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Factoring polynomials over algebraic number fields.

In [8] a polynomial-time algorithm was given to factorize polynomials in
one variable with rational coefficients. In this paper we generalize this
result to polynomials in one variable with coefficients in an algebraic
number field.

The existence of a polynomial-time algorithm for this problem is not
surprising in view of [8]. According to Trager [12] the problem is reducible
to the factorization of univariate polynomials with integral coefficients,
and in [6] it is shown that this reduction is polynomial-time. Here we
pursue a direct approach to the factorization of polynomials over algebraic
number fields. As suggested in [7: Section 5] we regard the irreducible
factor we are looking for as an element of a certain integral lattice, and
we prove that it is the 'smallest' element in this lattice. As we have seen
in [8] this enables us to effectively compute this factor by means of a
basis reduction algorithm for lattices.

Section 1 contains some notation and definitions; furthermore we
recall there some results from [8: Section 1]. Section 2 deals with the
connection between factors and lattices. It generalizes the first part of
[8: section 2]. In Section 3 we give a global description of the factoring
algorithm and we analyze its running time.

For a pclynomial £ we denote by &f the degree of £, by &c(f)

the leading coefficient of £, and f 1is said to be monic if Qc(f) = 1.



1. Preliminaries.

Let the algebraic number field @(a) be given as the field of rational
numbers @ extended by a root o of a prescribed monic irreducible poly-
nomial F e¢z[T], i.e. @(a) = @[T]/(F). This implies that the elements
of @(a) can be represented as polynomials in o over @ of degree < GF.
We may assume that the degree of the minimal polynomial F 1is at least 2.

Similarly, we define Z[ol = Z[T]/(F) as the ring of polynomials in
o over Z of degree < 6F, where multiplication is done 'modulo F'.

Let f be a monic polynomial in @(oa)[X]. 1In Section 3 we will de-

scribe how to choose a positive integer D such that
(1.1) f and all monic factors of £ in @(o)[X] are in %ZZ[OL][X].

The algorithm to determine the irreducible factors of £ in @(a)[X]
that we will present, is very similar to the algorithm for factorization
in Z[xXx] as described in [8]: first determine the factorization of £
over some finite field (Z/pZ in [8]), next extend this factorization
to a factorization over a large enough ring (z/pkzz in [8]), and finally
use a lattice reduction algorithm to determine the factors over @Q(a).
Therefore, we first describe how to choose this finite field and this ring.

Let p be a prime number such that
(1.2) p does not divide D,

i
and let k be a positive integer. For G = Zi aiT € Z[T] and some inte-

ger £ we denote by G, or (G mod pz) the polynomial Zi(aimod p'Q)Tl €

L
(z/plz)['r]. In Section 3 we will see that we are able to determine p



in such a way that we can compute a polynomial H e Z[T] such that

(1.3) H is monic,
(1.4) divid F in (Z2/ kZZ)[T]
. Hk ivides k i P '
(1.5) H1 is irreducible in (Z/pZz)[T],
(1.6) (Hl)2 does not divide Fy in (zZ/pz)[T].

It follows that H divides F

1 1 in (Z/pzZ)[T], and that O < 8H < 6F.

This polynomial H, together with the prime number p and the inte-
ger k, gives us the possibility to construct the finite field and the
ring we were looking for. We denote by g the prime-power pGH and by

Fq the finite field containing g elements. From (1.5) we derive that

SH-1 i
Fq = (Z/p Z)[T]/(Hl). Remark that Fq = {Zi=0 ajo) :oa, e Z/p 72}
where a, = (T mod(Hl)) is a zero of Hl' This enables us to represent

over Z/p7Z of degree < §H.

the elements of .‘Fq as polynomials in ay

The finite field Fq corresponds to Z/pZ in [8]; we now define the

k
ring which will play the role of Z/p Z in [8]. Let Wk

(F_) =
q
(Z/pk ZZ)[T]/(Hk) be a ring containing qk elements. We have that Wk(]E‘q)

