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. *) The structure of near polygons with quads 

by 

**) 
A.E. Brouwer & H.A. Wilbrink 

ABSTRACT 

We develop a structure theory for near polygons with quads. Main re­

sults are the existence of sub 2j-gons for 2 $ j $ d and the nonexistence 

of regular sporadic 2d-gons ford~ 4 withs> 

t3 "F t2 ( t2 + I) • 

and t 2 > 1 and 

KEY WORDS & PHRASES: near n-gon, near polygon, dual polar space, general­

ized guadrangle 

*) This report will be submitted for publication elsewhere. 

**) Thans verbond~n aan TH te Eindhoven. 





INTRODUCTION 

A near polygon is a connected partial linear space (X,L) such that for 

any point p EX and line l EL there is a unique point on l nearest p. 

A regular near polygon with parameters (s,t2,t3, ••• ,td) is a finite 

near polygon of diameter d such that all lines have s+I points, each point 

is on t+I lines and any point at distance i from any given point xO is adja­

cent to ti+I points at distance i-1 from xO• (Here distances and adjacency 

are interpreted in the point graph: two points are adjacent iff they are col­

linear.) Note that t O = -1, t 1 = O, td = t, and that ti~ ti-I (O$i$d)~ 

A subset Y c Xis called geodetically closed if for any two points 

y 1,y2 E Y all shortest paths between y 1 and y2 are contained in Y. A quad 

is a geodetically closed subset of X of diameter two which is nondegenerate 

(i.e., not all of its points are adjacent to one fixed point); it follows 

that a quad is a generalized quadrangle. 

SHULT & YANUSHKA [5] showed that if lines have more that two points 

then any two points x,y EX with at least two ·common neighbours determine 

a unique quad Q(x,y) containing them. 

On the other hand, a near polygon with all lines of length two is just 

a connected bipartite graph. Thus, this paper has two parts: the first part 

is about thick near polygons (Vl EL: Ill ~ 3) and the second part (to be 

published separately) about thin near polygons (Vl EL: Ill = 2). 

In the first case on would like to generalize Yanushka's lenuna and 

obtain the existence of sub 2j-gons for 2 $ j $ d. SHAD & SHULT [4] showed 

that if each point at distance two from a quad has distance two to exactly 

one point of this quad then the near polygon contains hexes (geodetically 

closed sub near hexagons). Here we show that if a thick near polygon has 

quads then it contains sub 2j-gons for 2 $ J $ d. Moreover (using inequali­

ties obtained by eigenvalue techniques and by structural considerations) we 

prove that there are only very few possibilities for the parameter set of a 

regular near polygon. 

NOTATION. denotes adjacency; 

r. (x) is the set of all points at distance i from the point x, 
i 

and similarly for r.(Y). 
i 

c and~ are synonymous; strict inclusion is denoted by~• 

'x7 and Lx~ denote the largest (smallest) integer not larger (smal­

ler) than x. 
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A. THICK NEAR POLYGONS 

Let (X,L) be a fixed near polygon and assume that not all lines are 

thin. 

a) Relation between two lines. 

LEMMA I. Let ,t,m be wo lines. Then either (i) or (ii) hoZds. 

(i) There is a:n integer i such that each point of l has distance 1 tom 

and each point of m has distance i to l. It foZZows that Ill = 1ml. In 

this case l a:nd m are caUed paraUeZ. 

(ii) There are points x0 El a:nd y 0 Em such that for aU x El and y Em 

we have d(x,y) = d(x,x0) + d(x0 ,y0) + d(y0 ,y). 

PROOF. Trivial. 0 

Note that being parallel need not be an equivalence relation. 

LEMMA 2. If some shortest path beween x a:nd y contains a line of length 

a then aU paths do. In particufor., if we remove aU lines of size a then 

distances remain the same or become infinite: we get a disjoint union of 

(geodeticaZZy cZosed) near poZygons. 

PROOF. (i) No two edges in a shortest path are parallel. 

(ii) Let a be a geodesic between x and y containing the edge uv on a line 

uv of size a. Let S be any path between x and y not containing "ines of 

size a. Then a O S-l is a circuit not containing a line parallel the 

line uv. But this is impossible: Let us walk around the circuit starting 

at u. By induction we see that for any vertex of the circuit u is the near­

est point on uv. When we reach v we find a contradiction. D 

THEOREM 1. Suppose that any wo points at distance wo have at 'least wo 

corronon neighbours. (In fact it is enough to suppose that if u is a corronon 

neighbour of x and y and not both ux and uy have size wo then x and y have 

another corronon neighbour.) If lines of severai sizes occur then (X,L) is a 

direct product of near polygons with fixed line sizes: (X,L) = ~ (Xi,Li), 

1. e. , 
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X = n X. and L = U {{zjz. El and Vj Ii: z. = 
i 1 i 1 J 

y.} I y E x, E L. } • 
J 1 

PROOF. Let a be one of the line sizes. All components that arise when all 

lines of size a are removed are isomorphic since the quads connecting them 

are rectangular grids. Also, there cannot be paths only using lines of size 

a from a given point to two distinct points of some component (by Lennna 2). 

Now all is clear. D 

REMARK. Clearly, a direct product of near polygons is again a near polygon. 
ei 

It is regular only if each of the factors in a Hamming cube (s+l) (the 

direct product of e. lines of size s+ 1), and now the product is a Hannning 
1 

cube (s+l)e with e = E.e .• Hamming cubes are characterized by t. = i-1 
1 1 1 

(O:s:i:s:d). [Proof: clearly all factors must have line size s+I; as soon as 

there are at least two factors one proved by induction on i that t. + 1 = 1 
1 

for O :s: i :s: d. J 

Now assume that any two points at distance two have at least two com­

mon neighbours. By the theorem above we may restrict ourselves to the case 

where all lines have the same size s+I wheres> I. (That the line size is 

constant is not so important, but we often need the presence of three points 

on a line. Note that one cannot say anything about thin near polygons without 

additional restrictions: a thin near polygon is just a connected bipartite 

graph.) 

b) Relation betweert a point and a quad. 

In this section we suppose that (X,L) is a thick near polygon contain­

ing at least one quad Q. As Shult & Yanushka proved ([5], Proposition 2.6), 

there are two possible relations between a point x and a quad Q: either 

there is a unique point TIX in Q closest to x, and d(x,z) = d(x,Tix) + d(Tix,z) 

for all z E Q, or the points in Q closest to x form an ovoid in Q, that is, 

a set of points meeting each line of Q exactly once. In the first case xis 

called cZassicaZ and in the second case xis called of ovoid type with res­

pect to Q. In the second case it follows that Q is regular with parameters 

(s,t2); moreover, one has IOI= l+st2, IQI = (l+s)(l+st2), where O is the 

ovoid in Q. 
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Let 

N. := N. (Q) := {x E xld(x,Q) = i}, 
1. 1. 

N. C := {x E N. Ix is classical w.r.t. Q}, 
1., 1. 

N. 0 := {x E N. Ix is of ovoid type w. r. t. Q}. 
1., 1. 

Note that No= Q, Nd= 0, Nd-1,C = 0, Nl,O = 0. 
A near polygon is called cZassicaZ if all i,ts point-quad relations 

are classical; otherwise it is called sporadic. CAMERON [2]shows that clas­

sical near polygons are dual polar spaces. 

