
stichting

mathematisch

centrum

AFDELING NUMERIEKE WISKUNDE
(DEPARTMENT OF NUMERICAL MATHEMATICS)

NW 143/82

G.T. SYMM, B.A. WICHMANN, J. KOK & D.T. WINTER

GUIDELINES FOR THE DESIGN OF LARGE MODULAR
SCIENTIFIC LIBRARIES IN ADA

INTERIM REPORT

Preprint

~
MC

NOVEMBER

kruislaan 413 1098 SJ amsterdam

IIBLIOTHEEK MATHEMAT!SCH CENTftUlia

P!Linted a:t .the Ma.the.ma.tic.al. Cen:tlr.e., 413 K/tU.l6laan, Am6.teJukun.

The Mathematic.al. Cen:tlr.e , 6ounded .the 11-.th 06 FebJuuVr.y 1946, h, a. non­
pJt.o6U .in6:ti;t.u,t1,on a,imlng at .the. pJt.omo:tlon 06 pWLe. mathematlC-6 and li-li

· a.ppl,i.c.a.:tlon6. I.t h, ~pon601t.ed by .the Ne.thvri.a.nd6 GoveJt.nment .thll.ough .the
Ne.thell1.a.nd6 01t.ganlza.:tlon 601t. .the Adva.nc.ement 06 PuJt.e Ruea.Jt.c.h (Z.W.O. J.

1980 Mathematics subject classification: 69D21, 69D49, 65-04

Guidelines for the design of large modular scientific libraries in ADA*)

Interim report

by

**) . **) . G.T. Synnn, B.A. Wichmann, J. Kok & D.T. Winter

ABSTRACT

This report is an interim technical report on a project, entitled
"Guidelines for the design of large scientific libraries in Ada", which
is being pursued jointly by the Division of Information Technology and
Computing, NPL, in the UK, and the Mathematisch Centrum, Amsterdam, in
the Netherlands. This project is supported by the Commission of the
European Communities, for whom a final report, entitled "Guidelines for
the design of large modular scientific libraries in Ada", will be
produced arc1und the end of 1983.

The authors wish to thank their colleagues, Sven Hammarling (now with
NAG Limited, Oxford) and Maurice Cox, NPL, and Piet Hemker, Mathematisch
Centrum, for their assistance with this project and for their
contributions to this report. Thanks are also due to Geoff Miller, NPL,
for valuable editorial comments.

KEY WORDS & PHRASES: ADA Programning language, Scientific software

*) This report will be submitted for publication elsewhere,

**) National Physical Laboratory, Teddington, Middlesex TWll OLW, UK

This report consists of a draft of the contents and first four chapters,
together with appropriate references, of the proposed final report:

*
GUIDELINES FOR THE DESIGN OF LARGE MODULAR SCIENTIFIC LIBRARIES IN ADA

CONTENTS

1. Introduction

2. The Problems

3, Precision

4. Basic Functions

5, Structured Data Types

6. Parameter Passing

7, Error Handling

8. Working-space Organisation

9. Real-time Environment

10. Summary of Recommendations

Appendices

References

Note that references, in this draft, to the 1980 version of the Language
Reference Manual will be revised later, when the ANSI standard version
becomes available. Meanwhile it may be observed that some of the
notation in this draft differs from that in the 1980 Manual in
anticipation of the ANSI standard.

Note also that chapters 5 to 10 and the appendices, included in the
above contents, have yet to be drafted.

* Ada j_s a Registered Trademark of the Ada Joint Program Office -
U. S. Government

2

1. INTRODUCTION

The new programming language Ada (United States Department of
Defense, 1980) has been designed primarily for real-time computation.
However, in view of the scale of effort that has been invested in its
design, it is generally expected that it will also be widely used in
other areas, including the important one of large-scale scientific
computation.

Preliminary evaluations of the suitability of Ada for scientific
computation (Cox and Hammarling, 1980; Hammarling and Wichmann, 1982)
have indicated that several features of the language require careful
consideration if large portable and modular scientific algorithms
libraries are to be implemented successfully. Accordingly, the
present project is concerned with the problems associated with the
overall design and implementation of such libraries in Ada and with
recommendations for their solution.

The main objective of the project is to help numerical analysts
who wish to develop large libraries in Ada, comparable with the NAG
FORTRAN Library (Ford et al., 1979) or the NUMAL Library in Algol 60
(Hemker, 1981), to do so in the most efficient manner, by providing
them with appropriate guidelines. Without such guidelines there is,
owing to the structure of the language, an ever-present risk that any
library packages developed will be incompatible.

In this work, the guidelines of the Portability Subgroup of
Ada-Europe (Nissen et al., 1981) are taken into account. These
guidelines, which aim to aid programmers in designing and coding
portable Ada programs, are extended as necessary to ensure that
individually compiled modules of large scientific libraries can
retain this portability whilst also being compatible with each other
and with users' programs. Incidentally, the need for portability
rules out the possibility of simply providing interfaces with
existing libraries in other languages. The guidelines proposed here
should contribute to the construction of library packages for basic
computations and hence also to applications packages. Such packages
should be coherent and easy-to-use and the guidelines aim to allow
for their exploitation by commercial organisations in the future.

