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ABSTRACT 

This report is an interim technical report on a project, entitled 
"Guidelines for the design of large scientific libraries in Ada", which 
is being pursued jointly by the Division of Information Technology and 
Computing, NPL, in the UK, and the Mathematisch Centrum, Amsterdam, in 
the Netherlands. This project is supported by the Commission of the 
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the design of large modular scientific libraries in Ada", will be 
produced arc1und the end of 1983. 

The authors wish to thank their colleagues, Sven Hammarling (now with 
NAG Limited, Oxford) and Maurice Cox, NPL, and Piet Hemker, Mathematisch 
Centrum, for their assistance with this project and for their 
contributions to this report. Thanks are also due to Geoff Miller, NPL, 
for valuable editorial comments. 

KEY WORDS & PHRASES: ADA Programning language, Scientific software 

*) This report will be submitted for publication elsewhere, 

**) National Physical Laboratory, Teddington, Middlesex TWll OLW, UK 





This report consists of a draft of the contents and first four chapters, 
together with appropriate references, of the proposed final report: 

* 
GUIDELINES FOR THE DESIGN OF LARGE MODULAR SCIENTIFIC LIBRARIES IN ADA 

CONTENTS 

1. Introduction 

2. The Problems 

3, Precision 

4. Basic Functions 

5, Structured Data Types 

6. Parameter Passing 

7, Error Handling 

8. Working-space Organisation 

9. Real-time Environment 

10. Summary of Recommendations 

Appendices 

References 

Note that references, in this draft, to the 1980 version of the Language 
Reference Manual will be revised later, when the ANSI standard version 
becomes available. Meanwhile it may be observed that some of the 
notation in this draft differs from that in the 1980 Manual in 
anticipation of the ANSI standard. 

Note also that chapters 5 to 10 and the appendices, included in the 
above contents, have yet to be drafted. 

* Ada j_s a Registered Trademark of the Ada Joint Program Office -
U. S. Government 



2 

1. INTRODUCTION 

The new programming language Ada (United States Department of 
Defense, 1980) has been designed primarily for real-time computation. 
However, in view of the scale of effort that has been invested in its 
design, it is generally expected that it will also be widely used in 
other areas, including the important one of large-scale scientific 
computation. 

Preliminary evaluations of the suitability of Ada for scientific 
computation (Cox and Hammarling, 1980; Hammarling and Wichmann, 1982) 
have indicated that several features of the language require careful 
consideration if large portable and modular scientific algorithms 
libraries are to be implemented successfully. Accordingly, the 
present project is concerned with the problems associated with the 
overall design and implementation of such libraries in Ada and with 
recommendations for their solution. 

The main objective of the project is to help numerical analysts 
who wish to develop large libraries in Ada, comparable with the NAG 
FORTRAN Library (Ford et al., 1979) or the NUMAL Library in Algol 60 
(Hemker, 1981), to do so in the most efficient manner, by providing 
them with appropriate guidelines. Without such guidelines there is, 
owing to the structure of the language, an ever-present risk that any 
library packages developed will be incompatible. 

In this work, the guidelines of the Portability Subgroup of 
Ada-Europe (Nissen et al., 1981) are taken into account. These 
guidelines, which aim to aid programmers in designing and coding 
portable Ada programs, are extended as necessary to ensure that 
individually compiled modules of large scientific libraries can 
retain this portability whilst also being compatible with each other 
and with users' programs. Incidentally, the need for portability 
rules out the possibility of simply providing interfaces with 
existing libraries in other languages. The guidelines proposed here 
should contribute to the construction of library packages for basic 
computations and hence also to applications packages. Such packages 
should be coherent and easy-to-use and the guidelines aim to allow 
for their exploitation by commercial organisations in the future. 

Throughout this report on the project, references to the Language 
Reference Manual (US Department of Defense, 1980) are abbreviated to 
LRM xxx, where xxx indicates chapter, chapter and section or 
sub-section (punctuated by full stops) or appendix, as appropriate. 
Multiple references are separated by commas. Details of the Language 
Reference Manual and all other references are gathered together, in 
alphabetical order of author, at the end of the work. 

It is assumed in this work that the implementation of Ada supports 
floating-point arithmetic (LRM 3,5,7, 3,5.8), since this is 
invariably required in large scientific libraries. It is also assumed 
that the exception NUMERIC ERROR is raised in overflow situations 
(cf. LRM 4 • 5 . 8 ) . -

In Chapter 2 we outline the basic problems which face designers of 
large modular scientific libraries in Ada. In Chapters 3 to 9 we 
discuss each problem area in turn and derive solutions to the 
problems through examples of Ada coding, the largest of which appear 
in Appendices. Finally we summarise our recommendations in 
Chapter 10. 



2. THE PROBLEMS 

In this chapter we outline the problems, as we see them, which face 
designers of large modular scientific libraries in Ada. 

a) Precision 

The first and most fundamental problem in the design of large 
scientific libraries in Ada is concerned with precision. 