Let us first look at the structure of a near polygon in terms of these 

sets N. C and N. 0 for a fixed quad Q. Most of the following lemmas are due 
1., 1., 

to Shad & Shult. (No regularity is assumed.). 

LEMMA 3. Let Q be a nond.egenerate generalized quadrangle with thick lines. 

Let x be a point and O an ovoid in Q. Then O ¢ r 1(x) u {x}. 

PROOF. Not all lines of Q pass through one point, so IOI >I.No two points 

of Oare adjacent, so we may assume xi O. Let L be a line on x. Since lines 

are thick, L contains a pointy i O. Let M be a line on y distinct from L. 

Then M intersects O in a point z. Now z is a point of O nonadjacent to x. D 

LEMMA 4. There are no edges be-tween N. 0 and N. C (2sisd-2). 
1., 1., 

PROOF. A point x EN. 0 determines an ovoid O in Q. If xis adjacent to 
1.' 

y EN. C then each point of O has distance at most one to Tiy. But this con-
1., 

tradicts Lemma 3. B 

LEMMA 5. Let x,y be adjacent points in N. C suah that TIX/: Tiy. Then 
1.' 

TIX~ TIY, the line l = <x, y> is contained in N. C, and Til = <TIX, Tiy>. 
1.' 

PROOF. d(y,Tix) = d(y,Tiy) + d(Tiy,Tix) = i + d(Tiy,Tix). But d(y,Tix) s i+I, so 

TIY ~TIX.If z El then z i N. 1, otherwise TIX= Tiy. Now since z has distance 
1.-

at most i+l to two points of <Tix,Tiy>, it has distance i to some point on this 

line, so that TI! c <Tix,Tiy>. Conversely, if u E <Tix,Tiy> then u has distance 

at most i+I to two points of l c N. C' so it has distance i to some point 
1., 

on that line, i.e., Til = <Tix,Tiy>. D 



LEMMA 6. Let x,y be adjacent points in N. 0 and N. 1, respectiveZy. Then 
1, 1+ 

y EN. 1 0 and x and y determine the same ovoid. 
1+, 

PROOF. Obvious. 0 

LEMMA 7. Let x,y be adjacent points in N. 0 • Then either l~~ <x,y> inter-
1, 

sects Ni-l,O in some point z and x,y and z determine the same ovoid, or l 

d.oes not meet Ni-I O and x,y determine distinct ovoids. , 

PROOF. Obvious. 0 

LEMMA 8. Let l be a Zine meeting both N. and N. 1• Then ll n N. I= I. 
1 1+ 1 

PROOF. Let x,y El n N .• If both x and y are classical then by Lemma 5 we 
1 

have l c N. 1 u N .• Contradiction. If both x and y are of ovoid type, and 
1- 1 

z El n Ni+l then by Lemma 6 the points x,z,y determine the same ovoid, 

while according to Lemma 7 the points x,y determine distinct ovoids, con­

tradiction. 0 

5 

LEMMA 9. (i) Let l be a Zine contained in N. 0 • Then the points of l deter-
1, 

mine Ill paiPllJise disjoint ovoids partitioning Q. 

(ii) Let l be a Zine meeting N._ 1 C and N. 0• Then the points of l n N. 0 1 , 1, 1, 

determine Ill-I ovoids, paiPllJise intersecting in p := n(l n Ni-IC) and , 
partitioning the points at distance two from pin Q. 

PROOF. Obvious. [Concerning (ii): consider any line min Q not passing 

through p. This line must be paralle to land everything follows.] 0 

REMARK. Note that the lines of the types considered in this Lemma all have 

s+l points, where s+l is the line size of Q (cf. Lemma I (i)). 

LEMMA IO. Let x E Ni-l,C and y E Ni+I,O" Then x and y have at most one com­

mon neighbour in N. 0• 
1, 

PROOF. Suppose u, v .EN. 0 are common neighbours of x and y. Lines are thick, 
1, 

so let z EN. I O be a third point on the line <u,y>. Let w be the neighbour 
1+, 

of z on the line <x,v> (in the quad Q(x,y)). Now by Lemma 6 the points 

u,y,z,v,w all determine the same ovoid, while by Lennna 9(ii) the points v 
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and w determine distinct ovoids. Contradiction. D 

LEMMA 11. Let i,m be lines with m c Q. We have lllm exactly 1,,n the following 

cases: 

(i) i C N. ' m = 1ri, d(i,m) = i, 
i :, C 

(ii) i C N. C' m n 1ri = 0, d (i,m) = i +I, 
I.:, 

(iii) i C N. , m arbitrary., d(i,m) = 1., 
1.:,0 

(iv) i meets N. 0 and Ni-I ,C' i n Ni-IC {x}, 7fX r/_ m, d(i,m) = I.. 1., ' 
PROOF. Obvious. • 

c. Relation between two quads. 

In this section we suppose that (X,L) is a thick near polygon contain­

ing at least two quads. Let Q be a fixed quad. We shall write N. for N. (Q) 
I. I. 

etc. 

LEMMA 12. Let Q' be a quad meeting N. 1,N. and N. 1• Then Q' n N. 1 = {x} 1.- l. 1.+ 1.-
and Q' n Ni c: r 1 (x). In particular Q' n Ni does not contain a line. 

PROOF. Q' n (N. 1 u N.) is linearly closed and hence a subquadrangle of Q'. 1.- I. 

If it were nondegenerate it would coincide with Q' (because it contains all 

neighbours of a point in Ni_ 1). Therefore it must be degenerate and consist 

of·a number of lines through one point. D 

{In this case Q' cannot intersect both Ni+l ,O and Ni+l ,C.} 

LEMMA 13. Let i be a Zine contained in N. 0• 1., Let Q' be a quad containing i. 

Then either (i) Q' c N. Ou N. 1 0 and Q' n N. = i or Q' C N. O' 1., 1.+' 1.,0 1., 
or (ii) Q' 

C Ni-] 0 u N. O' 
' 1., 

or (iii) Q' c Ni-1,C u N. o• 1., 

PROOF. (i) Assume Q' c N. 0 u N. 1 0 and {x} u i c Q' n N. 0 where x r/. i. 
1., 1.+' 1., 

Let m be the line joining x to some point of i, so that m c N. 0 • Let n be 
1., 

some line of Q' meeting i and Ni+l,O" Every point of n\i determines the 

same ovoid and hence is joined to the same point of m. But this is impossible 

unless l,m,n are concurrent in a pointy. Any line through x distinct from 

m now serves to find a contradiction. 



(ii) Now assume Q' c N. 1 u N. 0 and x E Q' n N. 1 0 and y E Q' n Ni'-l c• 
1.- 1., 1.-, ' 

Let x v El, y ~ w El. 

a) If v I w then let y ~ u E xv. 

Now x,u,v determine the same ovoid O and rry E O. 

But w determines a disjoint ovoid also containing rry. 

Contradiction. 

L13(ii)a 

b) Consequently v = w, i.e., all points of Q' n N. 1 are neighbours of v. 
].-

Let q be a third point on xv and ma line through q in Q' m I xv. 

