Testproblem I with 

constant coefficients closely resembles the problem analysed by two-level 

analysis in VANASSELT [I]. Testproblem 2 has variable coefficients. Although 

a strict application of Fourier-analysis-arguments does not hold for these 
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variable-coefficients-problems, the experiments for the latter testproblem 

show that globally the same properties hold as for the constant-coefficients

case. For the second problem we also show to what extent the strategies 

s 1, ••• ,s4 are better than relaxation alone (i.e. without coarse-grid-correc

tion). 

Testproblem 3 differs from testproblem 1 by discretization (FEM), relaxation 

(ILU) and number of levels. 

Testproblem 1. We consider the convection-diffusion equation 

( 4. 1) 
a 

-(£+yh) ~u + - u = 0 on Q = [0,1] x [-1,1], 
ay 

£ = 1/16 (cf. Figure 2). 

04Q 

( 0, - I ) .--------....-------.----.( 0, I ) 

! X i 

-

@ 
y ,J 

' 
o1rii . oil 

convection- (ih,jh) 
direction 

( I , - I) ( I , I ) 

o2rii 

Figure 2. The domain Q 

The boundary conditions are: 

I 

(4. 2) 
6 

- 10 (x-1/2), 

- 1 

au I 
an o2 Q 

= au I 
an 03 Q 

= 

x < 1 / 2 - 1 0 - 6 ; 

1/2 -10-6 ~ X ~ 1/2 + 10-6 

X > 1/2 + 10-6 ; 

= o. 

Equation (4.1) is discretized by CD on levels k = 0, •.• , £. = 3 with meshsize 

~ = 1/2k+I. 
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The Neumann boundary conditions are discretized as follows: 

cS/t u(I ,y) u( 1-~,y) = 0, 

cS3Q u(x,I) - u(~, 1-hk) = 0, 

cS4Q u(0,y) - u(~,y) = 0, k = 0, ... , l = 3. 

For different values of y the discretized equation is solved with the W-cycle 

MLA (i.e. the application of 2 multi-level-iteration steps to approximate 

the solution of the coarse-grid equation). 

We perform one pre- and one post-relaxation-step consisting of SGS

relaxation in they-direction. We use 7-point prolongation and 7-point re

striction (cf. HEMKER [5],WESSELING [7]). 

A random initial approximation of the solution is used. The values for 

m and kin (3.9) are 30 and 10 respectively. 

Testproblem 2. We consider the convection-diffusion equation: 

(4.3) 
cl cl -(E+yh) Au+ b u + b - u = 0, on Q = [0,1] x [-1,1], 

I clx 2 cly 

E = 
2 = I/ I 6, b I = y ( I -x ) , b 2 = - x(l-y2)(cf. Figure 3). 

cS4Q 
(-I, I) ____________ _,( I, I) 

convection direction 
. 83Q 

(ih,jh) 
y ,J 

(-1 ,0) (I, 0) 
x,i 6 Q 

2 

Figure 3. The domain of rt. 

The boundary conditions are 

(4. 4) ul - I+ tanh(I0+20x), 
6 IQ 

clu I 
cln 64 Q 



Equations (4.3) and (4.4) are discretized by the FEM on levels k = 0, ••• , 

l = 4 with mesh-size hk = 1/2k. 

13 

For different values of y, and s1-s4 the discretized equation is solved with 

the W - cycle MLA. We perform one pre - and one post-relaxation-step by means 

of 7 point-·ILU-relaxation, (cf. WESSELING AND SONNEVELD [8]). The ILU-decom

position is ordered lexicographically (cf. Figure 3). Again we use 7-point 

prolongation and 7-point restriction (that are consistent with the FEM dis

cretization), and a random initial approximation. In (3.9) m and k are again 

30 and 10. 

Testproblem 3. For l = 4,5,6 we consider (4. 1) and (4.2) discretized by the 

FEM on levels k = 0, ... , l, with mesh-size hk = (1 /2/+l, y = I /2. 

The discretized equation is solved with the W-cycle MLA. We perform one 

pre- and post-relaxation-step by means of 7-point-ILU relaxation (on the coar

sest level we do not solve directly, but perform relaxation-sweeps). The LU

decomposition is ordered lexicographically (cf. Figure 3). We use 7-point 

prolongation and 7-point restriction. A random initial approximation of the 

solution is used. The values form and kin (3.9) are 20 and 10 respectively. 

Figures 4 and 5 show the properties stated in (2.25)-(2.27) for test

problem I and 2 respectively. Figure 5 also shows that all strategies s1 -

s4 are better than relaxations without coarse-grid-corrections. In table 2 

for s 1,s 2 and s3 the smoothing factors of SGS are given at different levels, 
2 

and for different y. We notice that for logy> 0 the big difference in the 

asymptotic rate of convergence of s2 and s3 (cf. Figure 4) is mainly caused 

by the order of consistency and for a small part by the relaxation method. 

In order to verify (2. 14),(2. 18) and (2.24) we take testproblem 3. 

Table I reports the convergence rates as measured (cf. 3.3). Note that s 1 

and s4 show similar stability- and convergence-behaviour (cf. 2.12). 