Every object in the language has a type, which characterises a set 
of values and a set of operations applicable to those values 
(LRM 3,2, 3,3). In particular, for floating-point computation, the 
language includes at least one predefined type FLOAT. An 
implementation may also have predefined types such as SHORT FLOAT and 
LONG FLOAT which have, respectively, substantially less- or more 
precision than FLOAT ( LRM 3. 5. 7) • These and all other predefined 
identifiers are contained in the package STANDARD to which the user 
may be assumed to have access (LRM C), The user is also permitted to 
declare his own floating-point types, e.g. 

type REAL is digits D; 

where Dis any (positive integral) number of decimal digits supported 
by the implementation. In this case, the type REAL is derived by the 
implementation from one of the predefined types which has at least D 
digits of precision. Explicit type conversions are allowed between 
closely related types (LRM 4.6); for example, REAL(2*J) represents 
the integer expression 2*J in the floating-point form of the type 
REAL. 

The user must decide how best to use these facilities and, since 
the rules of the language require that types must match on a 
procedure call (LRM 6.4.1), the choices are particularly important in 
the design of large numerical libraries. In such libraries, 
separately compiled program units must be compatible with each other, 
with units of other libraries and with users' units. Also 
intercommunication between units, of any kind, should involve as 
little recompilation as possible. In Ada a compilation unit (LRM 10) 
can be a subprogram (i.e. procedure or function) declaration or body, 
a package declaration or body, a generic declaration or body, or a 
generic instantiation. Alternatively, it can be a subunit, in which 
case it includes the body of a subprogram, package, task unit or 
generic unit declared within another compilation unit. 

The main problem arises from the strong type-checking rules of the 
language whereby any two type definitions specify distinct types even 
if their descriptions are identical. Thus, for example, if 

type REALA is digits 6; 
type REALB is digits 6; 
A REALA; 
B: REALB; 

then A and B are of different types. Similarly, if one compilation 
unit declares 

type REAL is digits 10; 
X : REAL; 

while another declares 
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type REAL is digits 10; 
Y : REAL; 

then X and Y are of different types and the two units are 
incompatible. 

Way:s around this difficulty are discussed in Chapter 3 of these 
Guidelines. 

b) Basic functions 

The basic mathematical functions, which, in Fortran and other 
languages , are denoted by SQRT, EXP, SIN , etc . , are not ( apart from 
ABS, which is covered by the reserved word abs) included in the Ada 
language and must therefore be provided in a library package. If all 
computations could be carried out successfully in terms of the 
predefined type FLOAT, this package might have a specification of the 
form: 

package MATH FUNCTIONS is 

function SQRT(X : FLOAT) return FLOAT; 
function EXP(X FLOAT) return FLOAT; 
function SIN(X : FLOAT) return FLOAT; 

-- etc. 

end MATH_FUNCTIONS; 

In practice, however, types SHORT FLOAT, LONG FLOAT and, more 
generally, user-defined real types must also be -accommodated. How 
this may be achieved is clearly dependent upon the way in which the 
precision problem is solved (in Chapter 3 of these Guidelines). 

Problems relating to the package MATH FUNCTIONS and its contents 
are dJLscussed in Chapter 4. 

c) Structured data types 

Structured data types, such as COMPLEX, VECTOR and MATRIX, are not 
included in the Ada language and must therefore be provided in a 
package or packages. For example, COMPLEX may be provided as a record 
type, with its associated operators (cf. Wichmann, 1981), in a 
package of the form: 

package COMPLEX OPERATORS is 

type COMPLEX is 
record 

RE,IM : REAL; 
end record; 

function "+"(X COMPLEX) return COMPLEX; 
function "-"(X COMPLEX) return COMPLEX; 
function 11 abs"(X : COMPLEX) return REAL; 
function ARG(X : COMPLEX) return REAL; 
function "+"(X, y COMPLEX) return COMPLEX; 
function "-" (X, y COMPLEX) return COMPLEX; 
function "*" (X, y COMPLEX) return COMPLEX; 
function "/"(X, y COMPLEX) return COMPLEX; 

end COMPLEX_OPERATORS; 



where it is assumed that a type REAL is available. If it is further 
assumed that the basic mathematical functions, in the package 
MATH FUNCTIONS, are applicable to such REAL variables, then the 
package body, corresponding to the above specification, could take 
the form: 

with MATH FUNCTIONS; 
package body COMPLEX_OPERATORS is 

function "+"(X : COMPLEX) return COMPLEX is 
begin 

return X; 
end "+"; 

function "-"(X : COMPLEX) return COMPLEX is 
begin 

return (- X.RE, - X.IM); 
end "-"; 

function "abs"(X COMPLEX) return REAL is 
A,B : REAL; 

begin 
if abs X.RE > abs X.IM then 

A ·- abs X.RE; 
B :: abs X.IM; 

else 
A ·- abs X.IM; 
B : = abs X. RE; 

end if; 
if A> o.o then 

return A* MATH_FUNCTIONS.SQRT(1.0 + (B/A)**2); 
else 

return 0.0; 
end if; 

end "abs"; 

-- etc. 

end COMPLEX_OPERATORS; 

Similar packages might be provided for vectors and matrices, though 
we consider that these types, being useful in their own right, are 
best packaged separately from their associated operators. 