7 

Now m cannot meet N. 1, so m 
1.-

c N. 0 and all points 
1., 

of N. 1 n Q' are neigh-
1.-

bours of some point r Em, 

two neighbours on the line 

L13(ii)b 

where O = 0. But O = r X q 
xqv. Contradiction. D 

Ll4 

0 so r = q and y has 
X 

LEMMA 14. Let Q' be a quad meeting N. 0 and N. C and N. 1 0 but not N. 1• 
1., 1., 1.+' 1.-

Then I Q' n N. 0 I = 1 and Q ' n N. is an ovoid in Q' • 
1., l. 
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PROOF. Let x,x' E Q' n N. O and y E Q' n N. c• Clearly 
1, 1, 

Q' n N. is a coclique, 
1 

so d(x,x') = 2 and x and x' have a common neighbour z EN. Io· It follows 
1+, 

that O = 0, = Oz• Let y ~ u E xz. If u 'f z then let x' ~ v E uy.Nowwefind 
X X 

that u and v determine the same ovoids, a contradiction. Thus all points in 

Q' n N. are neighbours of z. Choose a third point q E xz and a line· l in Q' 
1 

through q, l 'f xz. By the previous lemma we arrive at a contradiction. By 

Lemma's 8 and 13each line of Q' meets Q' n N. in exactly one point, hence 
1 

Q' n N. is an ovoid in Q'. D 
1 

LEMMA 15. Let Q' be a quad contained in Ni-I u Ni,O" Then Q' n Ni-l,O is 
empty, a single point, a line or an ovoid in Q'. 

PROOF. By the previous lemma we may assume Q' n Ni-I C = ~. If Q' n N1._ 1 0 , , 
is not a coclique then it contains a line and we are done by Lemma 13. If 

Q' n Ni,O does not contain a line then Q' n Ni-I,O is an ovoid. Therefore, 

let l be a line in Q' n Ni,O and let x,x' E Q' n Ni-I,O" As before it follows 

that all points in Q' n Ni-I,O are neighbours of the same point z El. 

Choose a third pointy on the line xz a second line min Q' on y, then 

m c Ni,O and all points on Q' n Ni-I,O are neighbours of the same point of 

m, and point must bey. Contradiction. D 

Since obviously a quad Q' cannot intersect N. for more than three values 
J 

of j, or both N._ 1 0 and N. C for some i, the Lemma's 12-15 give a reason-
1 , 1, 

able idea of the possible relations between Q and Q'. It would be easy but 

boring to give a complete description of all possibilities. 

d. Geodesics and the linear spaces S(x,y). 

From now on we suppose that (X,L) is a thick near polygon 'with quads', 

i.e., any two points at distance 2 (or any two intersecting lines) determine 

a unique quad containing them. By Yanushka's Lemma quads exist iff any two 

points at distance 2 have at least two common neighbours. 

THEOREM 2. Let d(x,y) = i. Then given a geodesic x = x0,x1, ••• ,xi = y, there 

is a geodesic y = y0,y 1, ••• ,yi = x such that d(xj'yj) = i (O:;;j:;;i). 

PROOF. Induction on i, i:;; 2 being clear. Choose points z. (J:;;j:;;i) with 
J. 

z 1 = x and z. a common neighbour of z. 1 and x. different from x. 1 (2:;;j:;;i). 
J J- J J-
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Put y 1 = zi. By induction hypothesis there is a geodesic y 1, ••• ,yi = x such 

that d(z.,y.) = i- 1 (l:::;j:::;i). We now prove by induction on j that d(x.,y.) = i 
J J J J 

and that y. is of classical type with distance min(i+j-k-2, i-j+k-1) to the 
J 

quad Q(~,~+l'zk,zk+l) =: Qk (1:::;k:::;i-1), with nearest point zk if j > k and 

~+I otherwise. 

The induction step goes like this: look at the relation between y. and 
J 

the quad Q. 1• The path Y·,Y·+i'•••,Y· = x = z 1, ••• ,z. 1 shows that the dis-J- J J i J-
tance is at most i - 2. On the other hand, y. 1 is classical at distance i - 2 

J-
(with closest point z.) w.r.t. Q. 1• It follows that y. is also classical 

J J- J 
(by Lemma 4), and if d(y. ,Q. 1) = i - 3 then y. and y. 1 would have the same J J- J J- . 
nearest point, but d(y.,z.) = i - 1. Thus d(y.,Q. 1) = i - 2 and 

J J J J-
d(y.,x.) = d(y.,z. 1) + d(z. 1,x.) = i - 2 + 2 = i. Now that d(x.,y.) = i 

J J J J- J- J J J 
we see that yj has three distinct distances to points of Qk for each k 

(Q:::;k:::;i-1) so that y. is classical (with the stated distance and nearest 
J 

point) w.r.t. Qk. 

Remains to start the induction for j = 1. It suffices to prove 

d(x 1,y 1) = i. By downward induction on k (i~k~l) we show that d(~,y 1) = 

i - k + 1. Fork~ i - I this is clear. Look at the relation of y 1 w.r.t. 

Qk. The distance is at most i - k - 1, while y is classical w.r.t •. Qk at 

distance i - k - 1 with nearest point ~+l (this is easily seen by induction 

on k: y has. 3 distinct distances to the points zk ,~and~+ 1 of Qk). Therefore y 1 
is also classical, and since by induction d(y 1,~+l) = i - k the points y 

and y' have different nearest points, so d(y 1,Qk) = i - k - 1 and y 1 has 

nearest point zk+l in Qk so that d(y 1,~) = i - k - I+ 2 = i - k + 1. This 

completes the proof. D 

COROLLARY. Given a point x and a Zine L, there is a line on x parallel to L. 

PROOF. Let y EL be such that d(x,y) = d(x,L). Let z E L\{y}. By the Theorem 

there is a point w ~ x such that d(w,z) = d(w,L), so that xwll L. D 

By a linear space we mean a collection of points and lines such that 

any two distinct points are on a unique line. 

The sets L := {.t E 
X 

Llx El} get the structure of a linear space if we take 

the sets Ulx El c Q} for all quads Q on x as lines. 

Define S(x,y) as the set of all lines on x in a geodesic from x toy (i.e., 
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if d(x,y) = i then S(x,y) = {llx El and l meets ri_ 1(y)}). 

LEMMA 16. 

(i) 

(ii) 

(iii) 

PROOF. 

S(x,y) is a subspace of L 
X 

Let x = x0 ,x1, ••• ,xi = y be a geodesic from x toy. Then 

0 = S(x,x0) c S(x,x1) c ••• c S(x,y) is a strictly ascending chain of 

subspaces of L • 
X 

If y ~ z and d(x,y) = d(x,z) then S(x,y) = S(x,z). 

(i) Let l,m E S(x,y) and let n be a line x in the quad Q(l,m). We must 

shown E S(x,y). But y is either of ovoid type at distance i - 1 from 

Q(l,m), or of classical type at distance i - 2 from Q(l,m). In both 

cases every line of Q carries a point of r. 1(y). 
1.-

(ii) Only 'strictly' requires proof, but this follows from Theorem 2. 