(4.5) REMARK. With respect to (2.7) we notice that in many cases a decreasing 

stability coincides with a worsening smoothing factor (cf. Table 2). 
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Figure 4. Asymptotic convergence rates for testproblem I. Only the part 

of the figure with positive asymptotic convergence rate is drawn. 
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Figure 5. Asymptotic convergence rates for testproblem 2. The graph depicted 

by"+" represents two !LU-relaxation-sweeps in one iteration step without 

coarse-grid correction. Only the part of the figure with positive asymptotic 

convergence rate is drawn. 



-· 
strategy 

level h,e_ 
,e SI s2 s3 I s4 

4 1/32 2.01 I. 78 I. 61 2.01 

5 1/64 <<0 I. 70 I. 33 <<0 

6 1/128 <<0 I. 17 0.87 <<0 

Table I. Convergence rates for testproblem 3, s1 - s4 , and 

increasing L 

I~ SI s2 s3 ~ SI s2 

3 0.36 0.36 0.36 3 0.24 0.24 

2 4.84 4.84 0.36 2 0.80 0.80 

I I 86. 4.84 0.36 I 15625. 0.80 

2 
log y - I. 5 

2 
log y 1.0 

I~ SI s2 s3 >: SI s2 

3 0.23 0.23 0.23 3 0.24 0.24 

2 0.36 0.36 0.23 2 0.24 0.24 

I 4.84 0.36 0.23 I 0.80 0.24 

2 logy 0.5 
2 
logy 0.0 

1;\ SI s2 s3 [\ SI s2 

3 0.24 0.24 0.24 3 0,25 0.25 

2 0.23 0.23 0.24 2 0.24 0,24 

I 0,36 0.23 0.24 I 0.24 0.24 -----
2 
logy 0.5 2 log y 1.0 

s3 

0.24 

0.24 

0.24 

s3 

0.24 

0.24 

0.24 

s3 

0.25 

0.25 

0.25 

Table 2. Smoothing-factors for one SGS sweep, testproblem I, different y, 

levels and strategies (local mode analysis, cf. BRANDT [2]) 

16 
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5. CONCLUSIONS 

In order to solve the convection-diffusion equation in two dimensions 

by a multi-level algorithm (MLA), we consider 4 strategies for coarse-grid 

operators: 

s 1 : on each coarse grid the same artificial viscosity as on the 

finest grid, 

s3 on each coarse grid the artificial viscosity corresponding to 

the meshwidth, 

s2 an intermediate choice, with the same artificial viscosity on 

the two finest grids, 

s4 Galerkin approximation for the coarse-grid operators. 

In case of s 1 and s4 the artificial viscosity may become too small on 

coarse grids and hence stability problems and bad smoothing-factors may occur. 

s 1 and s4 are not E:-asymptotically stable, s2 and s3 are. (cf. (2.6),(2.14), 

(2.18),(2.24), Table I). 

If the finest-~rid-artificial viscosity is sufficiently large the asymp

totic rate of convergence of the MLA according to s2 is far better than that 

of s3 • (cf. (2.26), Figure 4,5). 

ACKNOWLEDGEMENTS 

The authors like to thank Dr. P.W. Hemker (M.C., Amsterdam) and 

Prof. Dr. Ir. P. Wesseling (Department of Mathematics, Delft University) 

for their constructive comments and careful reading of the manuscript. 

REFERENCES 

[!] ASSELT, E.J. VAN, The rrrulti-grid method end artificial viscosity. l.ful

tigrid Methods. Proceedings of the Conference held at Koln-Porz, 

November 23-27, 1981 (W. Hackbusch, U. Trottenberg, eds.) Lecture 

Notes in Mathematics, 960. Springer-Verlag, Berlin, ( 1982). 

[2] BRANDT, A., Multi-level adaptive solutions to boundary-value problems~ 

Mathematics of computation, volume 31, number 138, April 1979, 

333-390. 



18 

[3] HEMKER, P.W., Mixed defect correction iteration for the accurate solution 

of the convection diffusion equation. Multigrid Methods. Procee

dings of the conference held at Koln-Porz, November 23-27, 1981 

(W. Hackbusch, U. Trottenberg, eds.). Lecture Notes in Mathematics, 

960. Springer-Verlag, Berlin, (1982). 

[4] HEMKER, P.W., Introduction to multigrid methods, Nieuw archief voor wis

kunde (3) , XXIX ( I 98 I ) , 71-1 0 I • 

[5] HEMKER, P.W., Fourier analysis of gridfunctions, prolongations and re

strictions, Report :NW 93/80, Mathematical Centre, Amsterdam (1980). 

[6] STOER, J. & R. BULIRSCH., Einfuhrung in die Numerische Mathematik_ II, 

Springer-Verlag, (1973). 

[7] WESSELING, P., Theoretical and practical aspects of a multigrid method, 

SIAM J. On Sc. and Stat. Comp., to appear, December IQ82. 

[8] WESSELING, l?. & P. SONNEVELD., Numerical experiments with a multiple grid 

and a preconditioned Lanczos type method. In: Approximation methods 

for Navier-Stokes problems, Proceedings, Paderborn 1979 (R.Rautmann, 

ed.), Lecture Notes in Math. 771, 543-562, Springer-Verlag, Berlin 

(1980). 





36462 


