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*) 
An eigenvalue problem related to cell growth 

by 

H.J • .A.M. Heijmans 

ABSTRACT 

In this paper, the eigenvalues of the operator corresponding to the 

partial differential equation, which describes the evolution of a popula­

tion reproducing by simple fission, are investigated. This is done by 

transforming the eigenvalue problem to an integral equation. The theory 

concerning positive operators on a Banach space appears to be very useful. 

KEY WORDS & PHRASES: population density, cone in a Banach space, positive 

operator, u0-positive operator, non-support cperato~ 

*) This report will be submitted for publication elsewhere, 





INTRODUCTION 

(O. 1) 

In this paper, we study the eigenvalue problem 

d 
dx (g(x)n(x)) = - An(x) - µ(x)n(x) - b(x)n(x) + 4b(2x)n(2x), 

(where one should read b(2x)n(2x) = O, x ~ ½) 

n{½a) = 0 

n is surmnable. 

½a< X < 1 

The study of this eigenvalue problem can be seen as pa·rt of a bigger project, 

namely."the investigation of the partial differential equation 

(0. 2) 

:~ + :x (g(x)n(t,x)) = - µ(x)n(t,x)-b(x)n(t,x) 

+ 4b(2x)n(t,2x), 

n(O,x) = <t>(x) 

n(t,½a) = 0, 

½a< X < 1, t > Q 

~hich describes the dynamics of a population, the members of which reproduce 

by simple fission into two equal parts (for instance algae or cells). Here 

tis the time, x stands for the weight of an individual, n is the-population 

density as a function oft and x, µ is the death-rate, g is the growth-rate 

(of an individual) and bis the-rate at which individuals divide. 

This evolution equation which originally has been derived by SINKO and 

STREIFER ([9]; see also BELL and ANDERSON [1]) will be studied in a forth­

coming paper [2]. The present paper is entirely concerned with the inves­

tigation of the-eigenvalue problem (0.1). Our main conclusion will'be' that 

(0.1) has a dominant real eigenvalue AO with corresponding positive eigen­

vector n0• In [2], this conclusion will be used to prove that the solution 

of the linear evolution problem (0.2) behaves, under the extra assumption 

on the growth-rate g(2x) < 2g(x), asymptotically fort •~ as 
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where C is a constant depending on the initial condition~ only. AO may be 

interpreted as the Malthusian parameter (intrinsic rate of natural increase) 

for this model and n0 as the stable weight distribution. 

The organization of this paper is as follows. In section one, the eigen­

valueproblem (0.1) and the properties of the functions µ,b, and g are de­

scribed in ~ore detail. In section two we shall reduce the problem to 

an integral equation, by means of some elementary transformations. 

In section three some results from the theory of positive operators are 

presented, and in section four and five these results will be used to prove 

the existence of a dominant eigenvalue (i.e. an eigenvalue with largest real 

part). The eigenvector corresponding to this dominant eigenvalue will appear 

to be positive. 

The position of the remaining elements of the spectrum will be investi­

gated in section six, and here the characteristic equation which provides us 

with a tool to compute the eigenvalues explicitly, will be derived. 

In section seven, finally, the adjoint equation is studied. 

SECTION ONE: ASSUMPTIONS ON b,g ANDµ 

In this section we will specify what values b,g andµ can take, and we 

will derive the boundary conditions for the eigenvalue problem (0.1). 

We make.the following assumptions concerning g: 

lo 

(I.I) 
20 

g is continuous on the interval [½a,1] 

g(x) > 0, 

This last assumption is very essential. In fact, the whole theory developed 

in this paper would not work anymore if g(x) would become zero or negative 

for some values of x. The assumption that g is continuous has been made for 

convenience. It makes things easier to work with. 

Forµ we only assume that it is sunnnable, i.e. 

bis supposed to satisfy the following conditions: 
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1. b is sunnnable on [½a,I-£] for all £ > 0 ~ 

2. b(x) = 0, ½a s X :;;; a 
(1. 2) 

b(x) > o, a < X < 1 ., 

3. fl-£ lim b(x)dx = 00. 

d0 a 

Condition 2. tells us that the minimum weight at which individuals can divide 

is a. This is described by the boundary condition 

( 1 • 3) n{½a) = O. 

As a consequence of 3., individuals have to divide before they can reach 

x =I.Indeed we have n(l) = 0, for a solution of (0.l) as we show now. 

Let 

X 

( 1 • 4) E(x) := exp (- I b(f,J+µ(O dt;), ½a g(O 
½a 

then E(l) = 0 • 

X 

(1. S) G(x) I dt;; 
½a :;;; X s 1 • .- g(t;)' 

½a 

Then the solution of (0.l) on [½,I] is given by 

( I • 6) n(x) E(x) -\G(x) 
= A. g(x) e 

where A is some constant. 

This implie~s among others 

(I. 7) n(l) = 0 

if n is a solution of (0.1). 

, 

s X s I , 

The assumptions on the functions b, g andµ are very natural, taking 

their biological interpretation into account. 

The interpretation of n indicates that the solutions of (0.1) have to 

be summable. There is no justification for working in the space of continuous 
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functions. However, in section two, it will appear that all solutions of 

(0.1) are continuous. 

In case that a> 0 the problem can be solved in a finite number of 

steps, whereas this is impossible when a= O. With this in mind we have 

thought it interesting to study both cases, although the case a= 0 is less 

relevant from a biological point of view. 

SECTION TWO: REDUCTION TO THE INTEGRAL EQUATION. 

An abstract way of writing equation (0.1) is: 

(2. 1) An= An, n € D(A) , 

where A is the closed linear operator given by 

(2.2) (An)(x) d = - dx (g(x)n(x)) - µ(x)n(x) - b(x)n(x) + 4b(2x)n(2x) , 

with domain 

(2.3) and 

D(A) 

'¥ 
X € 

= {n E L 1[½a,1] I :x (g(x)n(x)) is defined a.e., 

d 
[½a,l](- dx (g(x)n(x)) - µ(x)n(x) - b(x)n(x) + 

+ 4b(2x)n(2x) E L 1[½a,1]}. 

n{!a) = O, 

Equation (0.1) can be put into a more tractable form by means of the trans­

formation 

(2.4) V(x) _ g(x) AG(x) () 
- E(x) e n x, , 

where E and Gare given by (1.4) and (1.5). Substitution of this expression 

in (0.1) yields 

dv 
dx = kA(x)v(2x), ½a< X < 1 

(2.5) (where by definition kA(x)v(2x) = O, if x > ½) 

v{!a) = 0 ~ 



(2.6) E(2x) 1 
where kA (x) := 4b(2x) E(x) g(2x) 

satisfies the following conditions: 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

kA E L1[½a,½J 

kA(x) ~ O, ½as x s ½, A EE. 

kA(½a) = 0 

-Ar(x) k (x) = k(x)e A , 

-A(G(2x)-G(x)) 
e 

where k does not depend on A and satisfies (2.7), (2.8) and (2.9). 

r(x) = G(2x) - G(x) is continuous and positive, except at x = O, for the 

case that a= 0. 