(iii) Let x' be the point on yz closest to x (so that x', y and x' # z). 

Let l E S(x,y). Then either l is on a geodesic from x to x' and hence 

in S(x,z), or l is parallel to yz and again in S(x,z). D 

LEMMA 17. Let x E N. 1 0 (Q) for some quad Q. Then {ll x E .t andl meets N. 0 } 
1.+ , 1., 

is a subspace of L • 
X 

PROOF. Let l,m be two 

N. l then Q' n N. l = 
1.- 1.-

lines on x in Q' meet 

lines on x meeting N. 0 • Let Q' = Q(l,m). If Q' meets 
1., 

{y} and by Lemma 10 we have y E Ni-I ,O so that all 

N. 0 • If Q' n N. 1 = 0 then we are done by Lemma 14. D 
1., 1.-

LE:MMA 18. Let l 1, ••• ,lr be r Zines on x. Then there is a pointy with 

d(x,y) ~ r such that {l1, ••• ,lr} c S(x,y). 

PROOF. Induction on r. D 

REMARK. In case our near polygon is regular with parameters (s,t2,t3, ••• ,t), 

our linear spaces are block designs with A= 1 (Steiner systems), and we 

find some restrictions such as t 21ti and t 2(t2+l)lti(ti+l) for 1 ~ i ~ d. 

e. Some more regularity. 

LEMMA 19. Each point is in the same number t + 1 of Zines •. 
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PROOF. (i) Observe that two intersecting lines determine a unique quad. By 

our assumption on line length this quad is not thin, i.e. is not K , so m,n 
that each point of the quad Q is in a constant number tQ + I of lines. 

(ii) Let x ~ y, and consider all quads containing the line xy. We find that 

t(x) +I= EtQ + I= t(y) + I 

so that x and y are on the same number of lines. By connectedness of a near 

polygon we are done. D 

REMARK. Lennna 16 is still meaningful (and true) when t + I is an infinite 

cardinal number. 

LEMMA 20. Let t(x,y) be the number of Zines on x in some geodesia from x to 

y. Then if d(x,y) = d(x,z) and y ~ z we have t(x,y) = t(x,z) and 

t(y,x) == t(z,x). 

PROOF. (i) t(x,y) = IS(x,y) I, so t(x,y) = t(x,z) follows from Lemma 3. 

(ii) Consider the quads Q containing the line yz. If Q contains a line of 

S(y,x) then if xis of classical type w.r.t. Q then either d(x,y) = 

= d(x,Q) + I so that nx,y and z are collinear and Q contains exactly one 

line from S(y,x) and S(z,x), or d(x,y) = d(x,Q) + 2 and Q contains exactly 

tQ + lines from each of S(y,x) and S(z,x). If xis of ovoid type w.r.t. 

Q then y and z are not in the ovoid O determined by x, and again Q cun-
x 

tains exactly tQ + 

t(y,x) = t(z,x). D 

lines from both S(y,x) and S(z,x). Sunnning up we, d 

COROLLARY. t(x,y) = t(y,x). 

PROOF. Choose geodetics as in Theorem 2. We prove by induction on j that 

t(x,y) = t(x.,y.). For j = 0 this is obvious. Let u. be a third point on 
J J J 

x. 1 x .• Then t(x. 1,y. 1) = t(u.,y. 1)=t(u.,y.) = t(x.,y.) by Lemma 20. D 
J- J J- J- J 3- J J J J 

£. Connected components. 

Any subset E of a partial linear space carries the structire of a graph 

(call two points of E adjacent whenever they are collinear in the partial 
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linear space) so that it makes sense to talk about the (connected) compo:­

nents of E. Arguments using the connectedness of certain subsets of near 

polygons will prove to be a powerful. means of obtaining global results 

from local considerations. First we need a small lemma on generalized 

quadrangles. 

LEMMA 21. Let Q be a nondegenePate genePalized quad:Pangle with thick 'lines. 

Let x be a point and O an ovoid in Q. Then the gPaphs induced on Q\O and 

Q n r2 (x) ape connected. 

PROOF. Write Y = Q\0 (resp. Q n r 2 (x)) and Z = 0 (resp. r 1(x)). Let u,v E Y. 

We must show that u and v are joined by a path in Y. If u, v are nonadjacent and 

all common neighbours lie in Z,then let L be a line on u, let L n Z = {z} 

and let w be a point of L distinct from u and z. Let M be a line on v not 

passing through z. Since u and ware not both adjacent to the same point of 

M it follows that w has a neighbour on M\Z so that u and v are joined by a 

path in Y. D 

The following lennna was implicit in the proof of a theorem in an ear­

lier version of this paper. Thanks to the referee, who deemed it bad mathe­

matical behaviour to refer to the proof of a theorem, it got independent 

status and an independent proof. Now it turned out that no regularity as­

sumptions were needed here so that we could prove the existence of sub 

near polygons under much more general assumptions! 

LEMMA 22. Let d(x,w) = i - 1 and let L be a line on x with d(w,L) = i - 1. 

Then all lines on w paPallel to L meet the same conneeted component of 

r. (x). 
i 

PROOF. If N is a line on w parallel to L then N\{w} is a clique contained in 

r. (x), so obviously there is a component 
i 

C of r.(x) containing N\{w}. Let 
i 

N' be another line on w parallel to L. Choose z E L\{x} and u:E N, u' EN' such 

that d(z,u) = d(z,u') = i - 1. Consider the quad Q determined by the two in-

tersecting lines N,N'. There are three possibilities: 

(a) d(x,Q) = i - 2 and x is of classical type w.r.t. Q, 

(b) d(x,Q) = i - and x is of classical type w.r.t. Q, 

(c) d(x,Q) = i - and x is of ovoid type w.r.t. Q. 
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In case (a) ri(x) n Q = r 2 (Tix) n Q is connected (by Lemma 21) and contains 

(NuN')\{w} and we are done. 

In case (c) r.(x) n Q = Q\0 for some ovoid O c Q, which again is connected 
i 

by Lemma 21. 

Finally, case (b) cannot occur: for suppose it did, and consider the rela­

tion between z and Q. If d(z,v) = i - 2 for some v E Q then d(x,v) $ i - 1 

so that v = w; but d(z,w) = i, contradiction. Thus, since d(z,u) = d(z,u') = 
i- 1 it follows that z is of ovoid type w.r.t. Q. Let O be the ovoid deter-z 
mined by z. Then d(x,v) $ i for all points v E Oz so that Oz c r 1(w), con-

tradicting Lemma 3. D 

LEMMA 23. Let x,y,z be three points of a near n-gon, and suppose that there 

exists apathy= yO,y 1, ••• ,yr = z from y to z with the properties 

(i) d(x,y.) $ d(x,y) for O $ i $ r, and 
i 

(ii) if d(x,yi+l) > d(x,yi) then (S(x,yi+l)\S(x,yi)) n S(x,y) I~ 
(O$i<r). 

Then each path satisfying (i) and (ii) (with a possibly different r) and 

moreover 

(iii) under the conditions (i) and (ii) the path keeps as for from x as 

possible, i.e., it is impossible to replace a point of the path by 

one or more points, each farther away from x than the original point 

has the form y ••• y' w~thin rh(x) (where h := d(x,y)) followed by y' ••• z, 

part of a geodesic from y' to x. 