= {ZGH-1 a.al : a € zz/pkzz} where a

10 1% = (T mod(H.k)) is a zero of H,.

k k

So elements of Wk(]F'q) can be represented as polynomials in o over
ZZ/ka of degree < §H, and Wk(JFq) can be mapped onto Fq by reduc-
ing the coefficients of these polynomials modulo p. For a € Wk(:Fq Y [x]
we denote by (a mod p) € Fq [x] the result of applying this mapping
coefficient-wise to a. Remark that Wl(]Fq) = Fq .

1
We now show how we map polynomials in BZZ[OL][X] to polynomials in

Fq [x] and Wk(Fq J[X] respectively. Clearly, the canonical mapping from



2
zLTl/(F) to (Z/p Z)[T]/(Hl) defines a mapping from Zlal]l to WQ(Fq),
for 2 = 1,k. (Informally, this mapping works by reducing the polynomial

in o modulo p2 and Hl(a).) For a € Zlal we denote by (a mod(pz,HQ))

€ WQ(EkI) the result of this mapping. Finally, for g = Zi ?;-X €

%ﬂz[a][X] we denote by (g mod(pz,HQ)) the polynomial
-1 % ) i . . -1 )
Zi(((D mod p )ai)mod(p ,Hl))X € Wl(}il)hxj. Notice that D "mod p~ ex-

ists due to (1.2).

(1.7) We conclude this section with some results from [8: Section 1]. Let

n be a positive integer, and let bl'b2""'bn € I{n be linearly indepen-

dent. The lattice L c an of rank n spanned by b, ,b ,.,.,bn is defined

172

as

L=3s" zb, =1{%  rb, :r, ez (1 <i<n)}.
i=1 i i=1 "i i i

We assume that the nxn matrix having bl’b2""’bn as columns is upper-
triangular, i.e. the (j+1)-th up to the n-th coordinate of bj is zero,

for 1 £ j < n. This implies that we can regard the lattice Lj of rank

j spanned by bl'b2""'bj as a lattice contained in Hij, for 1 £ 3 < n;

notice that L = Ln' Furthermore we assume that b ..b e (

]I 2!"
.I D -

Let B € Z_, be chosen in such a way that IDbi! <B for 1 <i<n,

2
where || denotes the ordinary Euclidean length.

In [8: (1.15)] a basis reduction algorithm is given that transforms a

basis b, ,b

1’ 2!"' b,

,bj of a lattice Lj into a reduced basis 51,52,..., j

for Lj. We won't recall the definition of a reduced basis here [8: (1.4),
(1.5)], it suffices to say that the first vector 51 in such a reduced

basis satisfies



(1.8) 15112 < 297« ]
J

for every Xj € Lj' xj 20 [8: (1.11)]. The number of arithmetic operations
needed by the basis reduction algorithm is O(j4log B), and the integers
on which these operations are performed each have binary length 0(j log B)
[8: (1.26)1].

The first time that the wvector bj is considered during the computation
of a reduced basis for Lj' is at the moment that a reduced basis for Lj—l

is obtained already; i.e. the computation of a reduced basis for L._1 con-
stitutes the first part of the computation of a reduced basis for Lj [8:
(1.37)1.

It follows that we can find an approximation of the shortest vector in
Ln in O(n4log B) operations on integers having binary length 0O(n log B),
and as a byproduct of the computation we get approximations of the shortest
vectors in the lattices Lj without any time loss. If the approximation
of the shortest vector in Lj, for some j, satisfies our needs already,
then we break off the computation as soon as we have found this approxima-

: .4 . .
tion, and the computation then takes O0O(j log B) operations on integers

having binary length O(j log B).

2. Factors and lattices.

This section is similar to the first part of [8: Section 2]. We formulate
the generalizations of [8: (2.5),(2.6),(2.7),(2.13)] to polynomials over
algebraic number fields. Let £, D, p, k, F, and H be as in Section 1.
We put n = §f; we may assume that n > O.