From (2.5) one sees immediately that v(x) = constant for½ s x s 1. 

This fact together with (2.4) and the condition that n has to be summable 

yields 

(2.11) 

5 

Integration or equation (2.5) on both sides and substitution of the bound­

ary condition v(½a) = 0 gives us 

(2.12) 

min(½,x) 

v(x) = J k{(E)v(2E)dE, 

½a 

½a S XS 1. 

Thus the eigenvalueproblem (2.1) (or equivalently (0.1)) has been reduced 

to the integral equation (2.12). It is well-known that quite often integral 

equations are not unpleasant to deal with, because the corresponding inte­

gral operator is compact. 

In (2.11) we have already mentioned that v has to be an L1-function. 

If n E D(A), and vis given by (2.4), one can easily see that 

~XkA(x)v(2x) E L1[½a,½J; as a consequence, we find that vis continuous, 

if vis a solution of the integral equation (2.12). This permits, us to 

study equation (2.12) in the space of continuous functions. Moreover, we 

have that the corresponding n is continuous as well. 
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Let the Banach-space x0 be defined by 

(2.13) x0 = {~ E C[½a,1] I ~(½a)= O} 

with the usual supremum - norm. 

The integral operator corresponding to equation (2.12) is given by 
min(½ ,x) 

(2. 14) (TA~)(x) = J 
½a 

The following result follows iIIllllediately from the Arzela - Ascoli - theorem. 

(See [11]). 

THEOREM 2.1. TA is a bounded, linear, compact operator on x0 for all A Ea. 

For an operator L we denote by cr(L) resp. Pcr(L) the spectrum of L, 

respectively the point spectrum of L. The spectral radius is denoted by r(L). 

As we have seen, there is a correspondence between the operators A 

and TA. We can formulate this in the following way. 

Let Ebe defined by 

(2.15) 

THEOREM 2.2. 

(2. 16) cr(A) = Pcr(A) = E. 

PROOF. We have seen that An= An, for n E D(A) if and only if TAv = v, where 

v E x0 is given by (2.4). This implies that E = Pcr(A). Now suppose that 

At Po(A), and~ E L1[½a,1]. We are going to construct a solution 

n EC [½a,1] of the inhomogeneous equation An - An=~- We do not demand 

that n(½a) = 0. 

Let 



RA (x~ 
X 

n(x) = • { l - I 1/1 ( l;) 
di;}' l $ X $ 

g(x) RA ( l;) 2 • 
1 
2 

Suppose that we have 

Then the solution on 

-p computed non the interval [2 ,l], p ~ 1. 

n(x) = 

where 

[2-p-l ,2-p] is given by 

RA(x) 
g(x){Ap + 

2-p 

I 
X 

A 
p 

., 

The constructed solution n is continuous on all intervals [2-p,l], p ~ 0. 

In case that a= O, it can be shown by a straightforward computation that 

limxiO n(x) exists, and is finite, which proves that the solution is 

continuous on the interval [0,1].The basic idea behind this computation is 

that the length of the successive intervals, on which the solution n is 

computed, reduces each time by a factor two. 

In case we set 1/1 = O, we find a solution of the homogeneous equation, 

which we denote with 11i • 
11 

¾ E cua,l]. 

Because Ai Pcr(A), we have ¾(½a) 'F 0, and therefore¾ l:.·D(A), and the 

equation above is only formally right. 

Let 

y .: = - and n := n + 

7 

Then n E C[½a,l], ~(½a)= O, n E D(A), and n is a solution of the inhomoge­

neous eqaution An - An= 1/1. Now we have proved that the range of A - Al is 

the whole space L1[½a,l]. As a consequence of the closed - graph - theorem 

(See TAYLOR and LAY [11], theor. IV.5.8.) we have Ai cr(A). 0 
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We shall end this section by showing that all elements of cr(A) are 

isolated. To do this we need a theorem, proved by S. STEINBERG [JO]. 

THEOREM 2.3. Let Ebe a Banach space and K(A) an analytic family of compact 

operators, defined on a domain Q. Let S(A) = I - K(A). If S(A) is invertible 

for some AO E Q, then s- 1 (A) exists for aU A E Q\J\ where A is a discrete 

subset of Q. 

In our case, one sees immediately that TA is an analytic family of 

compact operators defined on the whole complex space~- Furthermore, in sec­

tion six, we shall prove that SA= I - TA, is invertible for all A in a right­

half-plane. Consequently, a combination of theorem 2.3. and theorem 2.2. 

yields: 

THEOREM 2.4. cr(A) consists of isolated points which are eigenvalues. 

It will turn out that the dominant eigenvalue of A, i.e. the eigenvalue 

with largest real part, is algebraically simple, and that the corresponding 

eigenvector is positive. In terms of the integral operator TA, this means 

that we must investigate the following "positive eigenvalue problem": 

(2. I 7) 

<j> (x) ~ 0, 

For doing this, we need some theory concerning positive operators. 

SECTION THREE: POSITIVE OPERATORS 

In this section we shall present some results concerning positive 

operators, emphasizing the existence and uniqueness of positive eigenvectors. 

With X we denote an arbitrary Banach space, while x* stands for the 

dual space. 

Let T: X • X be bounded linear operator. With T*: x* • x* we denote the 

adjoint operator. 

DEFINITION. A subset Kc Xis called a cone if 

a) K is closed. 

b) a<j> + Si/I E K if <!>,i/1 E K and a,S ~ 0. 
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c) Kn (-K) = {O}. 

All basic theory concerning cones and positive operators can be found in the 

monograph of KRASNOSELSKII [5]. 