PROOF. Let yO ••• yr be a path satisfying (i) - (iii). 

Suppose this path contains three successive points wO,w1,w2 such that (for 

some j $ h) d(x,wO) = j and d(x,w 1) = d(x,w2) = j - 1. Let w be a common 

neighbour of wO and w2 distinct from w1• The line w1w2 contains a point of 

rj_2 (x), so xis classical w.r.t. Q(wO,w1,w2) and it follows that 

d(x,w) = j and, by Lemma 3, S(x,wO) = S(x,w). But this means that we can 

replace w1 by win the path, violating (iii). Contradiction. 

Next suppose that d(x,yi) $ d(x,yi_ 1) for 1 $ i $ e and d(x,ye+l) > d(x,ye). 

Write (wO,w1,w2) = (y 1,y ,Y 1) and j = d(x,y 1) so that we have e- e e+ e-
d(x,w1) = j - 1, d(x,wO) = d(x,w2) = j and S(x,w1) c S(.x,wO) c S(x,y). If 

Lis a line in (S(x,wO) n S(x,w2/)\S(x,w 1) then both w1wO and w1w2 are paral­

lel to Land by Lemma 22 it follows that wO and w2 are in the same component 

of rj(x) and we could replace w1 by a path in this component, violating 
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(iii). Hence S(x,wO) n S(x,w2) = S(x,w1) and j < h (otherwise S(x,w0 ) = 

= S(x,y), violating (ii)). Since S(x,w0) :/: S(x,w2) it follows that xis 

classical w.r.t. Q =Q(w0 ,w1,w2) (by Lennna's 16 (iii) and 21) and 1rx =w1• Let 

w be a common neighbour of w0 and w2 distinct from w1• Then d(x,w) = j + I 

and (S(x,w)\S(x,w0)) n S(x,y) ~ (S(x,w2)\S(x,w1)) n S(x,y) :/: 0 so that we 

can replace w1 by win the path, again a contradiction. 

This proves the Lemma. D 

DEFINITION. If Ac L then 
X 

rank A:= min{il3y Er. (x): An S(x,y)}. 
1. 

Clearly O ~ rank A~ d (for S(x,y) 

A= 0. 
= L when d(x,y) = d) and rank A= 0 iff 

X 

REMARK. It might happen that one subspace of L is strictly contained in 
. X 

another of the same rank. (This occurs for instance in the regular near 

hexagon with parameters (s,t2,t) = (2,2,14). There Lx ~ PG(3,2) and points 

of PG(3,2) have rank I, lines of PG(3,2) have rank 2, and both planes of 

PG(3,2) and all of PG(3,2) have rank 3.) If the near polygon is regular then 

we have 

IA! ~ I + t rank A" 

In particular it then follows that rank S(x,y) = d(x,y). 

THEOREM 3. Suppose rank(S(x,y) n S(x,z)) ~ d(x,z). Then there is a point 

y' such that y' and y Zie in the same component of r.(x) (for i = d(x,y)) 
1. 

and z is on a geodesic from x toy'. In particular S(x,z) c S(x,y). 

PROOF. By induction on k (O~k~h:=d(x,z)) we find points zk such that 

d(x,zk) = k and (S(x,zk)\S(x,zk-l)) n S(x,y) n S(x,z) :/: 0 (for k>O). [As fol­

lows: put z0 = x. Having found zk (k<h) we choose a line 

LE S(x,y) n S(x,z)\S(x,zk). Choose zk+l such that zk+l ~ zk and zk zk+l#L. 

It follows that zk+I E rk+l (x) and LE (S(x,zk+l)\S(x,zk)) n S(x,y) n S(x,z).] 

Put v = zh. Apply the lennna with v instead of z (a path satisfying (i) and 

(ii) is given by a geodesic from y to x followed by a geodesic from x to v). 
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It follows that there is a pointy' in the same component of r.(x) as y 
l. 

such that vis on a geodesic from x toy'. Next apply the lennna with v in-

stead of z and z instead of y. It follows that v and z lie in the same con­

nected component of rh(x). Finally apply the lemma toy and z, observing 

that y ••• y' ••• v ••• z is a path satisfying (i) and (ii). The conclusion of our 

theorem follows. D 

COROLLARY. rank S(x,y) = d(x,y). 

PROOF. Leth= rank S(x,y), and let z be a point with d(x,z) =hand 

S(x,y) c S(x,z). By the theorem it follows that S(x,y) = S(x,z) and that z 

is on a geodesic from x toy', with S(x,y) = S(x,y'). By Lemma 16 (ii) we 

have S(x,z) ~ S(x,y') unless z = y' so that d(x,z) = d(x,y). D 

COROLLARY. In a thick near 2d-gon (with quads) the set rd(x) is connected 

for each point x. 

REMARK. This is not true for generalized 2d-gons: there are precisely two 

nonisomorphic generalized hexagons GH(2,2) on 63 points. One has connected 

sets r3 (x), and in the oithe,r each r 3 (x) has two components. 

g. The existence of sub near polygons. 

THEOREM 4. Let d(x,y) = i. Then there is a unique geodetically closed sub 

near 2i-gon H(x,y) containing x and y, and we have 

H(x,y) = {u]S(x,u) c S(x,y)} = {zlz on a geodesic from x to C}, 

where C is the component of r.(x) containing y. 
l. 

PROOF. Define H(x,y) as in the statement of the theorem. That the two ex­

pressions given are equal follows from the previous Theorem and Corollary. 

(i) Clearly H(x,y) contains all geodesics from x to each of its points. 

(ii) H(x,y) is linearly closed. (For: if a line l has two points u,v in 

H(x,y), and w El then either d(x,w) = d(x,l) and w is on a geodesic 

from u to x, or d(x,w) > d(x,l) and if d(x,u) :::: d(x,v) then S(x,w) = 

S(x,u); in both cases w E H(x,y).) 
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(iii) Let x x' E H(x,y) and d(x' ,y) = i. We prove that H(x' ,y) = H(x,y). 

A. Let l be a line 1.n H(x' ,y) having a point u E H(x,y), and suppose l ¢ 
H(x,y). Now d(x,l) = d(x,u). Let d(x' ,l) = d(x' ,v) with v E l and suppose 

v i H(x,y). Then xx'// uv and S(x,v) contains both S(x,u) and the line 

xx' and by the previous theorem it follows that S(x,v) c S(x,y). Contra­

diction. This shows that u = v. 

B. Let C' be the component of y 1.n r.(x'). Then C' c H(x,y): C' is connected, 1. 
and if l is a line with two points in C' then by induction and A. we have 

l c H(x,y). 

C. Let z E H(x' ,y), i.e., z on a geodesic from x' to y' E C. Then z E H(x,y): 

suppose z 1.s the last point of the geodesic not in H(x,y). By B. z i C'. 

Let l be the line connecting z with its successor in the geodesic. By A 

we find a contradiction. 

(iv) Let u E H(x,y). Then 3v: H(u,v) = H(x,y). 