Suppose that we are given a polynomial h e Z[allX] - such that



(2.1) h is monic,
k . k .
(2.2) (h mod(p ,H,)) divides (f mod(p ,H,)) in w _(F )[x],
k k k' " q
(2.3) (h mod(p,Hl)) is irreducible in :Fq[x],
(2.4) (h mod(p,Hl))2 does not divide (£ mod(p,Hl)) in IFq[X].

We put 2 = Sh; so 0 < 2 <n. 1In Section 3 we will see which extra con-
ditions have to be imposed on p so that such a polynomial h can be de-

termined.

(2.5) Proposition. The polynomial £ has a unique monic irreducible factor

h_ in %ﬁE[a][X] for which (h mod(p,Hl)) divides (homod(p,H )) in

0 1

1
EkI[X]. Further, if a monic polynomial g € de[a][X] divides f 1in

@ (a)[X], then the following assertions are equivalent:

(i) (h mod(p,Hl)) divides (g mod(p,Hl)) in ZFq[X],
(ii) (h mod(pk,Hk)) divides (g mod(pk,Hk)) in Wk(IZI)[X],
(iii) hO divides g in Q(a)[x].

In particular (h mod(pk,H )) divides (h mod(pk,H )) in W _(F_)[x].
k 0 k k' Tg
Proof. Use (1.1) and the proof of [8: (2.5)]. [

(2.6) In the remainder of this section we fix an integer m with m > £.

1
We define L to be the collection of polynomials g € BﬁZ[a][X] such that:

(i) g < m,

(ii) if &8g =m, then 2c(g) €2,

s k . k .

(iidi) (h mod (p ,Hk)) divides (g mod(p ,Hk)) in Wk(E}I)[X].

We identify such a polynomial g = Zm_l SF-1 .uJXl +a xX° (where aij

i=0 “3=0 %ij mo

/4 . . .
EE;) with the (méF+1)-dimensional vector (aoo,a01,...,ao SF-1" alO""'



a1 GF—l'amO)' Using this identification between vectors and polynomials,
A e . . . m8F+1
it is not difficult to see that L is a lattice in R ; from the

fact that both H and h are monic ((1.3) and (2.1)) it follows that a

basis for L is given by

{%-pkajxi 0<3j<8H, O0<i<e} u
{%»aj_aHH(a)xi : H< j<6F, 0<ic<2g} u
{_;.ajhxi‘g': 0<3j<6F, L <i<m} u
™%}

Notice that the matrix having these vectors as columns is upper-triangular.

We define the length |g| of g as the ordinary Euclidean length of

. . . o om-1 _6F-1 2 2%
the vector identified with g, so |g| = (Zi=0 Zj=0 laij + Iamol ) %

the height I ax of g is defined as max{laijl}. Similarly we define

the length and the height of polynomials in Z[T].

(2.7) Proposition. Let b € L satisfy

m
(2.8) pRASH/SE (Df ((n+1) 6F (14F )GF'l)%> .
max max

n
(Db ((m+1) §F (14F )GF'l)%> )
max max

Then b is divisible by h0 in @(a)[X], where hO is as in (2.5).

In particular gcd(f,b) =z 1.

The proof of this proposition is very similar to the proof of [8: (2.7)7;

we therefore omit the details



Proof. Put g = gcd(f,b), and e

§g. We may assume that g is monic.