The cone K is called reproducing if K - K = X, where K - K := 
{qi-1/J qi ,t/J E K}. We say that K is total if K - K = x. K* is by definition the 

subset of x* consisting of all positive functionals on K, i.e. Fe: K* if and 

* only if Fe: X and F(qi) ~ O, for all qi e: K. An element qi e: K is called non-

* support if Fe: K, F; 0 implies that F(qi) > 0. (See lemma 5.2. for an exam-

ple). The subset of K consisting of non-support elements is denoted by QK. 

The positive functional Fe: K* is said to be strictly positive if 

F(qi) > O, for all qi EK satisfying qi I 0. 

DEFINITION. Let T: X • X be a bounded, linear operator, then Tis called 

positive (with respect to the cone K; also K-positive) if T<f> EK for all 

qi EK. Notation T ~ 0. 

The first instigation for generalizing the Frobenius theory (of non­

negative matrices) to the case of positive operators on a Banach space was 

given in 1948 by KREIN and RUTMAN in their famous paper [6]. That paper 

gives a.o. (partial) answers to two fundamental questions. 

(1) Does the positive eigenvalue problem Tqi = Aq> have a solution qi e: K, 

qi IO? 

(2) If so, is this solution unique? 

The theorems that we need for answering these two questions are just gener­

alizations of their results. 

DEFINITION. Let T: X • X be a positive operator with respect to the cone K 

and let u0 be some fixed non-zero element of K. Then the operator Tis 

called u0-positive if for every non-zero <I> e: K some positive numbers a, 8 

d . . . b f d h h < Tn ,k < 0 an a positive integer n can e oun sue tat au0 - ~ - µu0 . 

THEOREM 3.1. Let the cone K be reproducing and let T: X • X be positive and 

compact; suppose further that Tis u0-positive for some u0 EK: (a) then 

there exists a qi0 e: K\{O} such that Tqi 0 = A0qi 0 , where A0 = r(T) is an al­

gebraically simple eigenvalue. qi O is the only positive eigenvector of T. 
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* (b) There is a strictiy positive eigenfunctionai F0 € K \{O} such that 

* T FO = A0F0 • 

PROOF. (a) See KRASNOSELSKII [5], section 2.3. 

(b) In [6], KREIN and RUTMAN have proved the existence of a positive 

eigenfunctional F0 € K*\{0}, such that T*F0 = A0F0 • We only have to prove 

that F0 is strictly positive. Suppose F(¢) = O, for some 
n ¢ E K\{O}.au0 ~ T ¢ ~ Su0 for some n E Eand a,S > O. Therefore 

aF0 (u0) ~ F0 (Tn¢) = A~F0 (¢) ~ SF0 (u0). Consequently F0 (u0) = O, which 

implies that F0 (~) = O, for all~ EK. Here we have used: a'uo ~Tm~~ s•u0 • 

Using the fact that K is reproducing, we find that F0 = 0, which is a 

contradiction. D 

Theorem 3.1. in this form, will appear not to be suitable for our purposes, 

since the requirement that the cone K has to be reproducing, happens to be 

too strong. Therefore we shall weaken this condition. 

DEFINITION. Let the operator T be positive with respect to the cone K. We say 

that K is T-reproducing if for all¢ EX there exist ¢1, ¢2 EK such that 

T¢ = ¢ 1 - ¢2. 

THEOREM 3.2. If in theorem 3.1. the condition "K is reproducing" is repiaced 

by "K is T-reproducing", then-the conciusions remain vaiid. 

PROOF. Follows immediately from the proof of theorem 3.1. (a) which can be 

found in [5], section 2.3. 

We need another result, due to SAWASHIMA ([8]). She introduced the 

notion of a non-support operator which is in fact a generalization of the 

notion of an indecomposable, positive matrix. 

DEFINITION. A bounded, positive operator T: X • X -is called non-support with 

* respect to K, if for all ¢ E K, ¢ -/: 0 and F E K, F :/: O, there exists an 

integer p such that for all n ~ p we have F(Tn¢) > 0. 

THEOREM 3·. 3. Let the cone K be totai and Let T be non-support with respect 

to K; suppose that AO~ r(T) 'is a poie of 'the resoivent R(A,T), then 



(a) AO is an algebraicaUy simple eigenvalue of T. 

(b) There exists an eigenvector ¢0 EK such that T¢0 = A0¢0 . Furthermore 

¢0 E QK' i.e. ¢0 is non-support. 

(c) There ex:ists a strictly positive eigenfunctional F O E K* such that 

* T F0 = 11 0F0 . 

(d) ¢0 is the only positive eigenvector of T. 

I I 

PROOF. (a), (b) and (c) were proved by SAWASHTM_A in [87 ., To prove (d) we "· 

assume that there exists a Al # AO and¢ E K\{0} such that T¢ = A1¢. Using 

the non-supportness. of T, we have F0 (Tp¢) > 0 for some integer p. Clearly 

Hence A p = A p, Since A 4 A and both values are positive, this 1.s a con-0 I • 0 r 1 

tradiction. D 

SECTION FOUR: THE CASE a> 0 

In section 2 we have introduced a family of compact operators TA, where 

A E ~- Here we shall make clear that for all real II the operator TA 1.s pos­

itive with respect to some suitable cone. We assume during this and the 

following section that A is real unless otherwise stated. 

DEFINITION. Let the cones K0 , Km~ X0 be defined by 

Km = { ¢ E x0 I ¢(x) ?". 0, !a s x s 1 and ¢ 1.s non-decreasing}, 

Immediately it follows that Km~ K0. 

THEOREM 4. 1 .. 

(a) K0 1,s reproducing. 

(b) TA KO !:: Km • 

(c) Km 1,s T)\-reproducing • 

(d) TA is positive uJith respect to both cones K0 and Km• 
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PROOF. (a), (b) and (d) are straightforward. We shall only prove (c). Suppose 

• E xO; because of (a) we have•= •i -•2 , where • 1, • 2 E KO• Hence TA•= 

= TA~l - TA~ 2 . Using (b) we. have TA~l' TA~Z E Km. 0 

REMARK. TAKO c Km implies among others, that, if TA has an eigenvector 

• E K0 , then also• E Km. 

* The Riesz-representation theorem tells us what the dual cone K0 looks 

like. 

THEOREM 4.2. 

(a) FE K~ if and onZy if Fis given by F(.) = Fµ(.) = f[½a,l] $dµ, $ E X0 , 

for some positive Borei-measure µ on [½a,l]. 