Such packages are discussed in detail in Chapter 5. 

d) Parameter passing 

Ada does not permit function or procedure names as parameters in 
procedure calls but such information may be passed by means of 
generics ( LRM 12) . For example , a simple procedure for numerical 
integration (quadrature) of a function F of a single real variable X, 
between fixed limits of integration A and B, may have a declaration: 

generic 
with function F(X : REAL) return REAL; 

procedure QUAD(A,B in REAL; R : out REAL); 

Then integration of a specific function F1 with declaration: 

function F1(X : REAL) return REAL; 
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may b1e achieved by means of an instantiation· of the generic 
procedure: 

proiaedure QUAD_F1 is new QUAD(F1); 

follow,ed by a procedure call: 

QUAD_F1 (A,B,R); 

Issues raised by constructions of this form and other uses of 
generics, e.g. with types as parameters, are discussed in Chapter 6. 

e) Error handling 

The Ada concept of exceptions ( LRM 11) provides an error handling 
mechanism which must be fully explored. An exception is an event that 
causes suspension of normal program execution. On detecting the event 
the corresponding exception is raised. Executing some actions, in 
response to the occurrence of an exception, is called handling the 
exception. 

Exception names, other than a few predefined exceptions, such as 
CONSTRAINT ERROR and NUMERIC_ERROR, are introduced by exception 
declarations, e.g. 

SINGULAR : exception; 

Exceptions can be raised by raise statements or by subprograms, 
blocks or language-defined operations that propagate the exceptions. 
When an exception occurs, control can be passed to a user-provided 
exception handler at the end of a unit, i.e. at the end of a block or 
of the body of a subprogram, package or task. This handler acts as a 
substitute for the remainder of that unit; so that, for example, a 
handler within a function body may execute a return statement on its 
behalf. 

The handling of an exception raised during execution of a sequence 
of statements depends on the innermost block or body that encloses 
the relevant statement (LRM 11.4.1). However, if an exception occurs 
during the elaboration of the declarative part of a block or body, or 
during the elaboration of a subprogram, package or task declaration, 
this eilaboration is abandoned. The exception is then propagated to 
the unit causing the elaboration, if there is one; otherwise, the 
program is abandoned (LRM 11.4.2). It follows that one may sometimes 
wish to avoid the raising of exceptions in the declarative part of a 
library unit, possibly by enclosing the necessary declarations in an 
inner block so that exceptions due to errors in input parameters can 
be handled in the surrounding body. 

Such issues and more general questions regarding error handling in 
Ada are discussed in Chapter 7, 

f) Working-space organisation 

Working-space must be efficiently organised. In Ada, this may depend 
upon how arrays are stored, particularly on a machine with paging. 

Storage which is no longer required may be reclaimed, to be used 
again, by a garbage collector. However, in Ada, the existence of a 
garbage collector is implementation dependent and software which 
relies upon it should therefore make this clear. In any case, the 
programmer may prefer to do his own tidying-up, e.g. in a real-time 
program where he may achieve better timing control by so doing 
(Barne:s, 1982, p.253). For access types, he may use the predefined 
gener1.c procedure UNCHECKED DEALLOCATION which has the specification: 



gi,meric 
type OBJECT is limited private; 
type NAME is access OBJECT; 

pirocedure UNCHECKED_DEALLOCATION(X in out NAME) ; 

with a typical instantiation of the form: 

p1r-ocedure FREE is new 
UNCHECKED_DEALLOCATION(object_type name, access type name); 

A.11 aspects of working-space organisation are discussed in 
Chapter 8. 

g) Real-time environment 

Ada has been specifically designed for real-time computation and the 
needs of real-time users must therefore be taken into account. For 
example, they may require that a program should continue to run in 
all circumstances - no matter what errors may arise during its 
execution. This may be achieved by the inclusion of an exception 
handler of the form: 

when others=> 
-- sequence of statements 

where the sequence of statements carries out appropriate remedial 
action to enable the computation to continue in the event of any 
unforeseen error arising. 

In real-time situations, such as process control, a result of a 
computation may be required at a particular time; the precise 
response moment may not be known in advance but, when it arrives, the 
answer must be immediate. This can affect the choice of an algorithm 
or the way in which it is implemented. For example, if an iterative 
process consists of several parts (which may run concurrently), of 
which the results are normally added together at the end of the 
process (when each part has reached a specified accuracy), it would 
be preferable in this case to keep a running total (with an estimate 
of its accuracy) to be used in the event of a rendez-vous being met 
befo,re the iteration is complete. 