Identify the polynomials

(2.9) {a7x'F : 0<§ <6F, O

IN

i < Sb-e} U

{o3x'b : 0

IA

j<dér, O

IA

i < n-e}

with (SF (n+6b-e))~-dimensional vectors. The projections of these vectors

1 e 1 e 1 §F-1_e 1 e+l 1 §F-1 _n+db-e-1
- + =ZoaX + ...+ = + = +oe.. + =

on 5 Z X 5 a ) Z o X ) Z X ) Z o X

form a basis for a (6F (n+8b-2e))~-dimensional lattice M'. Using induction

on Jj one proves that

(@lxtf) = (a7f) < £ (14F )
max m X m.

ax ma ax’ '’

so that, for 0 < j < dF and 0 < i < §b-e,

[0 F] < £  V(n+1)OF (14F ).
max max

With Hadamard's inequality, and a similar bound on la7x'b] we get

& 1 L\l
amn /% < <f (1) 6r (147 ) °F 1)2) -
max max
n
(b ((m+1) 6F (14F )SF”l)%> ,
max max
where d(M') denotes the determinant of M'. With (2.8) this gives
k28H
(2.10) aMm') < ;7315755

Assume that (h mod(p,Hl)) does not divide (g mod(p,Hl)) in ]Fq[X].
By Proposition (2.5) it is sufficient to derive a contradiction from this.
Let Vv € %ﬂz[a][xj be some integral linear combination of the polynomials
in (2.9) such that 6v < e+. As in the proof of [8: (2.7)] it follows

k
from our assumption that (v mod(p ,Hk)) =0 in Wk(EEI)[X]- Therefore,



if we regard Afc(v) as a polynomial in o, we have
- k .
(2.11) fc(fc(v)) = 0 modulo p if &82c(v) < 6H.

Now choose a basis b for M!

e0"Pe1” " P 6r-1"Pes1 07 " Prisb-e-1 67-1
such that abij =i and Glc(bij) =3 for e £1i < n+éb-e and 0 £ j < 6F,

where lc(bij) is regarded as a polynomial in a. From (2.11) we derive

that
lc(ﬁc(bij)) = 0 modulo pk for 0 < j<G8H and e < i < e+l.
. Z .
Since fc(fc(b..)) € —, we obtain
ij D

k
b
|2c(£c(bij))|2 > for O

IN

j <S8H and e < i < e+l

and

for 6H £ j < 6F or e+ < i < n+éb-e.

O~

1ec(2c(, )2
1]

The determinant of M' equals the product of ]lc(lc(bij))l, so that

k2 6H k2 6H

> 2 .
D(n+6b—2e)6F D(n+m)6F

Combined with (2.10) this is the desired contradiction. [J

(2.12) To be able to formulate the generalization of [8: (2.13)] we need
an upper bound on the length of monic factors of f in %ﬂz[a][X]. In

Section 4 (4.8) we prove that a monic factor of degree < m has length

at most

L
lF‘2(6F 1

£ <2(n+1)6F3(6F—1)6F_1(2m)) Maiser (7)177,
maXx m

where discr(F) denotes the discriminant of F (so discr(F) = 0, since

F is an irreducible polynomial in z[T]).
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(2.13) Proposition. Suppose that 51,5 is a reduced basis for

2""'5m6F+1

L (see (1.7)), and that

(2.14) kaGH/dF 5 <2n(m6F+1)(n+1)n+m(m+1)n(i?)n6F4n+m(6F_1)n(6F—1)
e
(ar__ ) P O 55 sor () I"n> c(pf___)MHyp 20 (OF-D)
max max

Then we have Gho <m if and only if (2.8) is satisfied with b replaced
by Bl.

Proof. Use (2.12), (1.8), and the proof of [8: (2.13)]. O

3. Description of the algorithm.

Let f be a polynomial in @(a)[X] of degree n, with n > 0. We describe
an algorithm to compute the irreducible factors of f in @(o)[X].

For the moment we assume that f is monic. If D, p, H, and h are
chosen in such a way that the conditions in Sections 1 and 2 are satisfied,
then we can determine the factor h0 of f Dby means of Propositions (2.7)
and (2.13); this is described in more detail in Algorithm (3.1). After that,

we explain in (3.4) how we choose D, p, H, and h, and we analyze the

running time of the resulting factorization algorithm.