Throughout this report on the project, references to the Language
Reference Manual (US Department of Defense, 1980) are abbreviated to
LRM xxx, where xxx indicates chapter, chapter and section or
sub-section (punctuated by full stops) or appendix, as appropriate.
Multiple references are separated by commas. Details of the Language
Reference Manual and all other references are gathered together, in
alphabetical order of author, at the end of the work.

It is assumed in this work that the implementation of Ada supports
floating-point arithmetic (LRM 3,5,7, 3,5.8), since this is
invariably required in large scientific libraries. It is also assumed
that the exception NUMERIC ERROR is raised in overflow situations
(cf. LRM 4 • 5 . 8) . -

In Chapter 2 we outline the basic problems which face designers of
large modular scientific libraries in Ada. In Chapters 3 to 9 we
discuss each problem area in turn and derive solutions to the
problems through examples of Ada coding, the largest of which appear
in Appendices. Finally we summarise our recommendations in
Chapter 10.

2. THE PROBLEMS

In this chapter we outline the problems, as we see them, which face
designers of large modular scientific libraries in Ada.

a) Precision

The first and most fundamental problem in the design of large
scientific libraries in Ada is concerned with precision.

Every object in the language has a type, which characterises a set
of values and a set of operations applicable to those values
(LRM 3,2, 3,3). In particular, for floating-point computation, the
language includes at least one predefined type FLOAT. An
implementation may also have predefined types such as SHORT FLOAT and
LONG FLOAT which have, respectively, substantially less- or more
precision than FLOAT (LRM 3. 5. 7) • These and all other predefined
identifiers are contained in the package STANDARD to which the user
may be assumed to have access (LRM C), The user is also permitted to
declare his own floating-point types, e.g.

type REAL is digits D;

where Dis any (positive integral) number of decimal digits supported
by the implementation. In this case, the type REAL is derived by the
implementation from one of the predefined types which has at least D
digits of precision. Explicit type conversions are allowed between
closely related types (LRM 4.6); for example, REAL(2*J) represents
the integer expression 2*J in the floating-point form of the type
REAL.

The user must decide how best to use these facilities and, since
the rules of the language require that types must match on a
procedure call (LRM 6.4.1), the choices are particularly important in
the design of large numerical libraries. In such libraries,
separately compiled program units must be compatible with each other,
with units of other libraries and with users' units. Also
intercommunication between units, of any kind, should involve as
little recompilation as possible. In Ada a compilation unit (LRM 10)
can be a subprogram (i.e. procedure or function) declaration or body,
a package declaration or body, a generic declaration or body, or a
generic instantiation. Alternatively, it can be a subunit, in which
case it includes the body of a subprogram, package, task unit or
generic unit declared within another compilation unit.

The main problem arises from the strong type-checking rules of the
language whereby any two type definitions specify distinct types even
if their descriptions are identical. Thus, for example, if

type REALA is digits 6;
type REALB is digits 6;
A REALA;
B: REALB;

then A and B are of different types. Similarly, if one compilation
unit declares

type REAL is digits 10;
X : REAL;

while another declares

3

4

type REAL is digits 10;
Y : REAL;

then X and Y are of different types and the two units are
incompatible.

Way:s around this difficulty are discussed in Chapter 3 of these
Guidelines.

b) Basic functions

The basic mathematical functions, which, in Fortran and other
languages , are denoted by SQRT, EXP, SIN , etc . , are not (apart from
ABS, which is covered by the reserved word abs) included in the Ada
language and must therefore be provided in a library package. If all
computations could be carried out successfully in terms of the
predefined type FLOAT, this package might have a specification of the
form:

package MATH FUNCTIONS is

function SQRT(X : FLOAT) return FLOAT;
function EXP(X FLOAT) return FLOAT;
function SIN(X : FLOAT) return FLOAT;

-- etc.

end MATH_FUNCTIONS;

In practice, however, types SHORT FLOAT, LONG FLOAT and, more
generally, user-defined real types must also be -accommodated. How
this may be achieved is clearly dependent upon the way in which the
precision problem is solved (in Chapter 3 of these Guidelines).

Problems relating to the package MATH FUNCTIONS and its contents
are dJLscussed in Chapter 4.