Issues such as these are discussed in Chapter 9, 
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3. PRECISION 

In this chapter we consider the problems concerned with the accuracy 
of rea.l types in Ada, introduced in section (a) of Chapter 2. Our 
discussion takes the form of a series of notes, labelled 
alphabetically for easy reference. 

a) Hardware types 

The predefined types FLOAT, SHORT FLOAT and LONG FLOAT correspond to 
the hardware. Since one view of-numerical packages is to consider 
them as additions to the hardware, one might conclude that all 
library software should be written in terms of these predefined 
types. However, this would not be a good idea for reasons of 
portability. The language does not state any specific accuracy for 
FLOAT and, since this is the name assigned if there is only one 
floating-point type, the actual accuracy is likely to vary 
considerably. Hence the use of the predefined types cannot be 
recommended in general. (Since the names FLOAT, SHORT FLOAT and 
LONG F'LOAT are not reserved in Ada, one could possibly redeclare 
them-;- to achieve the portability that would otherwise be lacking, but 
this is rejected on the grounds of obscurity.) 

b) Deri ve,d types 

It may appear that the type compatibility rules make it very 
diffic:ult to write any portable library software at all. Yet, if 
LONG FLOAT is available as well as FLOAT, one can certainly imitate 
standard FORTRAN practice by declaring 

type REAL is new FLOAT; 
type DOUBLE is new LONG _FLOAT; 

and writing all program units in terms of these 'derived' types. 
Alternatively, if SHORT_FLOAT is available, one may declare 

type REAL is new SHORT FLOAT; 
type DOUBLE is new FLOAT; 

and ufse these derived types in all program units. In either case, we 
have a possible solution ( though not necessarily the best) to the 
probleim of providing portable software. 

c) Attributes 

In AdaL, most of the properties of a real type can be accessed by its 
'attrj.butes' which are defined as part of the language (LRM 3.5.8, 
3.5.10). This enables one, when writing software, to anticipate the 
problems of moving code to another machine. For instance, an 
approximation may be known to be good for 10 digits but not more, in 
which case one can write 

if REAL'DIGITS <= 10 then 
SIMPLE_APPROXIMATION; 

elise 
MORE COMPLEX CASE; 

end if;- -



where, if the static condition is TRUE, the code for the 
MORE COMPLEX CASE (though it must be valid) need not be compiled (cf. 
section ( e) below) . Careful use of these facilities permits one to 
write code which is robust and numerically correct across almost all 
conceivable machines. In this, one is aided by the fact that the 
numer:ical properties of real types are defined in the language 
reference manual (LRM 4.5.8). 

d) User-defined types 

The contrary view to that expressed in section (a) above is that of 
the applications programmer who wishes (not unnaturally) to ignore 
details of the specific hardware in use. His concern is to program in 
a portable manner knowing that, for example, 10 digits of accuracy 
will suffice for his particular application. He therefore declares 

type MY_REAL is digits 10; 

whereupon the problem is that, since MY REAL is dependent upon the 
appli,cation, numerical library packages (written in terms of a 
diffeirent real type) cannot be called directly. 

One approach to this problem is the use of generics, as in the 
input-output system (LRM 14.4). There, for· example, the output 
procedure PUT may be made available for MY REAL by instantiating the 
generic package FLOAT_IO, which is inside the package TEXT_IO, thus: 

with TEXT IO; 
pr•ocedure-MAIN is 

package MY IO is new TEXT_IO.FLOAT_IO(MY_REAL); use MY_IO; 
X : MY REAL; 

begin -

PUT(X); 

end MAIN; 

As a consequence of the need to instantiate the generic, this 
solution has some severe disadvantages. It is very unlikely that the 
instantiation of a generic will be a cheap operation for the 
compiler. At worst, it could amount to an overhead comparable with 
the recompilation of the instantiated body. With a large mathematical 
library, such an overhead might not be acceptable. Moreover, the body 
of the instantiated package could need to call other packages which 
would themselves need to be instantiated. The compiler overhead for 
such an activity is likely to be even greater than that for the 
ordinary text. 

In practice, perhaps such generic packages will be precompiled for 
each of the relevant predefined types, such as the hardware types of 
section (a), and the appropriate version selected at instantiation. 
However, the conclusion here is that generics need to be used with 
care, at least within the context of a large library. The advantage 
of geinerics is that they do allow one to write a subprogram or 
package for any accuracy and let the user select the appropriate 
accuracy. Thus they are ideal for the user who is prepared to tailor 
a system to his own specific requirements. 

e) Use of generics 

On the assumption that some use is made of generics, subprograms or 
packages can call any low-level routines that may be provided for the 
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hardware types by means of tests on the attributes and conversions. A 
simple example might be 

generic 
type REAL is digits<>; 

function ... SQRT ( X REAL) return REAL; 

function SQRT(X REAL) return REAL is 
begin 

if REAL'DIGITS <= FLOAT'DIGITS then 
return REAL(SQRT(FLOAT(X))); 

else 
return REAL(SQRT(LONG_FLOAT(X))); 

end if; 
end SQRT; 

specification 

body 

Note the use of explicit conversion and the two distinct calls of the 
overloaded function SQRT. Of course, for a specific instantiation of 
this generic, a compiler should optimise the code so that no 
condition is tested or code produced for the other leg. Note, 
however, that the condition involving REAL'DIGITS is no longer static 
(cf. section (c) above) when REAL is a generic actual parameter 
(LRM 4. 9). 

