

kruislaan 4131098 SJ amsterdam

Printed at the Mathematical Centre, 413 Kruislaan, Amsterdam.
The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.w.O.).

The convergence rate of multi-level algorithms applied to the convectiondiffusion equation *)
by

P.M. de Zeeuw \& E.J. van Asselt

ABSTRACT

We consider the solution of the convection-diffusion equation in two dimensions by various multi-level algorithms (MLAs).

We study the convergence rate of the MLAs and the stability of the coarsegrid operators, depending on the choice of artificial viscosity at the different levels. Four strategies are formulated and examined. A method to determine the convergence rate is described and applied to the MLAs, both in a problem with constant and in one with variable coefficients.

As relaxation procedures the 7-point ILU and Symmetric Gauss Seidel (SGS) methods are used.

KEY WORDS \& PHRASES: artificial viscosity, convection-diffusion equation, multi-level algorithm, asymptotic stability, Galerkin approximation
*) This report will be submitted for publication elsewhere.

1. INTRODUCTION

We consider the convection-diffusion equation
(1.1) $\quad L_{\varepsilon} u \equiv-\varepsilon \Delta u+b_{1}(x, y) \frac{\partial u}{\partial x}+b_{2}(x, y) \frac{\partial u}{\partial y}=f(x, y)$
for $(\mathrm{x}, \mathrm{y}) \in \Omega \subset \mathbb{R}^{2}, \varepsilon>0$, with Dirichlet and Neumann boundary conditions on different parts of $\delta \Omega$.

In case of a small diffusion coefficient ε in comparison with the meshwidth h, the stability of discretizations of (1.1) by central differences (CD) or the finite element method (FEM) can be improved by augmenting ε with an artificial viscosity of $0(h)$. This rather crude way of stabilizing the discrete problem may form part of more subtle iterative methods for solving (1.1) with small ε. (See e.g. HEMKER [3]).

In section 2 we introduce four strategies for choosing the artificial viscosity on the coarse grids in the multi-level algorithm (MLA) (cf. VAN ASSELT [1]).

In section 3 we describe the method which is used to determine the convergence behaviour of the multi-level algorithm for these strategies.

In section 4 we compare the convergence rates as measured by the method described in section 3.

Finally, some conclusions are formulated in section 5.
2. ARTIFICIAL VISCOSITY, STRATEGIES, STABILITY AND ASYMPTOTIC CONVERGENCE RATE

In this section we introduce various strategies for choosing the coarsegrid operators in the MLA. We give a motivation for the choice of these strategies, and analyze their stability (cf. (2.14), (2.18), (2.19), (2.24)). Further we formulate some important properties of the different strategies (cf. (2.25), (2.26), (2.27)). In the case of FEM discretization we also consider the Galerkin-coarse-grid-approximation. In this paper we only consider the FEM based on a uniform triangulation of Ω with rectangular triangles (cf. Figure 2). The trial - and test-space is spanned by the set of piecewiselinear "hat-functions" $\phi_{i j}$ which take the value 1 at $x_{i j}$ and 0 at all other
vertices of triangles.
We consider the MLA (cf. HEMKER [4]) with $\ell+1$ levels : $0, \ldots, \ell$ and uniform square meshes on each leve1 with meshwidths h_{0} and $h_{k}=h_{k-1} / 2$ for $\mathrm{k}=1, \ldots, \ell$.

Let $\left\{L_{\varepsilon}^{k,} \ell_{k}=0, \ldots, \ell\right.$ be a sequence of discretizations of L_{ε}. For the constant-coefficient equation we denote by $\hat{\mathrm{L}}_{\varepsilon}(\omega), \omega \in \mathbb{R}^{2}$ the symbol (or characteristic form) of the continuous operator L_{ε}.
By $\hat{\mathrm{L}}_{\varepsilon}{ }^{\mathrm{k}, \ell}(\omega)$, $\omega \in \mathrm{T}_{\mathrm{k}} \equiv\left[-\pi / \mathrm{h}_{\mathrm{k}}, \pi / \mathrm{h}_{\mathrm{k}}\right]^{2}$, we denote the symbol of the discrete operator $\mathrm{L}_{\varepsilon}^{\mathrm{k}, \ell}$.
(2.1) DEFINITION. The ε-asymptotic stability of L_{ε} with respect to the mode $\overline{e^{\underline{i} \omega X}}$ is the quantity $\lim _{\varepsilon \downarrow 0}\left|\hat{\mathrm{~L}}_{\varepsilon}(\omega)\right|$.
(2.2) DEFINITION. The δ-domain of L_{ε} is the set of all $\omega \in \mathbb{R}^{2}$ for which $\lim _{\varepsilon \downarrow 0}\left|\hat{L}_{\varepsilon}(\omega)\right|>\delta>0$.
(2.3) DEFINITION. The ε-asymptotic stability of $\mathrm{L}_{\varepsilon}^{\mathrm{k}, \ell}$ with respect to the mode $\overline{e^{\underline{i} \omega \mathrm{x}}}$ is the quantity $\lim _{\varepsilon \downarrow 0}\left|\mathrm{~L}_{\varepsilon}^{\mathrm{k}, \ell}(\omega)\right|$.
(2.4) DEFINITION. The δ-domain of $\mathrm{L}_{\varepsilon}^{\mathrm{k}, \ell}$ is the set of all $\omega \in \mathrm{T}_{\mathrm{k}}$ for which

$$
\lim _{\varepsilon \ngtr 0}\left|\hat{\mathrm{~L}}_{\varepsilon}^{\mathrm{k}, \ell}(\omega)\right|>\delta>0 .
$$