(b) F = Fµ EK~ is not identicaZZy zero iff µ is not identicaZZy zero~ i.e. 

f Ga, 1 J dµ :! O. 

PROOF. 

(a) See RUDIN [7], theorem 2.14. 

(b) In order that Fis not identically zero, it is not sufficient that 

J[½a,I] dµ IO, because •<la)= O, for all• E x0 • D 

As we have already mentioned, we shall make a distinction between two 

cases, namely a> 0 and a= O. In the rest of this section, we shall deal 

with the case a > O. Let A E R be fixed. 

Let u0 E Km be defined by 

(4.3) 

min( 6 ,x) 

u0 (x) := J kA (i;)di;, 

½a 

x E Ua,l]. 

THEOREM 4.3. TA ~s uO-positive with respect to the cone Km. 

PROOF. We shall use a result which was proved by KRASNOSELSKII ([5], theo- · 

rem 2.2) which says the following: suppose that for all• EK there exist 
m 

integers n and m, and positive numbers a, 8 such that au0 ~ T~• and 

T~• ~ su0 , then TA is u0-positive. Now let$ E Km\{O}. 

We have 
min( ½,x) 

•<t).u0 (x) - (TA•)(x) = J kA(i;){$(1) • (2i;) }d~ ., 

½a 



which implies that ¢(1).uO - TA¢ c Km, because ¢(1) - ¢(2~) ·~ O, for all 

½a~~~}. This means that TA¢~ ¢(1).u0 , and ¢(1) > O, because¢ t 0. 

13 

A straightforward computation shows that T~¢ E Km and (T~¢)(x) > O, for all 
n -n · n 2- ~ x ~ 1. If n is such that 2 ~ ½a, then we have TA¢ E Km and 

(T~¢)(x) > 0, ½a~ x ~ 1. 

Therefore 

min(½,x) 

= I kA(~).{(T~¢)(2~) -

½a 

because (T~¢)(2~) - (T~¢)(a) ~ 0, for ½a~ E ~½-This, together with the 

result of KRASNOSELSKII, proves the theorem. D 

Using the fact that the cone Km is TA-reproducing (theorem 4.1-c) and 

theorem 3.2, we have the following. There exists a ¢A E Km and a strictly 

positive eigenfunctional FAE K; such that 

(4.4.) 

(4.5.) .. 
J 

where rA = r(TA) is an algebraically simple eigenvalue. Furthermore ~A is 

the only positive eigenvector of TA with respect to Km. A more extensive 

study of equation (4.5.) is made in section 7. 

As we have seen in section two, we are only interested in positive ei­

genvectors of TA corresponding to the eigenvalue I. Therefore we have to look 

for those values Ac JR.satisfying r(TA) = I. 

THEOREM 4.4. A E IR is uniquely determined by the condition r(TA) = I. 

PROOF. Suppose A1 ,A 2 E IR and A2 >Al.Let 

min(½,x) 

= J kA (~)¢(2E)dE (TA ¢)(x) 
1 I I 

2a 

¢ E K0 • 

min~½,x) 
= J k(~)e-Alr(~)¢(2~)d~ 

½a 
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where we have used (2.12.). 

Since r(E) = G(2E) - G(E) ~ o for some o > 0 (Here we have explicitly used 

that a > 0) , 

where 

(TA q,)(x) = 
1 

min(½ ,x) 

f e(A2-Al)r(E)k(E)e-A2r(E)4>(2E)dE 
½a 

minO ,x) 

~ e(A2-Al)o J kA 2 (t)4>(2E)dE =: 

½a 

( ri+ 1 ) (TA q>) (x) 
2 

n := 

, 

Let q>A be the positive eigenvector of TA corresponding to the eigenvalue 

rA =?(TA). Thus TA q>A = rA ~A. Then 2 
2 2 2 2 2 2 

A straightforward computation shows that 

This implies: II Tn II 
Al 

nn 
~ (l+n) rA. Hence 

2 

This implies that r(TA) is strictly monotone decreasing in A. Furthermore, 
(A2-A1) 0 

using that n = e -1, one sees iDm1ediately 

lim r (TA) = +00 ,. 

A-+-oo 
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This makes the proof complete. D 

Now we have proved that there exists a unique AO E JR, a unique ¢0 E Km, 

and a unique, strictly positive functional F0 such that 

TA ¢0 = ¢0 ) 

0 

* T F = 
AO 0 FO ' 

and the eigenvalue 1 of TA is algebrafoally simple. 

REMARK. There is a more elegant and transparant way to obtain the results of 

this section. The basic idea is to study the integral equation (2.12.) on the 

subinterval [a,1]. 

minO ,x) 

(TA¢)(x) = J kA(~);(2~)d~, ¢ E C[a,1] (*) 

la 

The values of TA¢, for¢ E x0 , on the interval [½a,a] are completely deter­

mined by the values of 

¢ := ¢j E C[a,1] • 
[ a, I J 

Suppose¢ E C[a,l] is a solution of TA¢=¢, where TA is given by(*), and 

let the extension¢ of; on [la,!] be defined by 

rx) = ¢ (x)' a :,; X :,; 

X 

¢ (x) = f kAco;c2od~, la :,; X :,; a 

½a 

Then¢ E x0 and¢ is a solution of the original integral equation (2.12.). 

The advantage of this method is, that it permits us to work in the cone 

K = {; E C[a.,IJI $(x) 2 O}, which has
0
non-empty interior~- The operator TA 

is strongly-positive with respect to K, i.e. for all¢ EK there exists on 
0 

:::::0 ~ integer n = n(¢) such that TA¢ EK. Now the unicity of the positive eigen-

vector is given by theorem 6.3. of KREIN and RUTMAN. However this approach 

fails in the: case that a = 0, and for that reason, we have chosen a 
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different road. 

SECTION FIVE: THE CASE a= 0 

In this section we are going to deal with the case that a= 0. There 

is an important distinction between this case and the former one. If a is 

non-zero, then the problem can be solved in a finite number of steps; this 

can not be done if a= 0. As a consequence the methods used in section four, 

have to be adapted. 

Let A ER be fixed. 