(For: let x ,= x0 ,x1 , ••• ,xi be a geodesic containing u with xi E C. By theorem 

2 there is a geodesic x. = y0 ,y 1 , ••• ,y. = x such that d(x.,y.) = i V .• If 
1. 1. J J J 

= y .. Note that all x. and y. are in H(x,y) since they are 
J J J 

u = x. then set v 
J 

on geodesics from a point of C to x. Now by (iii) we see that H(x,y) = 

H(u,v) [just as in the proof of the corollary to Lemma 20].) 

Now everything is clear. D 

COROLLARY. Let Ac L with rank A= i. Then there is a unique suh near 2i­
x 

gon H containing A. If Ac S(x,y) with d(x,y) = 1. then H = H(x,y). 

h. Counting with respect to a quad. 

Thus far we ~onsidered the not necessarily regular case. Now assume 

that our near polygon has parameters (s,t2 ,t3 , ••• ,td). 

LEMMA 24. Fi,'XJ x E N. c• 
1., 

(i) xis incident with I+ t. lines meeting N. 1 c• 
(ii) xis incident 

(iii) x is incident 

(iv) x is incident 

1. 1.-' 
with(l+t 2)(t. 1-t.) lines contained 1. + 1. 
with t - t. 2 lines meeting N. 1 c• 

1.+ 1.+' 

within N. c· 1., 

with t. 2 - t. - (I+t2) (t. 1-t.) lines meeting N. 1 0 • 1.+ 1. 1.+ 1. 1.+, 

PROOF. (i) 1.s obvious. For any line l in Q incident with TIX we find 



t. 1 - t. lines contained within N. C and projecting onto i. Conversely, 
1.+ 1. 1., 

by Lemma 5, each line on x in N. C projects onto a line ion TIX in Q. This 1., 
proves (ii). Fix a pointy E Q with d(y,Tix) = 2. Then d(x,y) = i + 2. 

Claim: The lines through x meeting Ni+l,C are exactly those not meeting 

r i + l (y) • 

For: any neighbour of x in N. 1 Chas distance i+l to TIX and to no other 
1.+' 

point of Q. Conversely, let i be a line on x not meeting N. 1 c• If i 1. + , 

17 

meets Ni+l,O then by Lemma 9 (ii) one of the points of in Ni+l,O determines 

and ovoid containing y. If i is contained in N. C then Tii is a line through 1., 
TIX and contains a neighbour of y. Finally, if i meets Ni-I C then y has dis-, 
tance i + l to the point i n N. 1• 1.-
This proves (iii). Now (iv) follows since x 1.s incident with l + t lines 

and our four cases exhaust all possibilities. D 

COROLLARY. 

IN. cl 1., 

i+l i = (l+s)(l+st 2).s IT 
j=2 

1. 
(t-t.)/ IT (l+t.). 

J j=2 J 

LEMMA 25. 

(i) The number of lines incident with x E N2 0 and meeting N1 C is 
' , 

(ii) 

(iii) 

(l+t2) ( l+st2). 

The number of lines incident with x E N2 0 and contained in N2 0 is , , 
(l+t3) - (l+t2) (l+st2). 

2 
IN2,ol= s (l+s)(t-t2)(t3- (l+t2)t2)/(l+t2). 

PROOF. Let x determine the ovoid O c Q, so that IOI= l + st2• Now (i) is 

clear since NI,O = 0. For each pointy E Q\0 there are l + t 3 - (l+t2)(1+st2) 

lines through x in N2 , 0 containing a point of r2 (y). There are s(l+st2) 

choices for y, and each line is counted s(l+st2) timeso D 

1. 1. i 
LEMMA 26. IN. al= s (s+l)(t. l - t2(l+t.)) TI. 2 (t-t.)/TI. 2(l+t.). 

1.' 1.+ 1. J= J J= J 

PROOF. Count triples (x,y,z) with x,y E Q, d(x,y) = 1, d(y,z) = i, d(x,z) = 

i+l. We find 
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i 
But (writing Pjk := #{zjd(x,z) = j and d(z,y) = k} for d(x,y) = i) we have 

and 

I 
p •. +I 1.,1. 

1r.1 = 
l. 

(t. 1+1) 
1.+ 

= 1 r i + 1 1 • s ( t+ 1 ) 

i-1 t-t. 
i J s TT 

. 0 l+t. 1 J= J+ 
(where t 0 = -1, t 1 = O), 

and IN. cl is known by the corollary to Lemma 24. Substitution now gives the 
1., 

result. D 

REMARK. Similar counting proves that 

and 

IN. cl 
1., 

2 
p. ·+2 1.,1. 

2 
= p .. 2.(l+s)(l+st2) 

1., 1.+. 

(l+t. 1) (l+t. 2) 
1.+ 1.+ 

which is equivalent to our previous result. 

(l~i~d-1). 

LEM1A 27. Fix x E N. o· 
1., 

(i) x is incident with t - ti+l lines meeting Ni+l ,o· 
(ii) Let x be incident with ac, a0 and a1 Zines meeting Ni-l,C' 

contained within N. 0, respectiveZy. Then 
1., 

a) ac + a0 (l+st2) = (l+ti)(l+st2) 

b) ac + a0 + a1 = 1 + ti+l. 



PROOF. Let O be the ovoid determined by x. For (i) choose a pointy E Q\0 

and observe that the lines through x meeting N. 1 0 are exactly the lines 
1+' 
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through x going away from y. For (iia) count pairs (p,l) where p E O and l 
is a line incident with x and meeting r. 1(p). (iib) is obvious. D 

1-

COROLLARY. If N. O f. (/J then N. O I- (/J for 1 ::5: J ::5: d-1 • 
1' J' 

REMARK. Averaging over x EN. 0 we find 
1, 

(l+t.) (t.-t2 (1+t. 1)) 1 1 1-

(l+st2)(l+t.)(t.+l-t.-t2 (t.-t. 1)) 
1 1 1 1 1-

a. = ---------~-----e------c t. 1 - t 2 (1 +t. ) 
1+ 1 

Lennna 24 shows that we know everything about points of classical type. 

Unfortunately we see no way to determine ac and a0 for i 2 3 and x of ovoid 

type, except in some special cases, For example, if Q does not admit a parti­

tion into ovoids then no set N. 0 contains a line and for each x EN. 0 we 
1, 1, 

have a1 = 0. Now it follows that 

and 
(l+t.) (l+st2)-(l+t. 1) 

1 1+ , 

stz 

but we know a0 , and thus find a quadratic equation for ti+l: 

st2 (l+t.)(t.-t2 (l+t. 1)) = (t. 1-t2 (l+t.))((l+t.)(l+st2)-(l+t. 1)). 
1 1 1- 1+ 1 1 1+ 

For example, if N2 0 I-~ and d 2 4 then by Lennna 2S(i.i) we have , 

and the above equation yields for i = 3 the existence of two integers with 

sum (l+t3) (l+st2-t2) - I and product (l+t3)st2 (t3-t2 (l+t2)). 