(2.5) DEFINITION. A strategy for coarse-grid operators is a set $\left\{\mathrm{L}_{\varepsilon}^{0}, \mathrm{~L}_{\varepsilon}^{1}, \ldots, \mathrm{~L}_{\varepsilon}^{\ell}, \ldots\right\}$ with $\mathrm{L}_{\varepsilon}^{\ell} \equiv\left\{\mathrm{L}_{\varepsilon}^{0, \ell}, \ldots, \mathrm{~L}_{\varepsilon}^{\ell, \ell}\right\}$.
(2.6) DEFINITION. Let S be a strategy for coarse-grid operators then S is ε-asymptotically stable with respec; to L_{ε} if for every $\delta_{0}>0$ there exists a $\delta_{1}>0$ such that for all $0 \leq k \leq l$ we have δ_{1}-domain of $\mathrm{L}_{\varepsilon}^{\mathrm{k}, \ell} \supset \delta_{0}$ - domain of $L_{\varepsilon} \cap T_{k}$.
2.7. REMARK. In order to avoid useless residual transfers in the multi-level algorithm due to oscillating solutions we require that a strategy is ε-asymptotically stable with respect to L_{ε}. Besides we need a relaxation-method for which the smoothing factors on all grids are less than 1 . The usual arguments show that these two requirements guarantee convergence of the MLA.

Another approach would be to admit e-asymptotically unstable strategies
and to require that the relaxation-method is such that bad components in the residuals are sufficiently smoothed. This makes very strong demands upon the relaxation method.

For fixed h_{0} and $\gamma>0$ (independent of ε, k and ℓ) we define four strategies for coarse-grid operators. By $L_{\varepsilon+\beta_{k}, h_{k}}$ we denote a discretization of (1.1) with artificial viscosity β_{k}^{ℓ} and meshwidth h_{k}.
(2.8) DEFINITION. Strategy 1 , denoted by S_{1}, is the set $\left\{L_{\varepsilon}^{0}, L_{\varepsilon}^{1}, \ldots, L_{\varepsilon}^{\ell}, \ldots\right\}$ with $L_{\varepsilon}^{\ell}=\left\{L_{\varepsilon}^{0, \ell}, L_{\varepsilon}^{1, \ell}, \ldots, L_{\varepsilon}^{\ell, \ell}\right\}$ where

$$
L_{\varepsilon}^{k, \ell}=L_{\varepsilon+\beta_{k,}^{\ell} \hat{h}_{k}} \text { and } \beta_{k}^{\ell}=\gamma h_{\ell}, \quad k=0, \ldots, \ell .
$$

(2.9) DEFINITION. Strategy 2, denoted by S_{2}, is the set

$$
\begin{aligned}
& \left\{L_{\varepsilon}^{0}, L_{\varepsilon}^{1}, \ldots, L_{\varepsilon}^{\ell}, \ldots\right\} \text { with } L_{\varepsilon}^{\ell}=\left\{L_{\varepsilon}^{0, \ell}, L_{\varepsilon}^{1, \ell}, \ldots, L_{\varepsilon}^{\ell, \ell}\right\} \text { where }
\end{aligned} \begin{aligned}
& L_{\varepsilon}^{k}, \ell=L_{\varepsilon+\beta_{k}^{\ell}, h_{k}} \text { and } \\
& \left\{\begin{array}{l}
\beta_{\ell}^{\ell}=\gamma h_{\ell} \\
\beta_{k}^{\ell}=\gamma h_{k+1}, \quad k=0, \ldots, \ell-1 .
\end{array}\right.
\end{aligned}
$$

(2.10) DEFINITION. Strategy 3, denoted by S_{3} is the set

$$
\begin{aligned}
& \left\{L_{\varepsilon}^{0}, L_{\varepsilon}^{1}, \ldots, L_{\varepsilon}^{\ell}, \ldots\right\} \text { with } L_{\varepsilon}^{\ell}=\left\{L_{\varepsilon}^{0, \ell}, L_{\varepsilon}^{1, \ell}, \ldots . L_{\varepsilon}^{\ell, \ell}\right\} \text { where } \\
& L_{\varepsilon}^{k, \ell}=L_{\varepsilon+\beta_{k}}^{\ell}, h_{k} \text { and } \\
& \beta_{k}^{\ell}=\gamma h_{k}, \quad k=0, \ldots, \ell .
\end{aligned}
$$