(3.1) Suppose that a positive integer D, a prime number p, and polyno-
mials H € Z[T] and h € zZ[ol[X] are given such that (1.1), (1.2), (1.3),
(1.5), (1.6), (2.1), (2.3), and (2.4), and (1.4) and (2.2) with k replaced

by 1, are satisfied. We describe an algorithm that determines h the

OI

monic irreducible factor of £ for which (h mod(p,Hl)) divides (homod

(p,Hl)), cf. (2.5).
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Put & = Sh; we may assume that & < n. We calculate the least positive

integer k for which (2.14) holds with m replaced by n-1:

(3.2) PKRSH/SF <2n((n-1)6F+1) (ne1y 201 nn(2r(lr_1-1-1))nGFSn—l(GF_l)n(SF—l)
(2n-1) (8F-1) -0\ 2n-1,_,2n (8F-1)
(1+F ) |discr (F) 1 ) «(DEf__) [F| .
max max

Next we modify H in such a way that (1.4) holds for the value of k just
calculated. The factor Hk = (H mod pk) of (F mod pk) gives us the possi-
bility to compute in Wk(Fq). Therefore we now modify h, without changing
(h mod(p,Hl)) in such a way that (2.2) holds for the above value of k.

The computations of the new H and h can both be done by means of Hensel's
lemma [5: exercise 4.6.22; 14; 13]; notice that Hensel's lemma can be applied
because of (1.6) and (2.4).

Now apply the basis reduction algorithm [8: (1.15)] to the (méF+1)-
dimensional lattice L as defined in (2.6), for each of the values m = L,
2+1,...,n-1 1in succession; but we stop as soon as for one of these values
of m we find a basis 51'52""'5m6F+1 for L such that (2.8) is satis-
fied with b replaced by Bl. If such a basis is found for a certain value
mo of m, then we know from (2.13) that 6ho < mo. Since we try the values
m= %,%8+1,...,n-1 in succession we also know from (2.13) that &h_. > m. -1,

0 0

0 divides 51 in @(a)[x] which

implies, together with 651 < My, that 651

so Sh. =m

0 0 By (2.7) the polynomial h

Il

mo. From (2.6) (ii) and from
the fact that h0 is monic we find that 51 = cho, for some constant c

€ Z. Using that h0 e L and that 51 belongs to a basis for L, we con-

clude that c¢ = +1, so that 51 = iho.

If on the other hand we did not find such a basis for L, then we know

from (2.13) that Gho > n-1. This implies that hO = f£. This finishes the
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description of Algorithm (3.1).

(3.3) Proposition. Denote by my = 6h0 the degree of the irreducible factor

hO of £ that is found by Algorithm (3.1). Then the number of arithmetic

operations needed by Algorithm (3.1) is O(mo(n56F6 + n46F6log(6FlF|) +
4
n46Fslog(Dfmax) + n36F log p)) and the integers on which these operations
2
are performed each have binary length O(n36F3 + n 6F3log(6F]F|) +

2.2
n 6F log(Dfmax) + ndF log p) .

Proof. Let m, be the largest value of m for which the basis reduction

algorithm is performed, so m1 = m0 or m1 = mo—l. From (1.7) it follows
that during the computation of the reduced basis for the (m16F+1)—dimen-
sional lattice, also reduced bases were obtained for the (méF+1)-dimension-
al lattices, for £ < m < ml' Therefore the number of arithmetic operations
needed for the applications of the basis reduction algorithm is

O((mléF)4log B), and the integers on which these operations are performed
each have binary length O(mIGF log B), where B bounds the length of the
vectors in the initial basis for L (cf. (2.6)). Assuming that the coeffi-

cients of the initial basis are reduced modulo pk, we derive from (3.2),

ldiscr(F)] =21, 8H =21, and & > 1 that
2.2 2
log B = 0(n"8F  + ndF log(SF]F|) + néF log(DfmaX) + log p).

Combined with m, = O(mo) this yields the estimates given in (3.3).