c) Structured data types

Structured data types, such as COMPLEX, VECTOR and MATRIX, are not
included in the Ada language and must therefore be provided in a
package or packages. For example, COMPLEX may be provided as a record
type, with its associated operators (cf. Wichmann, 1981), in a
package of the form:

package COMPLEX OPERATORS is

type COMPLEX is
record

RE,IM : REAL;
end record;

function "+"(X COMPLEX) return COMPLEX;
function "-"(X COMPLEX) return COMPLEX;
function 11 abs"(X : COMPLEX) return REAL;
function ARG(X : COMPLEX) return REAL;
function "+"(X, y COMPLEX) return COMPLEX;
function "-" (X, y COMPLEX) return COMPLEX;
function "*" (X, y COMPLEX) return COMPLEX;
function "/"(X, y COMPLEX) return COMPLEX;

end COMPLEX_OPERATORS;

where it is assumed that a type REAL is available. If it is further
assumed that the basic mathematical functions, in the package
MATH FUNCTIONS, are applicable to such REAL variables, then the
package body, corresponding to the above specification, could take
the form:

with MATH FUNCTIONS;
package body COMPLEX_OPERATORS is

function "+"(X : COMPLEX) return COMPLEX is
begin

return X;
end "+";

function "-"(X : COMPLEX) return COMPLEX is
begin

return (- X.RE, - X.IM);
end "-";

function "abs"(X COMPLEX) return REAL is
A,B : REAL;

begin
if abs X.RE > abs X.IM then

A ·- abs X.RE;
B :: abs X.IM;

else
A ·- abs X.IM;
B : = abs X. RE;

end if;
if A> o.o then

return A* MATH_FUNCTIONS.SQRT(1.0 + (B/A)**2);
else

return 0.0;
end if;

end "abs";

-- etc.

end COMPLEX_OPERATORS;

Similar packages might be provided for vectors and matrices, though
we consider that these types, being useful in their own right, are
best packaged separately from their associated operators.

Such packages are discussed in detail in Chapter 5.

d) Parameter passing

Ada does not permit function or procedure names as parameters in
procedure calls but such information may be passed by means of
generics (LRM 12) . For example , a simple procedure for numerical
integration (quadrature) of a function F of a single real variable X,
between fixed limits of integration A and B, may have a declaration:

generic
with function F(X : REAL) return REAL;

procedure QUAD(A,B in REAL; R : out REAL);

Then integration of a specific function F1 with declaration:

function F1(X : REAL) return REAL;

5

6

may b1e achieved by means of an instantiation· of the generic
procedure:

proiaedure QUAD_F1 is new QUAD(F1);

follow,ed by a procedure call:

QUAD_F1 (A,B,R);

Issues raised by constructions of this form and other uses of
generics, e.g. with types as parameters, are discussed in Chapter 6.

e) Error handling

The Ada concept of exceptions (LRM 11) provides an error handling
mechanism which must be fully explored. An exception is an event that
causes suspension of normal program execution. On detecting the event
the corresponding exception is raised. Executing some actions, in
response to the occurrence of an exception, is called handling the
exception.

Exception names, other than a few predefined exceptions, such as
CONSTRAINT ERROR and NUMERIC_ERROR, are introduced by exception
declarations, e.g.

SINGULAR : exception;

Exceptions can be raised by raise statements or by subprograms,
blocks or language-defined operations that propagate the exceptions.
When an exception occurs, control can be passed to a user-provided
exception handler at the end of a unit, i.e. at the end of a block or
of the body of a subprogram, package or task. This handler acts as a
substitute for the remainder of that unit; so that, for example, a
handler within a function body may execute a return statement on its
behalf.

The handling of an exception raised during execution of a sequence
of statements depends on the innermost block or body that encloses
the relevant statement (LRM 11.4.1). However, if an exception occurs
during the elaboration of the declarative part of a block or body, or
during the elaboration of a subprogram, package or task declaration,
this eilaboration is abandoned. The exception is then propagated to
the unit causing the elaboration, if there is one; otherwise, the
program is abandoned (LRM 11.4.2). It follows that one may sometimes
wish to avoid the raising of exceptions in the declarative part of a
library unit, possibly by enclosing the necessary declarations in an
inner block so that exceptions due to errors in input parameters can
be handled in the surrounding body.

Such issues and more general questions regarding error handling in
Ada are discussed in Chapter 7,

f) Working-space organisation

Working-space must be efficiently organised. In Ada, this may depend
upon how arrays are stored, particularly on a machine with paging.

Storage which is no longer required may be reclaimed, to be used
again, by a garbage collector. However, in Ada, the existence of a
garbage collector is implementation dependent and software which
relies upon it should therefore make this clear. In any case, the
programmer may prefer to do his own tidying-up, e.g. in a real-time
program where he may achieve better timing control by so doing
(Barne:s, 1982, p.253). For access types, he may use the predefined
gener1.c procedure UNCHECKED DEALLOCATION which has the specification:

gi,meric
type OBJECT is limited private;
type NAME is access OBJECT;

pirocedure UNCHECKED_DEALLOCATION(X in out NAME) ;

with a typical instantiation of the form:

p1r-ocedure FREE is new
UNCHECKED_DEALLOCATION(object_type name, access type name);

A.11 aspects of working-space organisation are discussed in
Chapter 8.

g) Real-time environment

Ada has been specifically designed for real-time computation and the
needs of real-time users must therefore be taken into account. For
example, they may require that a program should continue to run in
all circumstances - no matter what errors may arise during its
execution. This may be achieved by the inclusion of an exception
handler of the form:

when others=>
-- sequence of statements

where the sequence of statements carries out appropriate remedial
action to enable the computation to continue in the event of any
unforeseen error arising.