(2.11) DEFINITION. Strategy 4, denoted by S_{4}, is the set

$$
\left\{\mathrm{L}_{\varepsilon}^{0}, \mathrm{~L}_{\varepsilon}^{1}, \ldots, \mathrm{~L}_{\varepsilon}^{\ell}, \ldots\right\} \text { with } \mathrm{L}_{\varepsilon}^{\ell}=\left\{\mathrm{L}_{\varepsilon}^{0, \ell}, \mathrm{~L}_{\varepsilon}^{1, \ell}, \ldots, \mathrm{~L}_{\varepsilon}^{\ell, \ell}\right\} \text { where }
$$

$$
\left\{\begin{array}{l}
L_{\varepsilon}^{\ell, \ell} \equiv L_{\varepsilon+\beta_{l}^{\ell}, h_{l}}^{\text {with } \beta_{\ell}^{\ell}=\gamma h_{\ell}} \\
L_{\varepsilon}^{k, \ell} \equiv R_{k, k+1} L_{\varepsilon}^{k+1, \ell} P_{k+1, k}, \quad k=\ell-1, \ldots, 0
\end{array}\right.
$$

($R_{k, k+1}$ and $P_{k+1, k}$ are the restriction and the prolongation which are consistent with the FEM used.)
(2.12) REMARK. If we consider a constant-coefficient problem and neglect the boundaries, then a coarse-grid operator constructed with the FEM according to S_{1}, is identical with the Galerkin approximation of the fine-grid discretization (cf. 2.11).
(2.13) REMARK. It follows from (2.8) - (2.10) that

$$
\begin{aligned}
& \text { for } S_{1}: \lim _{\ell \rightarrow \infty} \beta_{0}^{\ell} / h_{k}=\lim _{\ell \rightarrow \infty} r / 2^{\ell}=0 \\
& \text { for } S_{2}: \beta_{k}^{\ell} / h_{k} \geq \gamma / 2 \text { uniformly for all } k, \ell . \\
& \text { for } S_{3}: \beta_{k}^{\ell} / h_{k}=\gamma \text { uniformly for all } k, \ell .
\end{aligned}
$$

In (2.14), (2.18) and (2.24) we will prove respectively that S_{1} and S_{4} are not ε-asymptotically stable and S_{2} and S_{3} are. Further we will point out that the convergence rate of the MLA with S_{2} is better than with S_{3}.
(2.14) THEOREM. Consider the CD- or FEM- discretizations of (1.1) with artificial viscosity β_{k}^{ℓ} and constant coefficients, then S_{1} is not ε-asymptotically stable with respect to L_{ε}.

PROOF. We give the proof only for the CD-discretizations; the proof for the FEM-discretizations is similar.

The CD-discretization of (1.1) with artificial viscosity β_{k}^{ℓ} and constant coefficients b_{1} and $b_{2}, b_{1}^{2}+b_{2}^{2}=1$, reads
(2.15)

$$
\begin{aligned}
& L_{\varepsilon+\beta_{k}^{l}, h_{k}^{u}}^{u} \equiv \\
& \left(-\frac{\varepsilon+\beta_{k}^{l}}{h_{k}^{2}}-\frac{b_{2}}{2 h_{k}}\right) u_{i, j-1}^{h_{k}}+\left(-\frac{\varepsilon+\beta_{k}^{l}}{h_{k}^{2}}+\frac{b_{2}}{2 h_{k}}\right) u_{i, j+1}^{h_{k}}+ \\
& \left(-\frac{\varepsilon+\beta_{k}^{l}}{h_{k}^{2}}-\frac{b_{1}}{2 h_{k}}\right) u_{i-1, j}^{h_{k}}+\left(-\frac{\varepsilon+\beta_{k}^{l}}{h_{k}^{2}}+\frac{b_{1}}{2 h_{k}}\right) u_{i+1, j}^{h_{k}}+ \\
& 4\left(\frac{\varepsilon+\beta_{k}^{l}}{n_{k}^{2}}\right) u_{i, j}^{h_{k}}=f_{i, j}^{h_{k}} .
\end{aligned}
$$

Its characteristic form reads:
(2.16)

$$
\begin{aligned}
& \hat{L}_{\varepsilon+\beta_{k}}^{\ell}, h_{k}(\omega)= \\
& -2\left(\varepsilon+\beta_{k}^{\ell}\right)\left(\cos \omega_{1} h_{k}+\cos \omega_{2} h_{k}-2\right) / h_{k}^{2} \\
& +\underline{i}\left(b_{1} \sin \omega_{1} h_{k}+b_{2} \sin \omega_{2} h_{k}\right) / h_{k}
\end{aligned}
$$

The characteristic form of L_{ε} reads:

$$
\begin{equation*}
\hat{L}_{\varepsilon}(\varepsilon)=\varepsilon\left(\omega_{1}^{2}+\omega_{2}^{2}\right)+\underline{i}\left(b_{1} \omega_{1}+b_{2} \omega_{2}\right), \tag{2.17}
\end{equation*}
$$

hence the δ_{0}-domain of L_{ε} is the set of all $\omega \in \mathbb{R}^{2}$ for which $\left|\mathrm{b}_{1} \omega_{1}+\mathrm{b}_{2} \omega_{2}\right|>\delta_{0}>0$. We have to show that $\mathrm{a} \delta_{0}>0$ exists such that for all $\delta_{1}>0$ there exist $k, \ell \in \mathbb{Z}, 0 \leq k \leq \ell$, such that for an $\tilde{\omega} \in \mathbb{R}^{2}$ with $\widetilde{\omega} \in\left(\delta_{0}\right.$-domain of $\left.L_{\varepsilon}\right) \cap T_{k}$ we have $\tilde{\omega} \notin \delta_{1}$ - domain of $L_{\varepsilon}+\beta_{k}, h_{k}$. For that purpose we proceed as follows.