Ifs= t 2 = q then one easily verifies that the discriminant can be a 

square only for q = 2. But if q = 2 the quadratic reduces to (t4-SO)(t4-S4) = 
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0, hence t 4 E {50,54}. If t 4 = 50 and d = 4 one finds that the multiplicity 

of the eigenvalue -t - 1 is nonintegral (cf. the next section). If t 4 = 50 

and d > 4 then we again have a quadratic for t 5 : 

(t5-102)(254-t5) = 2.2.s1.20 = 4oso 

which does not have an integral solution. Therefore t 4 = 54. But below we 

shall show that (t3-t2)1 (t4-t3). In this case we find (14-2)1 (54-14), a con­

tradiction. 

Thus we proved that if a regular near polygon has d ;;?; 4, s = t 2 > ·1 and 

one of its quads does not admit a partition into ovoids than the near polygon 

is classical. In particular this holds for s = t 2 E {2,3,4}. 

[In fact the situation seems to be as follows: the classical generalized 

quadrangle corresponding to o5 (q) (called Q(4,q)) has s = t 2 = q. For q = 2 ,3, 

4,5,7 all ovoids of the quadrangle are intersections of the quadric with a 3-

space (hyperplane) - consequently no two ovoids are disjoint. For q = 8 there 

are two kinds of ovoids: those on a hyperplane and those corresponding to a 

Tits-ovoid, but any two ovoids intersect. (In general, if q is even and N is 

the nucleus of the quadric then for any ovoid in the quadrangle we find an 

ovoid in the 3-space N.L /N.) Kantor cons true ted large classes of ovoids for odd 
2 prime powers q as follows: Let Q(x,y,z,u,v) = xv+yu+z. Let crEAut(lF ). Let 

. cr 2 cr+ I q 
-kbe a.nonsquare 1.n 1F .Then {<1,y,z,ky ,-z -ky >}u{<0,0,0,0,1>} is an 

q 
ovoid in o5 (q). (Such ovoids are intersections of the quadric with a hyper-

plane iff cr = 1.) For q = 9 we found several sets of five pairwise disjoint ov­

oids, but no partition into ovoids. Q(4,q) is selfdual when q is even. For odd 

q its dual Q(4,q)* does not possess ovoids. No other generalized quadrangles 

with s = t 2 are known. For s = t 2 E {2,3,4} it 1.s known that there are no others. 

For us this means that for no quad withs= t 2 it is known that there is a 

partition into ovoids, while for s = t 2 E {2,3,4} there certainly isn't.] 

Below we shall prove that all quads in a sporadic regular near polygon 

of diameter;;?; 3 do admit partitions into ovoids, with the unique exception 

of GQ(2,2) in the near hexagon with parameters (s,t2,t) = (2,2,14) on 759 

points. 
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i) Eigenvalues 

A regular near polygon defines a distance regular graph (X,~), and the 

usual eigenvalue techniques are applicable (cf. e.g. BIGGS [OJ). We have 

d 
V = IX! = I 

i=O 

. i-1 
]. 

s .TT0 (t-t.) 
1= J 

i 
.TT (l+t.) 
J=I J 

Let A be the adjacency matrix, 
. _ f 1 if d(x,y) = i 

(A.) - L 
1 xy O otherwise 

i 

(
d-1 .TT (t-t.)\ 

= (l+s) ) si J~l J )' 
i=O .TT1(1+t.) 

J= J 

and A. the matrix with entries 
]. 

d 
Now A0 = I, A1 = A, Li=OAi = J. All Ai are polynomials in A and hence 

simultaneously diagonisable. Number the eigenspaces in some arbitrary way, 

but such that those corresponding to the minimal idempotents .!..J and 
d I i v -I 

I L._0 (--) A. are numbered O and I respectively. (Here v(s ) denotes 
v(s- ) i- s 1 

v with s- 1 substituted for s.) In these eigenspaces A. has eigenvalues 
]. 

1r.(x)I = 
]. 

i i-1 
s .TT0 Ct-t.) 

J= J 
]. 

.TT (l+t.) 
J=l J 

. i-1 
]. 

(-1) .TT0 (t-t.) 
J= J and ---.------, respectively. 

1· ( l +t.) 
jDt J 

In particular we find for i = l that A has eigenvalues s(t+I) and -(t+I) 

here; the first is the largest eigenvalue and has multiplicity one since 

the graph is connected. The second is the smallest eigenvalue [ for: let N 

be the point-line incidence matrix. Then NNt = A+ (t+l )I is positive semi­

definite]. 

Write P .. = A.(A.) = eigenvalue of A. in i-th eigenspace. Then the 
l.J ]. J J . 

Krein condition q~ 1 ~ 0 is equivalent to Lf=o s-ZiAr(Ai) ~ O. Thus: 

d -2i 
PROPOSITION. L. Os A. is positive semidefinite. • i= ]. 

For r = I we find 

d (-l)i 
PROPOSITION. Li=O Zi 

s 

find that either s = I or 

i-1 
.TT0 (t-t.) 
J= J ~ 

]. 
TT (l+t.) 

j=l J 

I 
0. Factoring out a factor ( I - 2 ) we 

s 
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dl-1·(-I)i 1 t-t. 
I 21· .n1 -.-=J ~ o. 

i=O s J= 1 + tj 

In particula1•: 

- if d = 2 thens 

- if d = 3 thens= 

2 or ts s . 

2 2 4 or t - ((s +l)(t2+1)-l)t + s (t2+1) ~ 0. 

(Very roughly this last condition says that t 2::, s 2t 2 or t < s 2 .) 

- if d = 4 then s = I or t 3 - ( s 2 ( t 3 + I ) + t 3 + t 2) t 2 + 

+ (s 4 (t2+1) (t3+J) + s 2 (t3+1)t 2 + t 2t 3)t 
6 

- s (t2+1)(t3+1) s 0. 

2 It follows that ts s (t3-t2+I) +t3 . 

- if d is even then I + t s ( s 2 + I ) (I +t d- I ) . D 

In the special case of a generalized quadrangle (d = 2) we have 

( : 
s ( t+ 1 ) 2 

) , ( I ) 

s t 

-(t+I) 2 p t µ = s (st+l)/(s+t) 

s-1 -s st(s+l)(t+l)/(s+t) 

whereµ. is the rank of the j-th eigenspace. 
J 

In the special case of a near hexagon (d = 3) we have 

s 2t(t+I) 
3 

s ( t+ 1) 
s t(t-t2) 

t2+1 t2+1 

-( t+ I) 
t ( t+ I) t(t-t2) 

t2+1 t2+1 
p = 

. 2 
- sa + s(s-1) a (s-1 )a - (s -s+I) 

B 
2 ( s-1 ) B - ( s -s+ I) - sB + s(s-1) 

where the numbers a and Bare the roots of 

2 2 x - (s-l)(t2+2)x + (s -s+l)(t2+1) - s(t+I) = 0 



and, say, a> s. tBy SHAD & SHULT [4] a and Sare integers. Consequently 

(s-1) 2(t2+2) 2 - 4(s2-s+l)(t2+1) + 4s(t+I) is a square.] The multiplicity 

of the eigenvalue -(t+I), i.e, the rank of the first eigenspace, is 

3 (v/(s+l)).s (t2+1) 

2 s (t2+1) + st(t2+1) + t(t-t2) 
2 

s t(t-t2) 
where v = (s+I) (I+ st+----). 

t2+] 

The Krein condition q~ 1 ~ 0 yields for s > I that t + I s 
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2 (s -s+l)(s+l+t2), 3 2 or, equivalently, t s s + t 2 (s -s+ I). (This is the MATRON 

bound.) 