In real-time situations, such as process control, a result of a
computation may be required at a particular time; the precise
response moment may not be known in advance but, when it arrives, the
answer must be immediate. This can affect the choice of an algorithm
or the way in which it is implemented. For example, if an iterative
process consists of several parts (which may run concurrently), of
which the results are normally added together at the end of the
process (when each part has reached a specified accuracy), it would
be preferable in this case to keep a running total (with an estimate
of its accuracy) to be used in the event of a rendez-vous being met
befo,re the iteration is complete.

Issues such as these are discussed in Chapter 9,

7

8

3. PRECISION

In this chapter we consider the problems concerned with the accuracy
of rea.l types in Ada, introduced in section (a) of Chapter 2. Our
discussion takes the form of a series of notes, labelled
alphabetically for easy reference.

a) Hardware types

The predefined types FLOAT, SHORT FLOAT and LONG FLOAT correspond to
the hardware. Since one view of-numerical packages is to consider
them as additions to the hardware, one might conclude that all
library software should be written in terms of these predefined
types. However, this would not be a good idea for reasons of
portability. The language does not state any specific accuracy for
FLOAT and, since this is the name assigned if there is only one
floating-point type, the actual accuracy is likely to vary
considerably. Hence the use of the predefined types cannot be
recommended in general. (Since the names FLOAT, SHORT FLOAT and
LONG F'LOAT are not reserved in Ada, one could possibly redeclare
them-;- to achieve the portability that would otherwise be lacking, but
this is rejected on the grounds of obscurity.)

b) Deri ve,d types

It may appear that the type compatibility rules make it very
diffic:ult to write any portable library software at all. Yet, if
LONG FLOAT is available as well as FLOAT, one can certainly imitate
standard FORTRAN practice by declaring

type REAL is new FLOAT;
type DOUBLE is new LONG _FLOAT;

and writing all program units in terms of these 'derived' types.
Alternatively, if SHORT_FLOAT is available, one may declare

type REAL is new SHORT FLOAT;
type DOUBLE is new FLOAT;

and ufse these derived types in all program units. In either case, we
have a possible solution (though not necessarily the best) to the
probleim of providing portable software.

c) Attributes

In AdaL, most of the properties of a real type can be accessed by its
'attrj.butes' which are defined as part of the language (LRM 3.5.8,
3.5.10). This enables one, when writing software, to anticipate the
problems of moving code to another machine. For instance, an
approximation may be known to be good for 10 digits but not more, in
which case one can write

if REAL'DIGITS <= 10 then
SIMPLE_APPROXIMATION;

elise
MORE COMPLEX CASE;

end if;- -

where, if the static condition is TRUE, the code for the
MORE COMPLEX CASE (though it must be valid) need not be compiled (cf.
section (e) below) . Careful use of these facilities permits one to
write code which is robust and numerically correct across almost all
conceivable machines. In this, one is aided by the fact that the
numer:ical properties of real types are defined in the language
reference manual (LRM 4.5.8).

d) User-defined types

The contrary view to that expressed in section (a) above is that of
the applications programmer who wishes (not unnaturally) to ignore
details of the specific hardware in use. His concern is to program in
a portable manner knowing that, for example, 10 digits of accuracy
will suffice for his particular application. He therefore declares

type MY_REAL is digits 10;

whereupon the problem is that, since MY REAL is dependent upon the
appli,cation, numerical library packages (written in terms of a
diffeirent real type) cannot be called directly.

One approach to this problem is the use of generics, as in the
input-output system (LRM 14.4). There, for· example, the output
procedure PUT may be made available for MY REAL by instantiating the
generic package FLOAT_IO, which is inside the package TEXT_IO, thus:

with TEXT IO;
pr•ocedure-MAIN is

package MY IO is new TEXT_IO.FLOAT_IO(MY_REAL); use MY_IO;
X : MY REAL;

begin -

PUT(X);

end MAIN;

As a consequence of the need to instantiate the generic, this
solution has some severe disadvantages. It is very unlikely that the
instantiation of a generic will be a cheap operation for the
compiler. At worst, it could amount to an overhead comparable with
the recompilation of the instantiated body. With a large mathematical
library, such an overhead might not be acceptable. Moreover, the body
of the instantiated package could need to call other packages which
would themselves need to be instantiated. The compiler overhead for
such an activity is likely to be even greater than that for the
ordinary text.

In practice, perhaps such generic packages will be precompiled for
each of the relevant predefined types, such as the hardware types of
section (a), and the appropriate version selected at instantiation.
However, the conclusion here is that generics need to be used with
care, at least within the context of a large library. The advantage
of geinerics is that they do allow one to write a subprogram or
package for any accuracy and let the user select the appropriate
accuracy. Thus they are ideal for the user who is prepared to tailor
a system to his own specific requirements.

e) Use of generics

On the assumption that some use is made of generics, subprograms or
packages can call any low-level routines that may be provided for the

9

10

hardware types by means of tests on the attributes and conversions. A
simple example might be

generic
type REAL is digits<>;

function ... SQRT (X REAL) return REAL;

function SQRT(X REAL) return REAL is
begin

if REAL'DIGITS <= FLOAT'DIGITS then
return REAL(SQRT(FLOAT(X)));

else
return REAL(SQRT(LONG_FLOAT(X)));

end if;
end SQRT;

specification

body

Note the use of explicit conversion and the two distinct calls of the
overloaded function SQRT. Of course, for a specific instantiation of
this generic, a compiler should optimise the code so that no
condition is tested or code produced for the other leg. Note,
however, that the condition involving REAL'DIGITS is no longer static
(cf. section (c) above) when REAL is a generic actual parameter
(LRM 4. 9).