Take $\delta_{0}=0.1 \pi / h_{0}$ and let $\delta_{1}>0$ be arbitrary.
Take $k=0$ and $\ell>\log \left(4 \gamma / h_{0} \delta_{1}\right)$, then for either

$$
\begin{aligned}
& \tilde{\omega}=\left(\pi / h_{0}, 0\right) \in T_{0} \text { or } \tilde{\omega}=\left(0, \pi / h_{0}\right) \in T_{0} \text { both }\left|\mathrm{b}_{1} \tilde{\omega}_{1}+\mathrm{b}_{2} \tilde{\omega}_{2}\right|>\delta_{0} \text { and } \\
& \begin{array}{l}
\lim \\
\varepsilon \downarrow 0
\end{array}\left|\hat{L}_{\varepsilon+\beta_{0}}^{\ell}, h_{0}(\tilde{\omega})\right|=4 \gamma /\left(h_{0} 2^{\ell}\right)<\delta_{1} \text { hold. }
\end{aligned}
$$

Hence S_{1} is not ε-asymptotically stable with respect to L_{ε}. QED.
This leads us to
(2.18) COROLLARY. Consider L_{ε} with constant coefficients b_{1} and b_{2}, then S_{4} is not ε-asymptotically stable with respect to L_{ε}.

PROOF. The proof follows immediately from (2.12) and (2.14). QED.
(2.19) THEOREM. Consider the CD-discretizations of (1.1) with artificial viscosity β_{k}^{l} and constant coefficients. Let S be a strategy with $\beta_{k}^{\ell} / h_{k} \geq C>0$ uniformly for $a l l \mathrm{k}, \ell(\mathrm{k} \leq \ell) \in \mathbb{Z}$, then S is ε-asymptotically stable.

PROOF. Again we use (2.15)-(2.17).
We have to proof: $\forall \delta_{0}>0 \exists \delta_{1}>0 \forall k$, $\ell 0 \leq k \leq \ell \Rightarrow \delta_{0}$-domain of $\mathrm{L}_{\varepsilon} \cap \mathrm{T}_{\mathrm{k}} \subset \delta_{1}$-domain of $\mathrm{L}_{\varepsilon+\beta_{k}^{l}, \mathrm{~h}_{\mathrm{k}}}$.
Take $\delta_{1} \equiv \min (1 / 2,2 C / 5) \delta_{0}$. In the case $\delta_{0}>2^{1 / 2} \pi / h_{k}$ the inclusion is trivially satisfied because δ_{0}-domain of $L_{\varepsilon} \cap T_{k}=\emptyset$.
If $0<\delta_{0} \leq 2^{\frac{1}{2}} \pi / h_{k}$ then $\omega \in \delta_{0}$-domain of $L_{\varepsilon} \cap T_{k}$ imp1ies

$$
\delta_{0} h_{k}<\left|b_{1} \omega_{1} h_{k}+b_{2} \omega_{2} h_{k}\right|
$$

The normalization $b_{1}^{2}+b_{2}^{2}=1$ and the inequality $|\sin x-x| \leq\left|x^{3}\right| / 4$ for $a 11$ $x \in \mathbb{R}$ yield

$$
\begin{equation*}
\delta_{0} h_{k}<\left|b_{1} \sin \omega_{1} h_{k}+b_{2} \sin \omega_{2} h_{k}\right|+\left|\omega_{1} h_{k}\right|^{3} / 4+\left|\omega_{2} h_{k}\right|^{3} / 4 \tag{2.20}
\end{equation*}
$$

We distinguish the two complementary cases:

$$
\left[\begin{array}{l}
\text { (i) }\left|\omega_{1} h_{k}\right|^{3} \leq \delta_{0} h_{k} \text { and }\left|\omega_{2} h_{k}\right|^{3} \leq \delta_{0} h_{k} \\
\text { (ii) }\left|\omega_{1} h_{k}\right|^{3}>\delta_{0} h_{k} \text { or }\left|\omega_{2} h_{k}\right|^{3}>\delta_{0} h_{k} .
\end{array}\right.
$$

Because of (2.16) and (2.20) case (i) implies:

To complete the proof we now consider case (ii). It follows from (2.16) and $\beta_{k}^{l} / h_{k} \geq C$ that

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0}\left|\hat{\mathrm{~L}}_{\varepsilon+\beta_{k}^{l}}, h_{k}^{l}(\omega)\right| \geq 2 C\left(1-\cos \omega_{1} h_{k}+1-\cos \omega_{2} h_{k}\right) / h_{k} \tag{2.22}
\end{equation*}
$$

and from condition (ii) and $0<\delta_{0} h_{k} \leq 2^{\frac{1}{2}} \pi$ it follows that the right-handside of (2.22) is greater than or equal to

$$
\begin{align*}
& 2 C \delta_{0}\left(1-\cos \left(\left(\delta_{0} h_{k}\right)^{1 / 3}\right)\right) /\left(\delta_{0} h_{k}\right) \text {, hence } \\
& \lim _{\varepsilon \downarrow 0}\left|\hat{L}_{\varepsilon+\beta_{k}}^{\ell}, h_{k}^{(\omega)}\right|>2 C \delta_{0} / 5 \geq \delta_{1}>0 \tag{2.23}
\end{align*}
$$