It is straightforward to verify that the same estimates are valid for

both applications of Hensel's lemma and for the computation of discr(F).

g
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(3.4) We now describe how to choose D, p, H, and h in such a way that
Algorithm (3.1) can be applied. The algorithm to factor f into its monic
irreducible factors in @(a)[X] then easily follows.

First we choose a positive integer D such that (1.1) holds, i.e. £
and all monic factors of f in @(o)[X] are in %ﬁz[u][x]. From [14] it
follows that we can take D = dc, where d is such that £ € éﬁZ[a][X],
and c¢ 1is the largest integer such that c2 divides discr(F). This
integer c¢ however might be difficult to compute; therefore we take
D = d |discr (F) | as denominator, which clearly also suffices.

We may assume that the resultant R(f,f') € @(a) of £ and its deriv-
ative f' is unequal to zero, i.e. f has no multiple factors in @(o)[X].
We apply the algorithm from [10] to determine p as the smallest prime
number not dividing Dediscr(F)R(£,f'); so (1.2) is satisfied.

Using Berlekamp's algorithm [5: Section 4.6.2] we compute the irreduc-
ible factorization (F mod p) = H§=1 (Gimod p) of (F mod p) in (Zz/p z)[T].
This factorization does not contain multiple factors because discr(F) Z 0
modulo p. Combined with R(f,f') Z O modulo p this implies that there

exists an integer e {1,2,...,t} such that

iO
(R(f,f")mod (p, (Giomod p))) # 0;

Iet H be such a polynomial Gio. We may assume that H is monic, so that
(1.3), (1.5), (1.6), and (1.4) with k replaced by 1 are satisfied.

Next we determine the irreducible factorization of (f mod(p,Hl)) in
IFq[X] by means of Berlekamp's algorithm [2: Section 5], where q = pGH
and ]Fq = (Z/p2z)[T]/(H mod p). (Notice that we use a modified version

of Berlekamp's algorithm here, one that is polynomial-time in p and 6H

rather than polynomial-time in the number of elements of the finite field.)
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Since f is monic the resultant R(f,f') is, up to sign, equal to the
discriminant of £, so that it follows from the construction of H that
the discriminant of £ 1is unequal to zero in Fq . Therefore (2.4) holds
for all irreducible factors (h mod(p,Hl)) of (f mod(p,Hl)) in I}IEX];
we may assume that these factors are monic.

The algorithm to factorize £ now follows by repeated application

of Algorithm (3.1).

(3.5) Proposition. The algorithm sketched above computes the irreducible

factorization of any monic polynomial f € %&Z[a][X] of degree n > 0.
The number of arithmetic operations needed by the algorithm is
6. 6 5. 6 5..5 . .
O(n 6F + n 6F log(S8F|F|) + n”6F log(dfmax)), and the integers on which
3

, , 3
these operations are performed each have binary length O(n 8§F~ +

n26F3log(6FﬂF]) + nZGFZlog(df ).
max

Proof. It follows from [3] that the calculations of R(f,f') and discr(F)

satisfy the above estimates. From Hadamard's inequality we obtain

SF, 28F-1
|F| ;

14

|discr (F) | < SF

it follows that
log D = O(log d + &F log(SF|F]|)).

Let A Dbe a matrix having entries A,, = ZsF_l a. . Tl e zZlT], for
ij 2=0 ije

1 <£i,j £<m, and some positive integer m. The determinant d(A) of A
is a polynomial of degree < m(8§F-1) in Z[T]. According to [4] the length,
and therefore the height, of d(A) is bounded from above by

1
m m SF-1 2\°
(szl 21 g }aijQI) ) .
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Using this bound it is easily proven that the height of d(A) modulo F is

bounded by

e
m m SF-1 2 (m-1) (8F-1)
(Hj=1 Zi1 Cgop 1355, ) ey .