THEOREM 5.1. The operator TA is non-support with respect to the cone K0 • 

* . PROOF. Lett E K0 , t I 0, and FE K0 , FI O. Following theorem 4.2. there 

exists a positive Borel measume µ on [0,1] such that 

r 
J 

(0, 1] 
I 

[O, 1] 

Hence there ,exists an 'a > 0 such that for all c satisfying 

0 < s < a one has: f dµ > 0 • 

(a-s ,a+s) 

Let p be an integer such that 2-p <a.Then for all n 2 p we have 

Hence 

a+s 

f (T~t)dµ 2 f 
[O,I] a-s 

• 

Since TA is compact, all eigenvalues are poles of the resolvent. Furthermore 

KO is reproducing (and hence total) as we have seen in theorem 4.1. Therefore 

we can apply theorem 3.3. There exist an ei8envector tA E K0 (and following 

the remark on p.24. tA E Km) and a positive eigenfunctional FAE K; such 

that 
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where rA = r(TA) is B,1il: algebraically simple eigenvalue, cpA E QK , and cpA is 

the only positive eigenvector belonging to TA, and FA is strictPy positive. 

As in section four it remains to prove that A E JR is uniquely deter­

mined by thE! condition r(TA) = 1. Note that we cannot apply theorem 4.4., 

because the proof of that theorem explicitly makes use of the fact that a 

is non-zero. We need the following lemma. 

LEMMA 5.2. Suppose cp E K0 . Then cp E QK iff cp(x) > o for aU x E (O,l]. 
0 

PROOF. 

(i) Let cp E QK and suppose cp(a) = 0, for some a E (0,1]. Let the positive 
0 non-zero Borel measure JJ on (0,1] be given by: 

for all Vc[O,I]: µ(V) = 0, if a ,I. V. 

µ(V) = I, if a EV~ 

Then 

F' (cp) = 
]J 

f cpdµ = ~ (a) = 

[ 0, I] 

This is a contradiction. 

0 and F =I 0. 
]J 

* (ii) Let cp E KO and ¢(x) > 0, for all x E (0,1]. Suppose F = FJJ E K0\{0}; 

then the positive Borel measure JJ is not identically zero, i.e. 

(Of l] dµ > 0 which means that for some a.> O, and for£> 0 sufficiently 

small we have f dµ > 0. Using cp(a.) > 0 we find 
(a-e: ,a+f;.) 

I cpdµ= 

(O,l] 

F (cp) ~ 
]J 

f cpdµ> 0 

(a-E,ct+E) 

D 

THEOREM 5.3 .. The number A E JR is uniquely determined by the condition 

r(TA) = I. 
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PROOF. Let Al < A2 and let $A.' FA., i = 1,2, be the positive eigenvector 
i * i 

and eigenfunctional of TA. and TA. : 
i i 

TL$L = rL$L, i = 1 , 2 , 
i i i i 

* i TLFL = rLFA.' = 1 , 2 . 
i i i i 

Then 

= = = 

- A • 

min(½ ,x) 

((TA- TA HA ) (x) = J {kX (0 - kX (0 HA (2i;)dl; > 0 , 
1 2 1 O 1 2 1 

for all x > O, which means that (TA 1-TA2)$Al € QKQ. Here we have used lemma 

5.2. This and the strict positivity of FA imply that I::,. > 0. Hence rA > rA 
. . . ( ) . .. 2 . . 11 2 which implies that r TA is st!ictly monotone decreasing in X. Now et 

A € lR: there exists a $A E Km such that 

(TA$A)(t) = IITA$AII = rA$A(t) = rA11$AII = 
used that for any vector '¥ E K we have 

m 

T~$A = rA$A and U$AII = 1. Clearly 
1 

rA = 0J2kA(E:)$(2l;)dl;, where we have 

II '¥II = 'I' ( 1) • One sees illllilediately 

that $A (x) is constant for all x € [½,I]. It follows that 

½ ½ 

[ kA (l;)dl; :,; rX :,; f k. (l;)dl; 
A 

0 

Using (2.12.) we find 

lim r(TX) = 00 > 
A-+-xi 

lim r(TA) = 0 • 
A-++co 



This completes the proof. D 

Now we have proved the existence and uniqueness of Ao £ JR, <l>o £ Km 

and a strictly positive functional F0 such that 

T, <l>o = <l>o 
''o ' 
* TA FO = FO , 

0 

and the eigenvalue 1 of TA is algebraically simple. 
0 

The remaining part of this section is valid both for the cases a> 0 

and a= 0. 

Let n0 be defined by 

(5. 1.) ( ) ·= E(x) -A0G(x),,. ( ) 
no X • g (x) e "'O X • 

Then we have the following results: 

n0 is continuous. 

An0 - A0n 0 = 0 • 

n0 is the only positive eigenvector of A. 

Furthermore we have: 

THEOREM 5.4. The eigenvaZue AO E Po(A) is aZgebraicaZZy simpZe. 

19 

PROOF. The geometric simplicity of the eigenvalue AO E Pcr(A) follows directly 

from the geometric simplicity of the eigenvalue 1 E Pcr(TA ). Now suppose that 

(A-A0) 2n = O and (A-A0)n IO for some n E D(A2). Defining0n := (A-A0)n we 

have (A-A0)n = 0 and n f O. Hence n(x) = an0 (x) for some a E ~, which we 

assume to be 1 (without loss of generality). (A-}..0)n = n0 can be reduced to 

(TA -l)v = w where vis given by (2.4) 
0 

and 



20 

X I no(~) A G(~) 
ljl(x) = E(O e O d~. 

½a 
Using the Fredholm alternative, we find that this equation is solvable if£ 

F0 (ljl) = 0 where Fo is the strictly positive eigenfunctional satisfying 

Tt0F0 = F0• Using the fact that ljl E Km' we find a contradiction. D 

In the forthcoming section we shall make clear why this eigenvalue "o 

is so important. 

SECTION SIX: ON THE POSITION AND COMPUTATION OF THE EIGENVALUES 

In the former two sections we have seen that the operator A has exactly 

one positive eigenvector corresponding to an eigenvalue "o·£ ll. (See 

corollary 5.4.). Now we shall prove that 'bis the principal value of A, i.e. 

the eigenvalue with the largest real part. We need the following elementary 

lemma. 

LEMMA 6.1. Suppose a< b, and, Zet f E L1[a,b] be a compZex-vaZued function. 

Then we have: lfb f(x)dx I= Jb I f(x) I dx if and. onZy if there exists a a a 
constant ex E a, with I ex I = 1, such that I f(x) I = cxf(x) a.e. on [a,b]. 