Both (2.21) and (2.23) hold uniformly for all k, ℓ so S is ε-asymptotically stable with respect to L_{ε}.
QED.
(2.24) COROLLARY. Consider the CD-discretizations of (1.1) with artificial viscosity β_{k}^{l} and constant coefficients, then S_{2} and S_{3} are ε-asymptotically stable with respect to L_{ε}.

PROOF. The proof follows immediately from (2.13) and (2.19). QED.

It is obvious that the ε-asymptotic stability of the operators belonging to S_{2} is larger than in case of S_{1}. Moreover for decreasing γ the smoothing factors for S_{1} become worse (cf. Table 2). We formulate this in the following
(2.25) SUPPOSITION. For a fixed number of levels the set of γ - values for which the MLA with S_{2} converges, is larger than that for which the MLA with S_{1} converges.

In case of a two-1evel algorithm (TLA), $\ell=1$, a two-1evel analysis shows that the asymptotic rate of convergence for S_{1} or S_{2}, for which the artificial viscosity is equal on both levels is better than for S_{3}, where the artificial viscosity corresponds to the meshwidth. (cf. VAN ASSELT [1]). Hence we consider in S_{1} an equal artificial viscosity on all levels. For this strategy however on coarser grids stability problems may occur (cf. 2.14).
S_{3} is ε-asymptotically stable (cf. 2.24), but the two-level analysis indicates that the convergence rate is slower. S_{2} is an intermediate strategy where on level ℓ and $\ell-1$ the artificial viscosity is the same, and it is also ε-asymptotically stable (cf. 2.24). These arguments lead to the following
(2.26) SUPPOSITION. S_{2} combines the rapid convergence rate of S_{1} with the stability of S_{3}.

At level ℓ the discrete operators $L_{\varepsilon+\beta_{\ell}, h_{\ell}}^{\ell}$ using S_{1}, S_{2}, S_{3} are equal.
At level $\ell-1$ the discrete operators $L_{\varepsilon+\beta_{\ell-1}}^{\ell}, h_{\ell-1}$ using S_{1}, S_{2} are equal (S_{3} is not), and the relative order of consistency of the S_{1} and S_{2} operators on level ℓ and $\ell-1$ is the same and higher than that of S_{3}.
Further consider the part of T_{ℓ} where the smoothing effect of the relaxationmethod applied to S_{2} and S_{3} is the same as in case of S_{1}. For S_{2} this part is larger than for S_{3} (cf. Figure 1).

S_{1}

S_{2}

S_{3}

Figure 1. Parts of T_{ℓ} where for S_{2} and S_{3} the smoothing-effect is the same as for S_{1}.

This leads us to formulate the following
(2.27) SUPPOSITION. For a finite number of levels and γ sufficiently large the difference between the asymptotic rate of convergence of the MLAs using S_{1} and S_{2} is smaller than that between S_{2} and S_{3}.

The properties stated in (2.14), (2.18) and (2.24) - (2.27) will be confirmed by numerical experiments in section 4.

3. NUMERICAL APPROXIMATION OF THE CONVERGENCE RATE

In this section we give a description of the method that is used to determine the asymptotic rate of convergence of the MLA. Let
(3.1) $\quad A_{h} \bar{v}_{h}=f_{h}$ be a discretization of (1.1). The MLA to solve (3.1) can be described as a defect-correction-process (cf. HEMKER [4]:
(3.2) $\quad\left\{\begin{array}{l}\frac{v_{h}}{v_{h}}(0) \text { given start approximation } \\ \frac{v_{h}}{}\left(i+1=M_{h} \bar{v}_{h}(i)+B_{h}^{-1} f_{h} \quad i=0,1, \ldots\right.\end{array}\right.$
with amplification-matrix $M_{h}=I_{h}-B_{h}^{-1} A_{h} \cdot I_{h}$ is the identity-matrix, and B_{h}^{-1} is an approximate inverse of A_{h}, determined by coarse-grid- and smoothing operators, prolongation and restriction. We suppose A_{h} and B_{h} to be nonsingular. For the error $\bar{e}_{h}^{(i)}=\bar{v}_{h}$, $i=0,1, \ldots$ the following relation holds:

$$
\bar{e}_{h}^{(i+1)}=M_{h} \bar{e}_{h}^{(i)}
$$

The convergence behaviour of the MLA is considered in the following way:
(3.3) DEFINITION. The asymptotic rate of convergence of the MLA (3.2) is $-{ }^{10} \log \rho\left(M_{h}\right)$ where $\rho\left(M_{h}\right) \equiv \max _{j}\left|\lambda_{j}\right|$ is the spectral-radius of $M_{h} ; \lambda_{j}$ are the eigenvalues of M_{h}.
(3.4) THEOREM.
$\sup _{x \neq 0} \lim _{k \rightarrow \infty}\left(\left\|M_{h}^{k} x\right\| /\|x\|\right)^{1 / k}=\rho\left(M_{h}\right)$, with $\|\cdot\|$ an arbitrary
norm.