Unfortunately, the code given here is not portable, since it has
been assumed that both FLOAT and LONG FLOAT are available, which may
not be the case. Moreover, no allowance is made for the possibility
that REAL'DIGITS >= LONG FLOAT'DIGITS for which an exception could be
raised.

f) Library design

For a large library, the use of other subroutines by existing
routines implies that a standard type or set of types must be used
for real types. Such standard types may be collected together in one
package:

package REAL TYPES is
type REAL is digits ... , -- an implementation choice

end REAL_TYPES;

Then a library package may operate in terms of these, for example:

with REAL TYPES; use REAL TYPES;
package MATH_FUNCTIONS is-

function SQRT(X : REAL) return REAL;

-- SIN, COS, etc.

end MATH_FUNCTIONS;

-- specification

However, if the corresponding package body is written for only the
standard types, with their specified accuracy, this approach lacks
generality, since there may well be a need for a function, e.g. a
square root, of higher accuracy. Moreover, the textual body of SQRT
may well admit any accuracy.

It is preferable therefore to implement MATH FUNCTIONS by means of
a generic package:

generic
type REAL is digits<>;

package GEN MATH FUNCTIONS is

function SQRT(X : REAL) retu.rn REAL;

-- SIN, COS, etc.

end GEN_MATH_FUNCTIONS;

The body of this package, written for any accuracy, takes the form:

package body GEN_MATH_FUNCTIONS is

function SQRT(X : REAL) return REAL is

SIN, COS, etc.

end GEN_MATH_FUNCTIONS;

Then the library package specification above may be replaced by the
instantiation:

pa,ckage MATH_FUNCTIONS is new GEN_MATH_FUNCTIONS(REAL);

in which case:

use MATH_FUNCTIONS;

permits one to call, for example, SQRT(X) for X : REAL.
At the same time, this approach allows a sophisticated user, who

is not satisfied with the package REAL_TYPES, to declare his own real
types:

pa;::ikage MY TYPES is
type MY-REAL is digits ... '

end MY_TYPES;

and to call the basic mathematical functions for these types:

wit.h MY TYPES; use MY TYPES;
with GEN MATH FUNCTIONS;
prc:>cedure MAIN is

package MY_FUNCTIONS is new GEN_MATH_FUNCTIONS(MY_REAL);
X, Y MY REAL;

begin -

Y ·- MY_FUNCTIONS.SQRT(X);

end MAIN;

1 1

12

4. BASIC FUNCTIONS

In this chapter the following problems concerning basic functions are
identified and discussed:

contents of a package of basic mathematical functions,
naming of basic mathematical functions,
method of use for user-defined types,
efficiency of execution,
calling sequences,
exception handling,
package specification.

Each of these problems is considered in a separate section.

a) Contents of a package of basic mathematical functions

Although large sets of mathematical functions are sometimes required,
we propose that only Square Root and the Elementary Transcendental
Functions, as given in Abramowitz and Stegun (1965) but omitting the
secant and cosecant functions, should be components of a basic
Mathematical Functions package (see section (b)). In ~his package, we
also include number declarations for PI and the base of natural
logarithms e (here named EXP 1), and the circular functions with
period 2 instead of 2*PI (named SIN PI, COS PI, TAN PI and COT PI).
All other functions can be contained in several packages of Special
Mathematical or Statistical Functions.

It must be mentioned that due to the proposed structure of this
Mathematical Functions package there is no need for (visible) type
declarations in the package (see section (c)) . In our opinion, the
package obtained through an instantiation with a floating-point type
FPT, chosen by the user, should provide all the basic mathematical
functions for this type FPT, each of the form:

function MATH_FUNCTION(X: FPT) return FPT;

We reject a set-up in which every basic function has its specific
types and subtypes, to which a user has to accommodate.

Through each instantiation the user receives a package with the
familiar basic functions (as an extension of the set of arithmetic
operators) for his chosen floating-point type. In this connection we
note that such an instantiation is not necessary if the user-defined
type is a derived type (like type REAL is new FLOAT) and an
instantiation of GEN MATH FUNCTIONS (see section (b)) is already
available for the parent type.

The package is not subdivided into smaller local packages, each
containing some connected basic functions, since this would make
calls of these functions too verbose.

We do not propose a separate non-generic version of the basic
Mathematical Functions package. We propose instead that the program
library contains at least one standard instantiation of this package
with FLOAT (or the library type REAL) as generic actual parameter.
(Note that a particular installation might prefer to create such an
instantiation from an Ada text by expanding the generic declaration.)