PROOF. Let z := J! f(x)dx and define ex E ~ such that cxz = I z I. Clearly 

I ex I = 1. Putting u(x) := Re{~f(x)} we have u(x) :;;; I cxf(x) I= I f(x) I and 

the inequality is strict for all x EV, where the subset V c [a,b] is de­

fined by: x E V iff Imfof (x)} ::/: 0. Hence u(x) < I cxf (x) I = I f (x) I , for 

x E V and f b u (x) dx < f b I f (x) I dx iff µ (V) > 0, where µ (V) is the measure 
a a 

of the set V. 

b b b 

!J f(x)dxl= lzl=cxz = I cxf(x)dx = Re{J cxf(x)dx} = 

a a a 

b b 

= I Re{cxf(x)}dx = I u(x)dx. 

a a 

Consequently I f b f (x) dx I < l I f (x) I dx iff µ (V) > 0. In other words: 
b a a 

If f(x)dx I= Jb I f(x) I dx iff u(x) = cxf(x) a.e., which is the same as 
a a 



I f(x) I =a.f(x) a.e. D 

THEOREM 6.2. If A€ Po(A) and A I Ao then ReA < Ao· 

PROOF. (i) Suppose ReA > AO and A€ o(A). Then I€ Po(TA) which implies 

that TA$=$ for some$€ x0• 

In other words 

minO ,x) 

J kA(~)$(2~)d~ = $(x). 

½a 

Using (2.10) we arrive at 

min{½ ,x) 

J k(~)e-Ar(~)$(2~)d~ = $(x). 

½a 

Taking absolute values on both sides, we find 

J1!1inO ,x) k(~)e -ReLr(O I $(20 Id~~ I Hx) I, which can be written as: 
:za 

TReA I $ I ~ I $ I (with respect to K0) where I $ I € x0 is defined by 
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I$ I (x) := I Hx) I. Using theorem 6.2. of KREIN and RUTMAN (See [6]) we 

obtain TReA$ = PW for some$€ K0/{0} and p ~I.Consequently r(TReA) ~ I. 

On the·other hand, theorem 4!4. and theorem 5.3. state that r(TReA) < I 

both for the cases a> 0 and a= 0. Now we have proved that A€ o(A) 

implies that ReA ~ Ao· 

(ii) Now suppose that A= AO+ in and A€ o(A). This implies that 

TA $ = $ for some $ € x0 and as in (a) we deduce TReA I $ I ~ I$ I, i.e. 

TA I $ I ~ I $ I • Suppose that TA I $ 11 I $ I. This yields TA I w I € K0/ {0}. 
0 0 0 

Let F0 be the strictly positive eigenfunctional satisfying T~0F0 = F0 • Then 

0 < Fo(TAO I$ 1-1 w I>= (T;oFo)(l$l)-Fo(lwl) = o, which is a contradiction. 

Consequently TA I $ I = I $ I, which means, by the simplicity of the eigen­

value I of TA : 0 1 $ I = Y$0 , for some constant y € a, which we may assume 

to be one, wi2hout loss of generality. As a consequence 

I w(x) I = $o(x)eia.(x), where a.(x) € ll, x € [}a,1]. Using I TA$ I = I$ I = 

= TReA I $ I = TA/O' we find 
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min(! ,x) I kA (E).0(2E)dE = 
I 0 
:1a 

min(½,x) 

I f kAC()wC2E)dEI = 
½a 

Using lennna 6. I. we obtain a (2E) - '} r(E) = C where C is a constant.Hence 

a(x) = C + n r(½x). Inserting this in 

minO ,x) 

J kA(E)~(2E)dE = $(x) = 
!·a 

minO ,x) 
= J e-inr(E)kA (E)•o<2E)eia(2E)dE = •o<x)eia(x) 

1 0 

we obtain 

which implies 

2a 

iC + inrOx) 
•o<x)e 

As a consequence n = O, which implies that A= A0 • D 

In section two we noticed that all elements of cr(A) are isolated. Now 

we are going to show that in every vertical strips~ ReA ~ t, there are 

only finitely many of them. 

Let the Banach space X be the space of all continuous functions on [½a,l] 

with the supnorm. Clearly x0 is a closed subspace of X. For every A E ~ 

the operator TA: x0 + x0 can be extended to the larger space X. This exten­

sion is also denoted by the symbol TA. 

minJ½,x) 
(6.1) (TA.)(x) = kA(E) • (2E)dE,. EX • 

!a 



One sees innnidiately: TAX c x0 • As a consequence TA~=~,~ EX, implies 

that~ E x0 • Using theorem 2.2, we have 

(6.2.) A E a (A) <=> l E P o(T A IX ) <=> l E Po (TA) , 
0 

where TAIX denotes the restriction of TA: X • X to the subspaee x0 • 
0 

(6.3) Let e I E X be defined by: e 1 (x) = J, !a ~ x ~ J. 

TA: X • X can be decomposed in the following way: 

Let ~ e X: 

(6. 4) 

½ 

(TA~)(x) = f kA(s)~(2s)ds 

½a 
J kl(E).(2E)dE • 

min(½ ,x) 

where HA is a bounded linear functional. 

(6.5) 

½ 

HA(~) := J kA (O~(2Ods • 

½a 
and NA is a bounded linear operator on X. 

½ 

(6. 6) (NA~) (x) := - J kA (sH(2s)ds. 

min(½ ,x) 
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The reason that we have embedded x0 in the la,rger space X might be 

clear now: Xis invariant under NA, but x0 isn't.Again we make a distinction 

between the cases a > 0 and a = 0 • 

I. a > 0 

THEOREM 6.3. The operator NA is compact and nilpotent, for aZZ A E i, i.e. 

N~ = 0 for some p E JN, ~here p does not depend on~-

. ' . 1 b h that 2-p+J ~ 2-p+2 PROOF. Compactness is trivia. Let p E ]N e sue a< • 
p-1 p Then we have NA ~ 0 and NA= 0. To see this, we observe that for all~ EX 
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(NAcp)(x) = O, X z ! 
2 

2 o, ¼ (NAcp)(x) = X Z 

(N~) (x) =O, x z ½a. D 

Substitution of TAcp in (6.4) gives us 

(6. 7) 

DEFINITION. 

(6.8) J 2, •.• , p • 

REMARK. 

(6.9) 

LEMMA 6.4. e 1, ••• ,e are linearly independent in X. Furthermore 
p p 

R(TA) c span <e 1, .•. ,ep> 3 where span <e 1, ..• ,ep> is the subspace of X 

spanned by the functions e 1, ••• ,ep. 