Unfortunately, the code given here is not portable, since it has 
been assumed that both FLOAT and LONG FLOAT are available, which may 
not be the case. Moreover, no allowance is made for the possibility 
that REAL'DIGITS >= LONG FLOAT'DIGITS for which an exception could be 
raised. 

f) Library design 

For a large library, the use of other subroutines by existing 
routines implies that a standard type or set of types must be used 
for real types. Such standard types may be collected together in one 
package: 

package REAL TYPES is 
type REAL is digits ... , -- an implementation choice 

end REAL_TYPES; 

Then a library package may operate in terms of these, for example: 

with REAL TYPES; use REAL TYPES; 
package MATH_FUNCTIONS is-

function SQRT(X : REAL) return REAL; 

-- SIN, COS, etc. 

end MATH_FUNCTIONS; 

-- specification 

However, if the corresponding package body is written for only the 
standard types, with their specified accuracy, this approach lacks 
generality, since there may well be a need for a function, e.g. a 
square root, of higher accuracy. Moreover, the textual body of SQRT 
may well admit any accuracy. 

It is preferable therefore to implement MATH FUNCTIONS by means of 
a generic package: 



generic 
type REAL is digits<>; 

package GEN MATH FUNCTIONS is 

function SQRT(X : REAL) retu.rn REAL; 

-- SIN, COS, etc. 

end GEN_MATH_FUNCTIONS; 

The body of this package, written for any accuracy, takes the form: 

package body GEN_MATH_FUNCTIONS is 

function SQRT(X : REAL) return REAL is 

SIN, COS, etc. 

end GEN_MATH_FUNCTIONS; 

Then the library package specification above may be replaced by the 
instantiation: 

pa,ckage MATH_FUNCTIONS is new GEN_MATH_FUNCTIONS(REAL); 

in which case: 

use MATH_FUNCTIONS; 

permits one to call, for example, SQRT(X) for X : REAL. 
At the same time, this approach allows a sophisticated user, who 

is not satisfied with the package REAL_TYPES, to declare his own real 
types: 

pa;::ikage MY TYPES is 
type MY-REAL is digits ... ' 

end MY_TYPES; 

and to call the basic mathematical functions for these types: 

wit.h MY TYPES; use MY TYPES; 
with GEN MATH FUNCTIONS; 
prc:>cedure MAIN is 

package MY_FUNCTIONS is new GEN_MATH_FUNCTIONS(MY_REAL); 
X, Y MY REAL; 

begin -

Y ·- MY_FUNCTIONS.SQRT(X); 

end MAIN; 

1 1 
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4. BASIC FUNCTIONS 

In this chapter the following problems concerning basic functions are 
identified and discussed: 

contents of a package of basic mathematical functions, 
naming of basic mathematical functions, 
method of use for user-defined types, 
efficiency of execution, 
calling sequences, 
exception handling, 
package specification. 

Each of these problems is considered in a separate section. 

a) Contents of a package of basic mathematical functions 

Although large sets of mathematical functions are sometimes required, 
we propose that only Square Root and the Elementary Transcendental 
Functions, as given in Abramowitz and Stegun (1965) but omitting the 
secant and cosecant functions, should be components of a basic 
Mathematical Functions package (see section (b)). In ~his package, we 
also include number declarations for PI and the base of natural 
logarithms e (here named EXP 1), and the circular functions with 
period 2 instead of 2*PI (named SIN PI, COS PI, TAN PI and COT PI). 
All other functions can be contained in several packages of Special 
Mathematical or Statistical Functions. 

It must be mentioned that due to the proposed structure of this 
Mathematical Functions package there is no need for (visible) type 
declarations in the package ( see section ( c)) . In our opinion, the 
package obtained through an instantiation with a floating-point type 
FPT, chosen by the user, should provide all the basic mathematical 
functions for this type FPT, each of the form: 

function MATH_FUNCTION(X: FPT) return FPT; 

We reject a set-up in which every basic function has its specific 
types and subtypes, to which a user has to accommodate. 

Through each instantiation the user receives a package with the 
familiar basic functions (as an extension of the set of arithmetic 
operators) for his chosen floating-point type. In this connection we 
note that such an instantiation is not necessary if the user-defined 
type is a derived type (like type REAL is new FLOAT) and an 
instantiation of GEN MATH FUNCTIONS (see section (b)) is already 
available for the parent type. 