Finally, we do not propose a DEGREES version of the circular
functions here, as these functions would have different types for
argument and result and this would not fit into a general package.
The user should be warned that he does not get a proper DEGREES
version by merely instantiating GEN MATH FUNCTIONS with the type
DEGREES.

b) Naming of basic mathematical functions

The package itself should be named:

GEN_MATH_FUNCTIONS,

13

where 'GEN ' signifies that the package is a generic one with respect
to the provided (user-defined) floating-point real type (see also
section (c)). Its components should be named:

PI, EXP_1 (the base e of natural logarithms),
SQRT,
LN (and alternatively LOGE), LOG 2, LOG 10

(logarithms for bases e, 2 and-10 respectively),
EXP, TWO EXP, TEN EXP

(powers of e, 2 and 10, respectively, with real exponent),
SIN, COS, TAN, COT,
SIN PI, COS PI, TAN PI, COT PI,
ARCSIN, ARCCOS, ARCTAN, ARCCOT,
SINH, GOSH, TANH, GOTH,
ARCSINH, ARCCOSH, ARCTANH, ARCCOTH.

Although we agree with other authors, such as Barnes (1982), that
identifiers should be meaningful and that abbreviations should not be
used where there is any risk of confusion, we think that for the
basic mathematical functions the traditional names above are
sufficiently familiar. We use the name EXP 1 rather than E, for the
base of natural logarithms, on the grounds that there is a
significant risk of misuse of E, e.g. when 1.0*E-1 is written instead
of 1.0E-1 (assuming a mixed-type subtraction operation to be
available) or when E occurs naturally in a sequence of real variables
A, B, C,

c) Method of use for user-defined types

In accordance with section (f) of Chapter 3, the package structure
should be as follows:

generic
type REAL is digits<>;

package GEN MATH FUNCTIONS is

function SQRT(X : REAL) return REAL;

-- LN, EXP, etc.

end GEN_MATH_FUNCTIONS;

Then the package may be made available
floating-point type, and also for the
SHORT FLOAT and LONG FLOAT (if present) with
accuracies, by an -instantiation of the
concerned; for example:

type REAL 6 is digits 6;

for any user-defined
standard types FLOAT,
implementation-dependent
package for the type

package MATH_FUNCTIONS_6 is new GEN_MATH_FUNCTIONS(REAL_6);

-- and for the standard type FLOAT:

package STD MATH FUNCTIONS is new GEN_MATH_FUNCTIONS(FLOAT);

14

(For completeness we remark that the program unit containing such an
instantiation must include GEN MATH FUNCTIONS in its context
specification.) For derived types, the package is automatically
available from the parent type.

No allowance is made here for mixed-type expressions, as when a
specification like

function SQRT(A: AREA) return LENGTH;

is needed. We assume that any such application will be effected by
the user by means of type conversions or overloadings.

Finally we remark that it is perfectly acceptable for every
instantiation to deliver the same numbers PI and EXP 1 (since they do
not depend upon the generic actual parameter).

d) Efficiency of execution

When writing an Ada source text suitable for calculating values of
some basic function for every possible accuracy, the following
problems are faced:

Whatever the machine arithmetic, the algorithm executed must
deliver values as specified with maximal accuracy if the argument
is inside its range. In agreement with the recommendations of the
Ada-Europe Portability Group (Nissen et al., 1981), algorithms
must be given for accuracies ranging from digits 5 up to digits 10
at least, but in the present context we propose an extension of
this requirement up to digits 35,

The exception SIGNIFICANCE ERROR should be raised for calls
when the argument cannot be used for calculating the value of the
basic function with useful accuracy (e.g. for a call of
SIN('10.0 ** REAL'DIGITS)). A problem ·here is that the function
body cannot be made aware that the user (the function call)
expects a smaller precision than normally, as would be the case if
the type provided for the function result had a less stringent
accuracy constraint than the type for the parameter. Here all
functions have the same floating-point type for parameter(s) and
function result. The (arbitrary) solution is that
SIGNIFICANCE ERROR is raised only if more than a specified number
of digits will be lost. The alternative, restricting calls of the
functions SIN, COS, TAN and COT to arguments in [- 2*PI, + 2*PI],
is not supported.
Algorithms may have many branches conditional upon the number of
bits of the mantissa of model numbers (LRM 3.5.8) (and perhaps
also the machine mantissa, machine exponent and other machine
properties) .
Expressions must be built by the elementary operators only, though
some basic functions may call other (more basic) ones from the
same package.
If some branching depends on the value of an argument then it
should be distinctly separated from branching which depends on
attributes of the generic type. In this way optimising compilers
will not be prevented from deleting dead branches.
The standard type FLOAT cannot be used inside the packages for
local declarations and calculations, as this might imply an
undesirable loss of accuracy in the final results. Alternatively,
it might signify a waste of computer time if FLOAT is much more
accurate than necessary. The algorithm might use different
approximations for different accuracy constraints. For this reason
we advise that branching of algorithms is not by the
MACHINE MANTISSA attribute but by the DIGITS or the MANTISSA
attribute.