PROOF. 

ifx<½, 

A straightforward computation shows that for all i, with 1 ~ 1. ~ p, we have 

e. (x) 1- 0 if x < 2-i+l. 
1. 

Now suppose that for certain a. Et, 1. = l, ... ,p, 
1. 

Then 

= o, 
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wich implies that a 1 = 0. Likewise we find that a.= 0 for all i = 2, ••• ,p. 
1 . 

This proves the linear independence of e 1, ••• ,ep. A computation similar to 

(6. 7) yields 

(6. 10) 

for all qi EX, where we have used that Nt = O. This completes the proof. D 

Defining 

(6. 11) j = 1, ••• ,p , 

we have 

(6.12) 1, ••• ,p, where e 1 := 0. p+ 
REMARK. 

One should keep in mind that e. and f both depend on>... 
J n 

Now suppose that A E a(A). This implies that 1 E Pa(TA). Therefore TA.qi= qi 

for some qi EX, qi I 0. Consequently T~qi = qi. In other words qi~ (TI) c 

span< e 1, ••• ,ep >. Hence we can write qi= qi 1e 1 + .•• + qipep. Using (6.12) 

we find 

p p p 

I qi.e. =qi= T qi= I qi.T,e. = l qi.(f.e1+e. 1). 
i=l 1 1 A i=l 1 A 1 i•l 1 1 1+ 

Using the linear independence'of the functions e. we conclude 
1 

qi =qi= =qi. 
1 2 p 

qi IO implies qi 1 IO and therefore f 1 + •.• + fp = 1. Furthermore 

= H (e) = O. Now we have proved: 
~- p 

THEOREM 6.5. A E a(A) if and only if H,(e 1 + ••• + e ) = 1. 
A p-l 

f = p 

THEOREM 6.6. Supposes< t. In the vePtical stnp s ~ ReA ~ t, thePe aPe 
only finitely many points of a(A). 

PROOF. Suppose A E a(A). Following theorem 6.5, we conclude that 

H,(e 1 + ••• + e ) = 1. 
A P-1 
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½ 

HA(e 1) = f kA(Ods = 

½a 

J· .1<(,:)e-~r(i:)d<, 

½a 

where we have used (2.12). Moreover 

r (l;) = G(2i;) - G(O 

where 

inf I 
0 := trd½a,1] g(n)· 

2i; 

= J . 

l; 

~>~I:" 
g('t") - Uc, I 

From considerations. similar to those which are used to prove the well-known 

RIEMANN-LEBESGUE lennna, it follows that 

Using the same argements for i > I, we find 

lim H~(e 1 + ••• + e 1) = O, uniformly ins~ ReA ~ t. 
ImA+±oo A p-

This together with the fact that all elements of cr(A) are isolated 

(see th. 2.4.), proves the theorem. D 

II. a = 0 

In this situation, the proof of theorem 6.6. follows the same lines, although 

we have to pay more attention to some details. 

Let HA and NA be defined by (6.5) and (6.6) where ½a is replaced by 0. 

Again we have 

(6. 13) 

Let e. be defined by (6.8) for all j ~ 1. 
J 

THEOREM 6.7. NA is compact and quasinilpotent. 
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PROOF. The proof that NA is compact is trivial. Now suppose that 

µ E Po(NA); hence there exists a¢ E X\{O} such that NA$=µ¢. Consequently 
k k . k -k NA 1jJ = µ 1/;, for all k ;:,,: l. Observing that (NA ijJ) (x) = 0, for x ;:,,: 2 we conclude 

thatµ= 0. As a consequence o(NA) = {0}, which proves the theorem. D 

00 

LEMMA 6.8. nA := Ik=lek EX, and II nA II is uniformly bounded in every vertical 

strips$ ReA $ t. 

PROOF. It suffices to prove that r':" 1 11 e.11 < 00 • We have II e 1 II= 1; suppose 
J= J 

s $ ReA $ t, 

l•2<x)I < t lk,(s)ldS < 

min( ½,x) 

where we have used (2.7). This yields 

I 
2 • 

where 

M := max ( i !kA(<;)!dtJ, 
s5ReA5t 

.!. 0 
4 

!e/x)I 5 f !kA(<;)!Md<; 5 ! L M 4 

0 

where 

t I<, <OI dC < 00 , 

0 

, 

(6.14) L : = max { I k A ( <; ) I I O 5 <; 5 ¼ , s 5 Re A 5 t } . 

By induction we find that 

l l 
5 4 . 8 

wich completE!S the proof. 

l Lk-2.M .. 
k-1 , 

2 

THEOREM 6.9. TA~=~ is solvable if and only if HA(nA) = l. In that case 
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PROOF. 

(i) Suppose TA~=~- Inserting (6.13) we obtain NA~=~ - HA(~)e1• If we 

put~ := HA(~)nA then NA(~ - ;) = ~ - HA(~)e 1 - HA(~)NAnA = 
.... 

= ~ - HA(~)e1 - HA(~)(e2 + e3 + •••• ) = ~ - ~- Now the quasinilpotence 

of NA implies that~ - ~ = 0 and therefore~= HA(~)nA. Consequently 

HA(~)= HA(~)HA(nA). Moreover HA(~) IO because~# 0 and thus 

HA (nA) = 1. 

(ii) Suppose HA(nA) =I.Putting~ := anA (where a is to be determined), 

we obtain TA~= aTAnA = aHA(nA)e 1 + aNAnA = anA =~-As a consequence 

HA(~)= aHA(nA) =a.From this we conclude that~= HA(~)nA. 0 

Now suppose thats, t ER ands st. According to lennna 6.8. there 

exists a constant M1 > 0 such that llnAII ::;; M1 for all A in the vertical strip 

s s ReA st. We have 

I 

HA(nA) = f kA(s)nA(2s)ds = 

£ 0 I 

= f kA(s)nA(2s)ds + f kA(s)nA(2s)ds 

0 £ 
£ 

f kA(s)nA(2s)ds 
0 

£ 

s M1 f I kA <s> 1 ds s LM1 £ , 

0 
I I where Lis defined by (6.14). We choose£< 4 such that£ LM1 s 2.Hence 

! 

HA(nA) I s ~ + I j kA(s)nA(2s)ds 

£ 

for all A satisfying s s ReA st. There exists a Jo E lN such that j > j 0 
implies e.(x) = 0 if x ~ £. 