It follows that

n-1 (2n-2) (8F-1)

(R(£,£")) < (Varl6FE ) (/néFnf )V (14F )
max max max m

ax

where R(f,f') is regarded as a polynomial in o. We find from the defi-

nitions of D and p that

< e di . ]
Hq prime, q < p g < dediscr(F)- (R(Af,df ))max

and this yields in a similar way as in [8] that
p = O(log d + néF log(SF|F]) + nlog n + nlog(dfmax)).

This implies that the computation of the prime number p, and the computa-
tion of the factorizations of (F mod p) in (Z/pZ)[T] and (f mod(p,Hl))
in I21[X] satisfy the estiﬁates in (3.5). Proposition (3.5) now easily
follows from the bounds on log D and p, and from the observation that

a monic factor g of f in @(a)[X] satisfies log(gmax) = O(S8F log(SF|F])

+ n + log(fmax)) (see (4.7)). O

(3.6) We now drop the assumption that £ is monic, so let f be a polyno-
mial of degree n > 0 in Z[al[X]. We show that there exists a monic poly-

nomial f = lc(f)-lf € é&z[a][X], such that log(dfmax) = O(SF log(SF|F|) +

SF log (£ )), for some non-zero integer d.
max

Denote by C(a) = Ziﬁal Cial € Zlal the leading coefficient of f£.

The resultant R(C,F) eZ of C and F is defined as the determinant of
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the following matrix:

|
(co 0 . . .0 Fy 0 . .0
. ... . . 0
. . 0 . F
0
gap-l o : :
... ) 0%F. )
. . .0 .
0 sF-1 ° 0 Fyp)
SF SF-1
SF i . .
where F(T) = Zi=0 FiT . We add, for 2 < i < 28F-1, the i-th row
times Tl_1 to the first row, so that the first row of the matrix becomes

SF-1 T6F—2

(c(r), T™Cc(T),..., T c(r), F(T), TF(T),..., F(T)). Expanding the

determinant of the resulting matrix with respect to the first row gives

SF-1, 4R T+R)) + F(T)+ (S 72, is T+S,) ,

R(C,F) = C(T) (Rgp 4T 1 SF-2 1

where Ri' Sj eZ for 0 < i< d8F and 0 < j < dF-1.
The values Ri and Sj are determinants of (28F-2)X(28F-2) subma-
trices of the above matrix, and therefore, using Hadamard's inequality,

]Ril and ]Sjl are both bounded from above by

)GF
X

(V/SF|F| £
ma.

The evaluation of these determinants can be done by means of the methods

described in [1]. Putting R(T) = ZiF_l RiTl and d = R(C,F) we find

=0
R(a) 1

that C(T)R(T) = d mod F(T), so that g € a&z[a] is the inverse of

C(a). Now use Hadamard's inequality to derive an upper bound for d, and

R(a)

3 f e é—?Z[a][X] satisfies the

we find that the monic polynomial % =

estimates given above.
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(3.7) Theorem. Let f be a polynomial of degree n > 0 in Z[allX]. The

irreducible factorization of £ in @(a){X] can be computed in
6,6 5 5 . , . .
O(SF (n + n log(SF|F]) + n log(fmax))) arithmetic operations on integers

having binary length 0(6F3(n3 + nzlog(SFlFl) + nzlog(fmax))).

Proof. The proof follows from (3.6) and (3.5). [

4. Coefficient bound for factors.

We use the method sketched in [14] to derive an explicit upper bound for
the height and the length of a monic divisor of a monic polynomial in
@(a)[x].

For polynomials in @(a)[X] the height and the length are defined

as in (2.6); for a polynomial g = Zi cin e €[x], where & denotes
2
the complex numbers, the length |g| is defined as (Zi]cil )%.

Let ul,a2,...,a denote the conjugates of o, 1i.e.