- As static expressions in floating-point type definitions cannot
depend on attributes of the generic actual parameter (LRM 4.9), it
is not possible to make a local floating-point type definition
with a (slightly) larger accuracy for performing the internal
calculations. All algorithms for basic functions must simply
deliver the best results possible using the user-supplied
floating-point type. If this user-supplied type has unexpected
additional constraints, then an exception (CONSTRAINT ERROR) will
be raised upon violation. This exception can also be raised in the
package body (elaborated upon instantiation) if the user-defined
type is unfit for any calculation at all.

- In the same way static expressions in fixed-point type definitions
cannot depend on attributes of the generic actual parameter. So
the idea of Wichmann (1981) of using local fixed-point arithmetic
for evaluating polynomials cannot apply here, because the
appropriate fixed-point types cannot be defined (unless the types
are declared inside the different branches). Besides, it will be
uncertain whether a fixed-point type with as large a mantissa as
that of the floating-point type is supported.

- No exception occurring in intermediate calculations should be
propagated to the user's call (provided that the final result
would not be exceptional). Only when the final result is
exceptional, due to a bad argument of the function call, should an
appropriate exception be raised (see section (f)).

- Program units using the basic Mathematical Functions package
should not each make their own instantiation of
GEN MATH FUNCTIONS, as this might imply that several copies are
made. Consider for example:

generic
type REAL is digits<>;

package GEN CHOLESKY is
type SYMMATRIX is array(INTEGER range<>) of REAL;
procedure CHOLESKY DECOMPOSITION(MAT : in out SYMMATRIX);

end CHOLESKY; -

with GEN_MATH_FUNCTIONS;
package body GEN_CHOLESKY is

package MATH FUNCTIONS is
new GEN MATH FUNCTIONS(REAL);

use MATH _FUNCTIONS;

procedure CHOLESKY_DECOMPOSITION(~,AT in out SYMMATRIX) is

Local declarations

begin
DECOMPOSE MAT;

end CHOLESKY=DECOMPOSITION;

end CH OLESKY;

Such a package, which itself must be instantiated, would require
an instantiation of the basic Mathematical Functions package and
so would all other similar numeric packages.

A solution might be that a numeric package (in the above and
following examples for the Cholesky decomposition of symmetric
positive-definite matrices, which needs the SQRT function) is
given as a generic package with, as generic parameters (besides
the user-supplied floating-point type), those basic mathematical

15

16

functions which it uses. These generic subprogram parameters must
be declared with themselves as defaults, e.g.

generic
type REAL is digits<>;
with function SQRT(X : in REAL) return REAL is<>;

-- visible through a use clause
package GEN CHOLESKY is

type SY~iMATRIX is array(INTEGER range<>) of REAL;
procedure CHOLESKY DECOMPOSITION(MAT : in out SYMMATRIX);

end GEN_ CH OLESKY; -

Such a generic package can be used in the following way:

with GEN MATH FUNCTIONS, REAL TYPES; use REAL TYPES;
with GEN-CHOLESKY; -- and other numeric packages, etc.
procedure MAIN is

-- Instantiations:

package MATH FUNCTIONS is
new GEN MATH FUNCTIONS(REAL);

use MATH_FUNCTIONS;

package MY_CHOLESKY is new GEN_CHOLESKY(REAL);

begin

Note that the name SQRT is visible and that SQRT
can be used as the default for the generic actual
parameter, as it has the correct subprogram
specification.

etc.

MAIN PROGRAM STATEMENTS;
end MAIN; -

e) Calling sequences

Assuming the availability of the instantiation:

type REAL 6 is digits 6; -- as an example
package MATH FUNCTIONS 6 is

new GEN_MATH_FUNCTIONS(REAL_6);

and the use clause:

use MATH FUNCTIONS_6;

it follows from the full declarations given in section (g), below,
that each of the basic mathematical functions can be called, taking
SQRT as an example, in each of the following ways:

MATH_FUNCTIONS_6.SQRT(REAL_6_EXPRESSION) -- as a primary

SQRT(REAL_6_EXPRESSI0N) when the component SQRT of the
-- package is visible

SQRT(X => REAL 6 EXPRESSION) using the name of the
formal parameter.

The declarations of ARCTAN and ARCCOT allow a particular function
call for arguments close to INFINITY. Their declarations read:

function ARCTAN(X
function ARCCOT(X

REAL; Y
REAL; Y

REAL ·- 1.0) return REAL;
REAL ·- 1.0) return REAL;

These are the only basic functions with a default (second) parameter,
to the effect that a call:

ARCTAN(REAL_EXPRESSION)

delivers the normal arctangent value in the range [- PI/2, PI/2],
whereas:

ARCTAN(REAL_EXPR1, REAL_EXPR2)

delivers the angle between the X-axis and the radius vector of the
Cartesian point (REAL EXPR2, REAL EXPR 1) (note the different orders
of the coordinates and the parameters of ARCTAN) lying in the range
(- PI, PI].

f) Exception handling

Possible exceptions are:

NUMERIC ERROR,
ARGUMENT ERROR,
CONSTRAINT ERROR,
SIGNIFICANCE ERROR,
(PROGRAM_ERROR).