The package is not subdivided into smaller local packages, each 
containing some connected basic functions, since this would make 
calls of these functions too verbose. 

We do not propose a separate non-generic version of the basic 
Mathematical Functions package. We propose instead that the program 
library contains at least one standard instantiation of this package 
with FLOAT ( or the library type REAL) as generic actual parameter. 
(Note that a particular installation might prefer to create such an 
instantiation from an Ada text by expanding the generic declaration.) 

Finally, we do not propose a DEGREES version of the circular 
functions here, as these functions would have different types for 
argument and result and this would not fit into a general package. 
The user should be warned that he does not get a proper DEGREES 
version by merely instantiating GEN MATH FUNCTIONS with the type 
DEGREES. 



b) Naming of basic mathematical functions 

The package itself should be named: 

GEN_MATH_FUNCTIONS, 
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where 'GEN ' signifies that the package is a generic one with respect 
to the provided (user-defined) floating-point real type (see also 
section (c)). Its components should be named: 

PI, EXP_1 (the base e of natural logarithms), 
SQRT, 
LN (and alternatively LOGE), LOG 2, LOG 10 

(logarithms for bases e, 2 and-10 respectively), 
EXP, TWO EXP, TEN EXP 

(powers of e, 2 and 10, respectively, with real exponent), 
SIN, COS, TAN, COT, 
SIN PI, COS PI, TAN PI, COT PI, 
ARCSIN, ARCCOS, ARCTAN, ARCCOT, 
SINH, GOSH, TANH, GOTH, 
ARCSINH, ARCCOSH, ARCTANH, ARCCOTH. 

Although we agree with other authors, such as Barnes (1982), that 
identifiers should be meaningful and that abbreviations should not be 
used where there is any risk of confusion, we think that for the 
basic mathematical functions the traditional names above are 
sufficiently familiar. We use the name EXP 1 rather than E, for the 
base of natural logarithms, on the grounds that there is a 
significant risk of misuse of E, e.g. when 1.0*E-1 is written instead 
of 1.0E-1 (assuming a mixed-type subtraction operation to be 
available) or when E occurs naturally in a sequence of real variables 
A, B, C, .... 

c) Method of use for user-defined types 

In accordance with section ( f) of Chapter 3, the package structure 
should be as follows: 

generic 
type REAL is digits<>; 

package GEN MATH FUNCTIONS is 

function SQRT(X : REAL) return REAL; 

-- LN, EXP, etc. 

end GEN_MATH_FUNCTIONS; 

Then the package may be made available 
floating-point type, and also for the 
SHORT FLOAT and LONG FLOAT (if present) with 
accuracies, by an -instantiation of the 
concerned; for example: 

type REAL 6 is digits 6; 

for any user-defined 
standard types FLOAT, 
implementation-dependent 
package for the type 

package MATH_FUNCTIONS_6 is new GEN_MATH_FUNCTIONS(REAL_6); 

-- and for the standard type FLOAT: 

package STD MATH FUNCTIONS is new GEN_MATH_FUNCTIONS(FLOAT); 
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(For completeness we remark that the program unit containing such an 
instantiation must include GEN MATH FUNCTIONS in its context 
specification.) For derived types, the package is automatically 
available from the parent type. 

No allowance is made here for mixed-type expressions, as when a 
specification like 

function SQRT(A: AREA) return LENGTH; 

is needed. We assume that any such application will be effected by 
the user by means of type conversions or overloadings. 

Finally we remark that it is perfectly acceptable for every 
instantiation to deliver the same numbers PI and EXP 1 (since they do 
not depend upon the generic actual parameter). 

d) Efficiency of execution 

When writing an Ada source text suitable for calculating values of 
some basic function for every possible accuracy, the following 
problems are faced: 

Whatever the machine arithmetic, the algorithm executed must 
deliver values as specified with maximal accuracy if the argument 
is inside its range. In agreement with the recommendations of the 
Ada-Europe Portability Group (Nissen et al., 1981), algorithms 
must be given for accuracies ranging from digits 5 up to digits 10 
at least, but in the present context we propose an extension of 
this requirement up to digits 35, 

The exception SIGNIFICANCE ERROR should be raised for calls 
when the argument cannot be used for calculating the value of the 
basic function with useful accuracy (e.g. for a call of 
SIN('10.0 ** REAL'DIGITS)). A problem ·here is that the function 
body cannot be made aware that the user (the function call) 
expects a smaller precision than normally, as would be the case if 
the type provided for the function result had a less stringent 
accuracy constraint than the type for the parameter. Here all 
functions have the same floating-point type for parameter(s) and 
function result. The (arbitrary) solution is that 
SIGNIFICANCE ERROR is raised only if more than a specified number 
of digits will be lost. The alternative, restricting calls of the 
functions SIN, COS, TAN and COT to arguments in [- 2*PI, + 2*PI], 
is not supported. 
Algorithms may have many branches conditional upon the number of 
bits of the mantissa of model numbers (LRM 3.5.8) (and perhaps 
also the machine mantissa, machine exponent and other machine 
properties) . 
Expressions must be built by the elementary operators only, though 
some basic functions may call other (more basic) ones from the 
same package. 
If some branching depends on the value of an argument then it 
should be distinctly separated from branching which depends on 
attributes of the generic type. In this way optimising compilers 
will not be prevented from deleting dead branches. 
The standard type FLOAT cannot be used inside the packages for 
local declarations and calculations, as this might imply an 
undesirable loss of accuracy in the final results. Alternatively, 
it might signify a waste of computer time if FLOAT is much more 
accurate than necessary. The algorithm might use different 
approximations for different accuracy constraints. For this reason 
we advise that branching of algorithms is not by the 
MACHINE MANTISSA attribute but by the DIGITS or the MANTISSA 
attribute. 