§F GqrOpreccrO%p
€ € are the roots of the minimal polynomial F. For an element B =

SFr-1 i . . §F-1 i
Zi=0 biu € @(a) the conjugates of B are defined as Ei=0 biaj for

1 <3 < 68F. We define f{|Bll e R as the largest absolute value of any
of the conjugates of B; so |lal]l is the largest absolute value of any
of the roots of F.

For any choice of a € {al,az,...,a } a polynomial g e @(a)[X] can

SF
be regarded as a polynomial Zizo cjixl e €[X]; we define Jlg]| as
8g i
MaX 4 < 4 < 6F Uz 20, 5% 3.

Now let f € @(a)[X] be a monic polynomial of degree n, and let
g = Z?=O gixl € P(a)[X] be a monic factor of degree m of £f. Since

both f and g are monic, we obtain from [9] that
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(4.1) 'lgi” < (?)]Ifll, for 0 £ i < m.

From (4.1) we will derive bounds on the height and the length of g.

Let S = (s..)§F71 be the 6FX8F matrix with s,, = a% . Since
ij*i,j=0 ij j+1

S 1is a Vandermonde matrix and because the roots of F are distinct, it

follows that S 1is invertible, and that the absolute value of the deter-

minant of S equals ldiscr(F)I%. We denote by T = (tij)ngio the
matrix S_l, and by |T| = max{2i2611tij1 : 0 £ 3 < 8F} (this is the L_-

norm for matrices).

. _ JOF-1 k.
Let r, ¢ € be the conjugates of gi—-2k=0 g% € P(a), for 1 <
j £ 6F, then we have
(giolgill°"lgi6F_1).S = (rllrzl"‘lrsF)I
and therefore
(4.2) (giO'gil""'giSF-l) = (rl,rz,...,rGF)-T

for 0 <i <m. From (4.1) we have that
lrjl < (?)llfll for 1 < j < 6F

and this gives, combined with (4.2),
lgge] < ITI €]l for 1 <Xk <6F and 0<i<m

This implies that

(4.3) g, < (m’}‘z)lTl Nel,

and
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5
_..m §F-1 2 % m m 2)
(4.4) lgl = (%, Z g 95) < <6in=0(i) RS

1

<6F(2$))1]T| ne.

It remains to give upper bounds for |T] and |l £]l.
The entries of T are determinants of (8F-1)x(8F-1) submatrices of
S, divided by Idiscr(F)I%. Using Hadamard's inequality we get the upper

bound

Hj=1

for the determinant of such a (8F-1)x(8F-1) submatrix of S. This easily

yields the bound

5

(8F-1) 1aj16F"1

i

| o a.l > 1
J ]

(6F-1)/2 1

SF-

Since F is monic we know from [9: Theorem 2] that H]a | > 1]ajl < |Fl,
J
so that we arrive at the bound

(6Fr-1)/2

(6F-1) IF](SF_lldiscr(F)lJ2

for the absolute values of the entries of T. It follows that

(GF_l)/z]F]GF—lldiscr(F)]—%

(4.5) |T| < SF(SF-1)

A straightforward computation yields the bound

n 2 GF—lJ ]2k)%
i=0 "max k=0 o5

el

IA

(z

MaX) < 5 < 6F

G;:T(ZGF_lllallzk)%f .

k=0 max

IA
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There are several easily calculated upper bounds for Jla|l, for instance
Nall <1 + F . and Hall < |IFl (cf. [11]). For simplicity we take
lall < |F|, so that we obtain

(4.6) £l

IA

_ . 26F _\%
O P Kot YT vy 1 B 1
k=0 max \ 1F12-1 max

26F
/EIT('F]

IA

s SF-1
f = vn+1v2]F] f .
%IFIZ' max max

Combining (4.3), (4.4), (4.5), and (4.6) we finally get

L
( 8F-1 2 (8F-1) m . -5
(4.7) Iax < fmax\Z(n+1)(6F—1) 7] 6F(m/2)|dlscr(F)|
and
(4.8) o < £ [2menyar®orny 92 ) 1p 208D 4o
- gl = max n m iscr .
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