PROOF. See STOER, BULIRSCH [6], Satz (8.2.4). QED.
Because of (3.4) we compute an approximation $\rho_{m, k}\left(M_{h}, \bar{e}_{h}^{0}\right)$ of $\rho\left(\mathrm{M}_{\mathrm{h}}\right)$ defined by

$$
\begin{equation*}
\rho_{m, k}\left(M_{h}, \bar{e}_{h}^{0}\right) \equiv\left(\left\|M_{h}^{m+k} \bar{e}_{h}^{-0}\right\|_{2} /\left\|M_{h}^{\mathrm{II}} \mathrm{e}_{h}^{0}\right\|_{2}\right)^{1 / k} \text { where }\|\cdot\|_{2} \text { is } \tag{3.5}
\end{equation*}
$$

the Euclidean norm. Note that

$$
\begin{equation*}
\sup _{\bar{e}_{h}^{0} \neq 0} \lim _{m, k \rightarrow \infty} \rho_{m, k}\left(M_{h}, \bar{e}_{h}^{0}\right)=\rho\left(M_{h}\right) \tag{3.6}
\end{equation*}
$$

In numerical computations $v_{h}, j=m, \ldots, m+k$ are obtained by the iterative method under consideration. When for increasing m and $k,\left\|\bar{e}_{n}^{j}\right\| \|_{2}$ reaches values near the square root of the machine accuracy, we replace \bar{e}_{h}^{j} by $\bar{e}_{h, \eta}^{j}$:
(3.7) $\quad \bar{e}_{h, \eta}^{(j)} \equiv \eta \bar{e}_{h}^{j}(\eta \gg 1) \quad$ and replace

$$
\overline{\mathrm{v}}_{\mathrm{h}}^{\mathrm{j}} \text { by } \overline{\mathrm{v}}_{\mathrm{h}, \eta}^{\mathrm{j}}:
$$

$$
\begin{equation*}
\bar{v}_{h, \eta}^{j} \equiv \bar{v}_{h}+\bar{e}_{h, \eta}^{j} \tag{3.8}
\end{equation*}
$$

Thus

$$
\left\|\bar{e}_{h, \eta}^{-j+1}\right\|_{2} /\left\|\bar{e}_{h, \eta}^{j}\right\|_{2}=\left\|\bar{e}_{h}^{j+1}\right\|_{2} /\left\|\bar{e}_{h}^{j}\right\|_{2} \text {, and as }
$$

$$
\begin{equation*}
\left.\rho_{m, k}\left(M_{h}, \bar{e}_{h}^{0}\right)=\underset{j=m}{m+k-1}\left(\left\|\bar{e}_{h}^{(j+1)}\right\|_{2} /\left\|\bar{e}_{h}^{-j}\right\|_{2}\right)\right)^{1 / k} \tag{3.9}
\end{equation*}
$$

in this way values of $\rho_{m, k}\left(M_{h}, \bar{e}_{h}^{0}\right)$ can be computed for large m and k. By this method ultimately the eigenfunctions of M_{h} corresponding to nondominant eigenvalues will decrease exponentially relative to the dominant eigenfunctions. Note that for $\operatorname{small} m$ and $k \rho_{m, k}$ depends strongly on f_{h} while ρ does not.
4. NUMERICAL RESULTS

In this section we give the results of numerical experiments to compare the strategies S_{1}, S_{2}, S_{3} and S_{4} and to verify the properties stated in (2.14), (2.18), and (2.24) - (2.27). We take three testproblems. Testproblem 1 with constant coefficients closely resembles the problem analysed by two-level analysis in VAN ASSELT [1]. Testproblem 2 has variable coefficients. Although a strict application of Fourier-analysis-arguments does not hold for these
variable-coefficients-problems, the experiments for the latter testproblem show that globally the same properties hold as for the constant-coefficientscase. For the second problem we also show to what extent the strategies S_{1}, \ldots, S_{4} are better than relaxation alone (i.e. without coarse-grid-correction).

Testproblem 3 differs from testproblem 1 by discretization (FEM), relaxation (ILU) and number of levels.

Testproblem 1. We consider the convection-diffusion equation

$$
\begin{align*}
& -(\varepsilon+\gamma h) \Delta u+\frac{\partial}{\partial y} u=0 \text { on } \Omega=[0,1] x[-1,1] \text {, } \tag{4.1}\\
& \varepsilon=10^{-6}, h=1 / 16 \text { (cf. Figure 2). } \\
& \delta_{4} \Omega \\
& \text { (0,-1) }
\end{align*}
$$

Figure 2. The domain Ω

The boundary conditions are:

$$
\begin{align*}
& \left.u\right|_{\delta_{1}}=\left\{\begin{array}{cl}
1 & x<1 / 2-10^{-6} ; \\
-10^{6}(x-1 / 2), & 1 / 2-10^{-6} \leq x \leq 1 / 2+10^{-6} \\
-1 & , \\
x>1 / 2+10^{-6} ;
\end{array}\right. \tag{4.2}\\
& \left.\frac{\partial u}{\partial n}\right|_{\delta_{2} \Omega}=\left.\frac{\partial u}{\partial n}\right|_{\delta_{3} \Omega}=\left.\frac{\partial u}{\partial n}\right|_{\delta_{4} \Omega}=0 .
\end{align*}
$$

Equation (4.1) is discretized by $C D$ on levels $k=0, \ldots, \ell=3$ with meshsize $h_{k}=1 / 2^{k+1}$.