- As static expressions in floating-point type definitions cannot 
depend on attributes of the generic actual parameter (LRM 4.9), it 
is not possible to make a local floating-point type definition 
with a (slightly) larger accuracy for performing the internal 
calculations. All algorithms for basic functions must simply 
deliver the best results possible using the user-supplied 
floating-point type. If this user-supplied type has unexpected 
additional constraints, then an exception (CONSTRAINT ERROR) will 
be raised upon violation. This exception can also be raised in the 
package body (elaborated upon instantiation) if the user-defined 
type is unfit for any calculation at all. 

- In the same way static expressions in fixed-point type definitions 
cannot depend on attributes of the generic actual parameter. So 
the idea of Wichmann (1981) of using local fixed-point arithmetic 
for evaluating polynomials cannot apply here, because the 
appropriate fixed-point types cannot be defined (unless the types 
are declared inside the different branches). Besides, it will be 
uncertain whether a fixed-point type with as large a mantissa as 
that of the floating-point type is supported. 

- No exception occurring in intermediate calculations should be 
propagated to the user's call (provided that the final result 
would not be exceptional). Only when the final result is 
exceptional, due to a bad argument of the function call, should an 
appropriate exception be raised (see section (f)). 

- Program units using the basic Mathematical Functions package 
should not each make their own instantiation of 
GEN MATH FUNCTIONS, as this might imply that several copies are 
made. Consider for example: 

generic 
type REAL is digits<>; 

package GEN CHOLESKY is 
type SYMMATRIX is array(INTEGER range<>) of REAL; 
procedure CHOLESKY DECOMPOSITION(MAT : in out SYMMATRIX); 

end CHOLESKY; -

with GEN_MATH_FUNCTIONS; 
package body GEN_CHOLESKY is 

package MATH FUNCTIONS is 
new GEN MATH FUNCTIONS(REAL); 

use MATH _FUNCTIONS; 

procedure CHOLESKY_DECOMPOSITION(~,AT in out SYMMATRIX) is 

Local declarations 

begin 
DECOMPOSE MAT; 

end CHOLESKY=DECOMPOSITION; 

end CH OLESKY; 

Such a package, which itself must be instantiated, would require 
an instantiation of the basic Mathematical Functions package and 
so would all other similar numeric packages. 

A solution might be that a numeric package (in the above and 
following examples for the Cholesky decomposition of symmetric 
positive-definite matrices, which needs the SQRT function) is 
given as a generic package with, as generic parameters ( besides 
the user-supplied floating-point type), those basic mathematical 
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functions which it uses. These generic subprogram parameters must 
be declared with themselves as defaults, e.g. 

generic 
type REAL is digits<>; 
with function SQRT(X : in REAL) return REAL is<>; 

-- visible through a use clause 
package GEN CHOLESKY is 

type SY~iMATRIX is array(INTEGER range<>) of REAL; 
procedure CHOLESKY DECOMPOSITION(MAT : in out SYMMATRIX); 

end GEN_ CH OLESKY; -

Such a generic package can be used in the following way: 

with GEN MATH FUNCTIONS, REAL TYPES; use REAL TYPES; 
with GEN-CHOLESKY; -- and other numeric packages, etc. 
procedure MAIN is 

-- Instantiations: 

package MATH FUNCTIONS is 
new GEN MATH FUNCTIONS(REAL); 

use MATH_FUNCTIONS; 

package MY_CHOLESKY is new GEN_CHOLESKY(REAL); 

begin 

Note that the name SQRT is visible and that SQRT 
can be used as the default for the generic actual 
parameter, as it has the correct subprogram 
specification. 

etc. 

MAIN PROGRAM STATEMENTS; 
end MAIN; -

e) Calling sequences 

Assuming the availability of the instantiation: 

type REAL 6 is digits 6; -- as an example 
package MATH FUNCTIONS 6 is 

new GEN_MATH_FUNCTIONS(REAL_6); 

and the use clause: 

use MATH FUNCTIONS_6; 

it follows from the full declarations given in section (g), below, 
that each of the basic mathematical functions can be called, taking 
SQRT as an example, in each of the following ways: 

MATH_FUNCTIONS_6.SQRT(REAL_6_EXPRESSION) -- as a primary 

SQRT(REAL_6_EXPRESSI0N) when the component SQRT of the 
-- package is visible 

SQRT(X => REAL 6 EXPRESSION) using the name of the 
formal parameter. 