We propose that an exception is raised if an algorithm fails to
deliver the required result,· but only if the final result itself
would be exceptional. In most cases the exception that is raised by
the machine hardware (usually NUMERIC_ERROR or C0NSTRAINT_ERROR) can
be propagated, but it is allowed that a basic function handles these
exceptions and raises one of the other exceptions as the case may be.
More specifically, if the hardware does not raise NUMERIC. ERROR but
returns special values, then the function body should not raise an
exception, as it might be the user's wish to continue the
calculations with these special values. This may be compared with the
IEEE recommendations for binary floating-point arithmetic (IEEE,
1981): they advise that exceptions (like invalid operations, division
by zero, overflow, underflow) must be detected by the hardware, but
that the user should have the means to enable and disable the
corresponding traps.

As has been stated in section (d) , SIGNIFICANCE ERROR should be
raised when the argument is insufficiently accurate to permit
computation of accurate results. No guidelines are offered in respect
of certain special exceptions, like the raising of PROGRAM ERROR if
storage is exhausted when instantiating the generic package or
calling one of its constituents.

g) Package specification

To conclude this chapter, we give here the complete generic package
declaration:

17

18

-- --generic
type REAL is digits<>;

package GEN_MATH_FUNCTIONS is

-- Declare constants.

PI : constant := 3.1415 92653 58979 32384 62643 38327 95029;
EXP_1 : constant:= 2.7182_81828_45904_52353_60287_47135_26625;

-- Declare the basic mathematical functions.

function SQRT(X : in REAL) return REAL;
function LN(X : in REAL) return REAL;
function LOG E(X : in REAL) return REAL renames LN;
function LOG-2(X : in REAL) return REAL;
function LOG-10(X : in REAL) return REAL;
function EXP(X : in REAL) return REAL;
function TWO EXP(X : in REAL) return REAL;
function TEN-EXP(X : in REAL) return REAL;
function SIN(X in REAL) return REAL;
function COS(X in REAL) return REAL;
function TAN(X in REAL) return REAL;
function COT(X in REAL) return REAL;
function SIN PI(X in REAL) return REAL;
function COS-PI(X in REAL) return REAL;
function TAN-PI(X in REAL) return REAL;
function COT-PI(X in REAL) return REAL;
function ARCSIN(X in REAL) return REAL;
function ARCCOS(X in REAL) return REAL;
function ARCTAN(X in REAL; Y: in REAL ·- 1.0) return REAL;
function ARCCOT(X in REAL; Y : in REAL ·- 1.0) return REAL;
function SINH(X in REAL) return REAL;
function COSH(X in REAL) return REAL;
function TANH(X in REAL) return REAL;
function COTH(X in REAL) return REAL;
function ARCSINH(X in REAL) return REAL;
function ARCCOSH(X in REAL) return REAL;
function ARCTANH(X in REAL) return REAL;
function ARCCOTH(X in REAL) return REAL;

-- Declare exceptions.

ARGUMENT_ERROR, SIGNIFICANCE_ERROR : exception;

end GEN_MATH_FUNCTIONS;

For the package body, guidelines about the delivered accuracy and
the raising of exceptions are given in sections (d) and (f). No error
messages should be issued (and the package body should not itself
instantiate one of the I/0 packages). We advise that all the program
components of the package body are given as body stubs with separate
subunits. An example of a package body is offered in Appendix 1.

REFERENCES

Abramowitz, M. and Stegun, I .A., eds.
functions, Dover, New York, 1965.

Handbook of mathematical

Barnes, J.G.P. Programming in Ada, Addison-Wesley, London, 1982.

Cox, M.G. and Hammarling, S.J. Evaluation of the language Ada for use
in numerical computations. NPL Report DNACS 30/80, July 1980.

Ford, B., Bentley, J., Du Croz, J.J. and Hague, S.J. The NAG Library
"machine". Software Pract. Exper., 1979, 2_, 56-72.

Hammarling, S.J. and
Proceedings of the 1981
numerical computation
Colorado, August 1981,
1982.

Wichmann, B.A. Numerical packages in Ada.
IFIP WG 2.7 workshop on the relationship between
and programming languages, held at Boulder,
edited by J. K. Reid, North Holland, Amsterdam,

Hemker, P.W., ed. NUMAL, a library of numerical procedures in Algol 60,
Mathematisch Centrum, Amsterdam, 1981.

IEEE. A proposed standard for binary floating-point arithmetic.
Computer, 1981, ~(3), 51-62.

Nissen, J.C.D., Wallis, P., Wichmann, B.A. and others. Ada-Europe
guidelines for the portability of Ada programs. NPL Report DNACS 52/81,
November 1981.

United States Department of Defense.
programming language, July 1980.

Reference manual for the Ada

Wichmann, B. A. Tutorial material on the real data-types in Ada. Final
Technical Report, NTIS No. AD-A103482/6, NPL, January, 1981.

19

36463