J 
This yields 

½ I kA (s)ej (2s)ds I • 
e 

In the proof of theorem 6.6. we have seen that I.Jii~00 HA(e 1 + ••• + ep) = 0, 

uniformly in the vertical strips~ ReAS t.Similarly we have 



j kA(l;}ej(2t)dl; I ) = 0 

€ 

uniformly is the vertical strips~ ReA ~ t. As a consequence, there exists 

a A> 0 such that for all A satisfying s ~ ReA ~ t and llm Al ~Awe have 
I 

J kA(s)e/20dl; 
1 

~ 4 . 
€ 

3 For these values of A we obtain IH~(nA)I ~ 4 and by theorem 6.9. this 

implies Ai O(A). Now we have proved: 

THEOREM 6.10. Suppose a= 0. In every vertical strips~ ReA ~ t, there are 

only finitely many points of cr(A). 

EXAMPLE. Suppose a~½· Then the characteristic equation looks as follows: 

l I kA (t;;)dl; = 1. 

~a 

The value of the parameter AO' especially the sign of AO appears to be very 

important. In fact the asymptotic behavior fort • 00 of the solution of the 

time-dependent equation (0.2) is completely determined by the value of AO' 

as will be proved in [2]. Therefore we shall deduce two equations from 

which, in some practical cases the sign of AO can be computed. 

We have: 

Integration along the interval [!a,1] gives us 

(6. 15) 
J! (b(x) - µ(x))n0 (x)dx 

~a 
1 f 1 n0 (x)dx 
:ia 
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Another similar equation can be derived, if we first multiply with x, and 

then integrate along the interval [½a,l]. In that case we find 

(6.16) 

SECTION SEVEN: THE ADJOINT OPERATOR 

In section four and five we have seen that there exists a positive 

functional F0 , satisfying 

(7. I) 

where F0 E K:1 if a > 0 and F0 E K~ if a = O. Here T~ M • M where M denotes 
0 the space of all Borel-measures on [½a,l]. 

REMARK. The fact that f(½a) = 0 for f E x0 implies that we can restrict 

ourselves to the space of Borelmeasures on (½a,l]. 

Consequently F0 is represented by some measure µ 0 EM. 

J 
Ua, 1 J 

With M; we denote the subset of M consisting of all positive Borelmeasures; 

i.e. µEM; implies 

µ((x,y]) ~ 0 for ½a~ x ~ y ~ 1. 

Let 

Then 
+ + 

Mo' c H • - m 

Furthermore 

= {µEMlµ((x,l]) ~ 0, if ½a ~ X ~ 1}. 



and K* 
m 

+ =M. 
m 
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Let NBV [½a,1] be all bounded -variation- functions f which are normalized 

by the condition: f(I) = O. 

DEFINITION Forµ EM, the functionµ E NBV [½a,1] is defined by 

µ(x) := µ((x,1]). 

Ifµ EM+, then µ(x) ~ 0, for all x E [½a,1]. For the adjoint operator 
* m 

TA M +Mone can deduce the following explicit expression. 

* Letµ EM and TAµ= v, then we have 

1 

(7. 2) v(x) = ½ f k I 0~) µ(!~)d~. 

max(x,a) 

Now (7.1) can be rewritten as 

1 

(7. 3) f 
max(x,a) 

* TA µ0 = µ0 , or equivalently 
0 

where µ0 EM:, if a> 0 and µ0 EM; if a= O. From (7.3) one sees that 

µ0 EM: implies that µ0 EM~. (This can also be proved without using this 

explicit expression). Furthermore µ0 E C[½a,1].Let 

A0G(x) 
* e -

(7 • 4) nO (x) : = E (x) , µO (x) • 

* Then no E 

removable 

adjoint of 

* C[½a,1]. (A straightforward computation shows that·n has a 
0 

singularity for x = 1) Furthermore n~(x) > 0 if x < 1. The 

A, A* : D(A*) + L [½a,1] is given by 
co 

* dm (A m)(x) = g(x)dx - µ(x)m(x) - b(x)m(x) + 2b(x)m(½x) 

(where m(½x) = 0, x < a) 

form E D(A*) = {mEL [½a,lJI ddm is defined a.e., 
co X 

m(l) = O, andljJ [l l] g(x)~ - µ(x)m(x) - b(x)m(x) + 
XE 2a, ax 

+ 2b(x)m(½x) ~ L [½a,1]}. 
co 
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* * * THEOREM 7.1. nO E D(A) and nO is the unique solution of the equation 

* Am= x0m. 

The proof of this theorem is straightforward. 

LEMMA 7.2. XI - A is a Fredholm-operator with index O for all XE t. 

-1 
PROOF. Suppose XE ~\o(A) and let RX := (A-XI) • From the construction of 

RX in the proof of theorem 2.2 it is clear that Rx as an operator from 

L1[½a,1] to C[½a,1] is bounded, which implies that RX as an operator from 

L1[½a,1] to L [!a,1] is bounded, for all p. Let p be fixed, p # 1, p # 00 • 

00 p 00 

Let{~} 1 be a bounded sequence in L1[½a,1], then we have that {R,~} 1 n n= Ann= 
is a bounded sequence in L [½a,1], and as a consequence of the theorem of 

p 
Alaoglu it has a weakly convergent subsequence which we denote with 

00 

{RX ~nk}k=l. 

R, ~n • t/11. ' 
A k 1.m 

k • 00 , weakly in L • 
p 

1 I Let q be given by - + - = I, then we have L [!a,1] c L [½a,1], because p q 00 q 
we are working on a finite interval. Consequently RA~nk • tj,lim' k • 00 , 

weakly in L1• Now we have proved that RX: L1[½a,1] • L1[½a,1] is weakly 

compact. Using corollary V.2.4 of GOLDBERG [3], we find the result. D 

Now using this lemna, the algebraic simplicity of the eigenvalue x0 , 

and a result of KAASHOEK ([4], theorem 4.3) we may give the following de­

composition of the space L1[!a,1]: 

(7 .5) 

where Ker(A-X0I) is the nullspace of A - x0I and Ran(A-X0I) is the range 

of A - AOL 

(7.6) 

Let P be the orthogonal projection on Ker(A-X0I) , then 

* 
Pn = 

<no,n> 

* <no,n> ' 



where 

* <no,n> 

1 

= I 
½a 

* n0 (x)n(x)dx, 

REMARK. <n~,n> > 0 if n(x) ~ O, a.e. and n I 0. 
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