The Neumann boundary conditions are discretized as follows:

$$
\begin{aligned}
& \delta_{2} \Omega: u(1, y)-u\left(1-h_{k}, y\right)=0, \\
& \delta_{3} \Omega: u(x, 1)-u\left(x_{x}, 1-h_{k}\right)=0, \\
& \delta_{4} \Omega: u(0, y)-u\left(h_{k}, y\right)=0, \quad k=0, \ldots, \ell=3 .
\end{aligned}
$$

For different values of γ the discretized equation is solved with the W-cycle MLA (i.e. the application of 2 multi-level-iteration steps to approximate the solution of the coarse-grid equation).

We perform one pre- and one post-relaxation-step consisting of SGSrelaxation in the y-direction. We use 7-point prolongation and 7-point restriction (cf. HEMKER [5], WESSELING [7]).

A random initial approximation of the solution is used. The values for m and k in (3.9) are 30 and 10 respectively.

Testproblem 2. We consider the convection-diffusion equation:
(4.3)

$$
\begin{aligned}
& -(\varepsilon+\gamma h) \Delta u+b_{1} \frac{\partial}{\partial x} u+b_{2} \frac{\partial}{\partial y} u=0 \text {, on } \Omega=[0,1] x[-1,1] \text {, } \\
& \varepsilon=10^{-6}, \mathrm{~h}=1 / 16, \mathrm{~b}_{1}=\mathrm{y}\left(1-\mathrm{x}^{2}\right), \mathrm{b}_{2}=-\mathrm{x}\left(1-\mathrm{y}^{2}\right)(\mathrm{cf} . \text { Figure } 3) . \\
& \delta_{4}^{\Omega} \\
& \text { (-1, 1) }
\end{aligned}
$$

Figure 3. The domain of Ω.

The boundary conditions are

$$
\begin{align*}
& \left.u\right|_{\delta_{1} \Omega}=1+\tanh (10+20 x) \tag{4.4}\\
& \left.\frac{\partial u}{\partial n}\right|_{\delta_{2} \Omega}=\left.\frac{\partial u}{\partial n}\right|_{\delta_{3} \Omega}=\left.\frac{\partial u}{\partial n}\right|_{\delta_{4} \Omega}=\left.\frac{\partial u}{\partial n}\right|_{\delta_{5} \Omega}=0 .
\end{align*}
$$

Equations (4.3) and (4.4) are discretized by the FEM on levels $k=0, \ldots$, $\ell=4$ with mesh-size $h_{k}=1 / 2^{k}$.
For different values of γ, and $\mathrm{S}_{1}-\mathrm{S}_{4}$ the discretized equation is solved with the W-cycle MLA. We perform one pre - and one post-relaxation-step by means of 7 point-ILU-relaxation, (cf. WESSELING AND SONNEVELD [8]). The ILU-decomposition is ordered lexicographically (cf. Figure 3). Again we use 7-point prolongation and 7-point restriction (that are consistent with the FEM discretization), and a random initial approximation. In (3.9) m and k are again 30 and 10.

Testproblem 3. For $\ell=4,5,6$ we consider (4.1) and (4.2) discretized by the FEM on levels $k=0, \ldots, \ell$, with mesh-size $h_{k}=(1 / 2)^{k+1}, \gamma=1 / 2$.

The discretized equation is solved with the W-cycle MLA. We perform one pre- and post-relaxation-step by means of 7 -point-ILU relaxation (on the coarsest level we do not solve directly, but perform relaxation-sweeps). The LUdecomposition is ordered lexicographically (cf. Figure 3). We use 7-point prolongation and 7 -point restriction. A random initial approximation of the solution is used. The values for m and k in (3.9) are 20 and 10 respectively.

Figures 4 and 5 show the properties stated in (2.25)-(2.27) for testproblem 1 and 2 respectively. Figure 5 also shows that all strategies S_{1} S_{4} are better than relaxations without coarse-grid-corrections. In table 2 for S_{1}, S_{2} and S_{3} the smoothing factors of $S G S$ are given at different levels, and for different γ. We notice that for ${ }^{2} \log \gamma>0$ the big difference in the asymptotic rate of convergence of S_{2} and S_{3} (cf. Figure 4) is mainly caused by the order of consistency and for a small part by the relaxation method.

In order to verify (2.14), (2.18) and (2.24) we take testproblem 3. Table 1 reports the convergence rates as measured (cf. 3.3). Note that S_{1} and S_{4} show similar stability- and convergence-behaviour (cf. 2.12).
(4.5) REMARK. With respect to (2.7) we notice that in many cases a decreasing stability coincides with a worsening smoothing factor (cf. Table 2).