The declarations of ARCTAN and ARCCOT allow a particular function 
call for arguments close to INFINITY. Their declarations read: 

function ARCTAN(X 
function ARCCOT(X 

REAL; Y 
REAL; Y 

REAL ·- 1.0) return REAL; 
REAL ·- 1.0) return REAL; 

These are the only basic functions with a default (second) parameter, 
to the effect that a call: 

ARCTAN(REAL_EXPRESSION) 

delivers the normal arctangent value in the range [- PI/2, PI/2], 
whereas: 

ARCTAN(REAL_EXPR1, REAL_EXPR2) 

delivers the angle between the X-axis and the radius vector of the 
Cartesian point (REAL EXPR2, REAL EXPR 1) (note the different orders 
of the coordinates and the parameters of ARCTAN) lying in the range 
(- PI, PI]. 

f) Exception handling 

Possible exceptions are: 

NUMERIC ERROR, 
ARGUMENT ERROR, 
CONSTRAINT ERROR, 
SIGNIFICANCE ERROR, 
(PROGRAM_ERROR). 

We propose that an exception is raised if an algorithm fails to 
deliver the required result,· but only if the final result itself 
would be exceptional. In most cases the exception that is raised by 
the machine hardware (usually NUMERIC_ERROR or C0NSTRAINT_ERROR) can 
be propagated, but it is allowed that a basic function handles these 
exceptions and raises one of the other exceptions as the case may be. 
More specifically, if the hardware does not raise NUMERIC. ERROR but 
returns special values, then the function body should not raise an 
exception, as it might be the user's wish to continue the 
calculations with these special values. This may be compared with the 
IEEE recommendations for binary floating-point arithmetic (IEEE, 
1981): they advise that exceptions (like invalid operations, division 
by zero, overflow, underflow) must be detected by the hardware, but 
that the user should have the means to enable and disable the 
corresponding traps. 

As has been stated in section ( d) , SIGNIFICANCE ERROR should be 
raised when the argument is insufficiently accurate to permit 
computation of accurate results. No guidelines are offered in respect 
of certain special exceptions, like the raising of PROGRAM ERROR if 
storage is exhausted when instantiating the generic package or 
calling one of its constituents. 

g) Package specification 

To conclude this chapter, we give here the complete generic package 
declaration: 

17 
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-- ------------------------------------------------------------------generic 
type REAL is digits<>; 

package GEN_MATH_FUNCTIONS is 

-- Declare constants. 

PI : constant := 3.1415 92653 58979 32384 62643 38327 95029; 
EXP_1 : constant:= 2.7182_81828_45904_52353_60287_47135_26625; 

-- Declare the basic mathematical functions. 

function SQRT(X : in REAL) return REAL; 
function LN(X : in REAL) return REAL; 
function LOG E(X : in REAL) return REAL renames LN; 
function LOG-2(X : in REAL) return REAL; 
function LOG-10(X : in REAL) return REAL; 
function EXP(X : in REAL) return REAL; 
function TWO EXP(X : in REAL) return REAL; 
function TEN-EXP(X : in REAL) return REAL; 
function SIN(X in REAL) return REAL; 
function COS(X in REAL) return REAL; 
function TAN(X in REAL) return REAL; 
function COT(X in REAL) return REAL; 
function SIN PI(X in REAL) return REAL; 
function COS-PI(X in REAL) return REAL; 
function TAN-PI(X in REAL) return REAL; 
function COT-PI(X in REAL) return REAL; 
function ARCSIN(X in REAL) return REAL; 
function ARCCOS(X in REAL) return REAL; 
function ARCTAN(X in REAL; Y: in REAL ·- 1.0) return REAL; 
function ARCCOT(X in REAL; Y : in REAL ·- 1.0) return REAL; 
function SINH(X in REAL) return REAL; 
function COSH(X in REAL) return REAL; 
function TANH(X in REAL) return REAL; 
function COTH(X in REAL) return REAL; 
function ARCSINH(X in REAL) return REAL; 
function ARCCOSH(X in REAL) return REAL; 
function ARCTANH(X in REAL) return REAL; 
function ARCCOTH(X in REAL) return REAL; 

-- Declare exceptions. 

ARGUMENT_ERROR, SIGNIFICANCE_ERROR : exception; 

end GEN_MATH_FUNCTIONS; 

For the package body, guidelines about the delivered accuracy and 
the raising of exceptions are given in sections (d) and (f). No error 
messages should be issued (and the package body should not itself 
instantiate one of the I/0 packages). We advise that all the program 
components of the package body are given as body stubs with separate 
subunits. An example of a package body is offered in Appendix 1. 
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