Figure 4. Asymptotic convergence rates for testproblem 1. Only the part of the figure with positive asymptotic convergence rate is drawn.

Figure 5. Asymptotic convergence rates for testproblem 2. The graph depicted by "+" represents two ILU-relaxation-sweeps in one iteration step without coarse-grid correction. Only the part of the figure with positive asymptotic convergence rate is drawn.

level ℓ	h^{2}	strategy			
		S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
		2.01	1.78	1.61	2.01
5		$\ll 0$	1.70	1.33	$\ll 0$
6	$1 / 128$	$\ll 0$	1.17	0.87	$\ll 0$

Table 1. Convergence rates for testproblem $3, S_{1}-S_{4}$, and increasing ℓ.

S^{S}	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$
3	0.36	0.36	0.36
2	4.84	4.84	0.36
1	186.	4.84	0.36

${ }^{2} \log \gamma=-1.5$

S^{S}	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$
k			
3	0.24	0.24	0.24
2	0.80	0.80	0.24
1	15625.	0.80	0.24

${ }^{2} \log \gamma=-1.0$

	S_{1}	S_{2}	S_{3}	${ }_{k}^{S}$	S_{1}	S_{2}	S_{3}
3	0.23	0.23	0.23	3	0.24	0.24	0.24
2	0.36	0.36	0.23	2	0.24	0.24	0.24
1	4.84	0.36	0.23	1	0.80	0.24	0.24
${ }^{2} \log \gamma=-0.5$				${ }^{2} \log \gamma=0.0$			

\sum_{k}^{S}	S_{1}	S_{2}	S_{3}	${ }^{\text {k }}$	S_{1}	S_{2}	S_{3}
3	0.24	0.24	0.24	3	0.25	0.25	0.25
2	0.23	0.23	0.24	2	0.24	0.24	0.25
1	0.36	0.23	0.24	1	0.24	0.24	0.25
${ }^{2} \log \gamma=0.5$				${ }^{2} \log \gamma=1.0$			

Table 2. Smoothing-factors for one SGS sweep, testproblem 1, different γ, levels and strategies (local mode analysis, cf. BRANDT [2])

5. CONCLUSIONS

In order to solve the convection-diffusion equation in two dimensions by a multi-level algorithm (MLA), we consider 4 strategies for coarse-grid operators:
S_{1} : on each coarse grid the same artificial viscosity as on the finest grid,
S_{3} : on each coarse grid the artificial viscosity corresponding to the meshwidth,
S_{2} : an intermediate choice, with the same artificial viscosity on the two finest grids,
S_{4} : Galerkin approximation for the coarse-grid operators.
In case of S_{1} and S_{4} the artificial viscosity may become too small on coarse grids and hence stability problems and bad smoothing-factors may occur. S_{1} and S_{4} are not ε-asymptotically stable, S_{2} and S_{3} are. (cf. (2.6), (2.14), (2.18),(2.24), Table 1).

If the finest-grid-artificial viscosity is sufficiently large the asymptotic rate of convergence of the MLA according to S_{2} is far better than that of S_{3}. (cf. (2.26), Figure 4,5).

ACKNOWLEDGEMENTS

The authors like to thank Dr. P.W. Hemker (M.C., Amsterdam) and Prof. Dr. Ir. P. Wesseling (Department of Mathematics, Delft University) for their constructive comments and careful reading of the manuscript.

REFERENCES

[1] ASSELT, E.J. VAN, The multi-grid method and artificial viscosity. Multigrid Methods. Proceedings of the Conference held at Köln-Porz, November 23-27, 1981 (W. Hackbusch, U. Trottenberg, eds.) Lecture Notes in Mathematics, 960. Springer-Verlag, Berlin, (1982).
[2] BRANDT, A., Multi-level adaptive solutions to boundary-value problems, Mathematics of computation, volume 31, number 138, April 1979, 333-390.
[3] HEYKER, P.W., Mixed defect correction iteration for the accurate solution of the convection diffusion equation. Multigrid Methods. Proceedings of the conference held at Köln-Porz, November 23-27, 1981 (W. Hackbusch, U. Trottenberg, eds.). Lecture Notes in Mathematics, 960. Springer-Verlag, Berlin, (1982).
[4] HEMKER, P.W., Introduction to multigrid methods, Nieuw archief voor wiskunde (3), XXIX (1981), 71-101.
[5] HEMKER, P.W., Fourier analysis of gridfunctions, prolongations and restrictions, Report iNW 93/80, Mathematical Centre, Amsterdam (1980).
[6] STOER, J. \& R. BULIRSCH., Einführung in die Numerische Mathematik. II, Springer-Verlag, (1973).
[7] WESSELING, P., Theoretical and practical aspects of a multigrid method, SIAM J. On Sc. and Stat. Comp., to appear, December 1982.
[8] WESSELING, P. \& P. SONNEVELD., Numerical experiments with a multiple grid and a preconditioned Lanczos type method. In: Approximation methods for Navier-Stokes problems, Proceedings, Paderborn 1979 (R.Rautmann, ed.), Lecture Notes in Math. 771, 543-562, Springer-Ver1ag, Ber1in (1980).

36462