In the case of a classical near hexagon (t3 = t 2(t2+1)) we can be some­

what more explicit: we have 

a= s(t2+1) - I, 

S = s - Ct2+I), 
s3(J+st2)(l+st22) 

rank E1 = 2 
(s+t2)(s+t2 ) 

2 v = (l+s)(l+st2)(1+st2 ), 

We have the following possibilities: 

+ 0(7,q) name 0 (6, q) 

s I q 

I t2 q 
I 

q I 

-
(8 'q) Sp(6,q) U(6,q2) U(7,q2) I 0 

I 

q2 q q q3 

I q q q2 q2 
I 

In the case of a classical near octagon (t3 = t 2(t2+1) and t 4 = t 2(t3+1)) we 

find (with q := t 2): 

I for some positive constant C, so that q11 = 0 for all classical near octagons, 
2 except those withs= q. 

In the case of a near octagon with classical hexes (t2 = q, t 3 = q2+q) 
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e_l 
we know that· t+I = ~-I with e ·: 4 (since we have a projective space locally, 

cf. section d). If e = 4 the near octagon is classical; if e > 4 (ands> I, 
I t 2 > O) then q11 < O, a contradiction. Consequently a near classical near 

octagon is classical. 

THEOREM 5. If a regular near hexagon satisfies s > I, t 2 > O, + t 3 = 

(l+t2)(1+st2) then it is the unique regular near hexagon withs= t 2 = 2, 

V = 759. 

PROOF. First suppose thats= t 2 • Considering µ 1,the multiplicity of the 

eigenvalue - (t-f!l), we see that µ 1 E 1N implies s E {1,2}. By assumption 

s > I so thats= t 2 = 2. It is known that the regular near hexagon with 

parameters (s,t2 ,t) = (2,2,14) is unique (see BROUWER [7]). 

Now return to the general case; by counting things we shall see that 

both s 2: t 2 ands~ t 2 , a contradiction. 

Consider the possible relations of a quad Q' to a fixed quad Q. If 

Q n Q' = 0 then Q n r 1(Q') is a subquadrangle of Q meeting all lines of Q 

[ note that l+t = (I+t 2)(l+st2) implies that N2 (Q') does not contain any 

lines by Lemma 25(ii)J so is A. an ovoid, B. a point and its neighbours, 

C. a subquadrangle GQ(s,t2/s) or D. all of Q. The other possibilities are 

E. IQ n Q' I = l, F. Q n Q' is a line, G. Q = Q'. 

3 2 By Mathon's bound t ~ s + t 2 (s -s+l) while in any sporadic regular 
t2 1+/s 

near hexagon l + t 2: (l+t2)(l+st2). Combining these we see that 8 < - 2-< 2 

Since we assumed s I t 2 it follows that case C. does not occur. 

. ( ) . . . d . h t ( t+ l ) Choose a point x E N2 Q. It is inci ent wit t (t +I)= 

( I +s+st2) ( l +st2) quads, I + st2 of which intersect Q. 2 2 

Write nT for the number of quads of type Ton x, TE {A,B,E}. We have 

nA + nB + ~ = (l+s+st2) (l+st2), 

~ = l + st2 , 

(t2+l )nB 
2 = t(l+t2) (l+st2), 

where the last equation is obtained by counting pairs (l,Q') with 
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l c N 1 (Q) n ·q'. It follows that nA = (s-t2) (I +t2) (I +st2), and hence s ~ t 2 • 

Write NT for the total number of quads of type T, TE {A,B,D,E,F,G}. 

We have 

IN2 (Q)l.nA 

s(l+st2) 

IN2 (Q)l.nB 

2 
s t2 

Counting pairs of intersecting lines in N1 (Q) we find 

so 

It follows that t 2 ~sand we proved the theorem. D 

We have seen that any regular near polygon contains sub near hexagons. 

It follows that in any sporadic near polygon we have I+ t 3 > (l+t2)(1+st2), 

for otherwise we would have (s,t2,t3) = (2,2,14), and we already saw that 

this is impossible when d > 3. 

k) A divisibility condition 

In this section we prove a rather strong divisibility condition, and 

collect,a few miscellaneous results. 

t .-t. I 
J J-THEOREM 6. Lets> 1 and t 2 > 0. Then--=---=- is integral for all 1,J with 

t .-t. I 
I :5:,; i :5:,; j :5:,; d. 

1 1-

PROOF. (Note that t. ~ t 2 ( 1 +t. 1) > t. 1 by the corollary to Lenuna 26 so 
1 1- 1-

that the denominator is positive.) Fix three points u,v,w with d(u,v) = j-i, 

d(v,w) = i-1 and d(u,w) = j-1. Fix a line L through u such that d(w,L) = d(w,u). 

CLAIM. (i) 

(ii) 

w is incident with t.-t. 1 lines parallel to,L. 
J J-

Every line through w parallel to L intersects exactly one con-
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nected component C of r.(u) n r. (v). 
J l. 

(iii) If one line through w meeting a component C of r.(u) n r.(v) 
J l. 

1.s parallel to L, then all lines on w meeting Care parallel 

to L. 

(iv) Given a component C of r.(u) n r.(v), there are either O or 
J l. 

t.-t. 1 lines on w meeting C. 
l. 1.-

L M 

u j-i V i-1 w 

Clearly (i) -- (iv) imply the theorem. 

Ad(i): 

Ad(ii): 

Choose a point z E L\{u}. Now d(z,w) = j and there are t. + 1 lines 
J 

on w meeting r. 1 (z). t. 1+1 of these lines also meet r. 2 (u). The 
J- J- r 

remaining t.-t. 1 are parallel to L. 
J J-

Let N be a line on w parallel to L. Then N\{w} c r.(u) n r.(v). 
J l. 

Ad(iii): Let x EC, d(x,L) = j-1 and x ~ x' E C. If z EL with d(x,z) = j-1 

Ad(iv): 

then z f- u and d(x' ,z) :;:; j so that d(x' ,L) 

j-1 for all x' EC. 

= j-1. Thus d(x' ,L) 

Note that any component C of r.(u) n r.(v) also is a component of 
J l. 

r.(v). Let x EC, x ~ w. Let M be a line on v parallel to wx. Now 
l. 

ME S(v,x) and hence (by Lemma 3) ME S(v,x') for all x' EC. 

Consequently any line on w meeting C is parallel to Mand by (i) 

there are at most t.-t. 1 such lines. 
l. 1.-

Conversely, any two lines on w parallel to M meet the same component 

C by Lennna 22. D 

As an application we see that there are no regular near octagons with 

parameters (s,t2,t3,t) = (2,1,11,39) or (2,2,14,54). It follows that there 

are no sporadic regular near octagons withs= 2, t 2 > O. 

REMARK. Using the existence of sub near polygons we can give an alternative 

proof for ThE~orem 6: clearly it suffices to prove that (t.-t. 1) I (t.-t. 1) 
l. 1.- J 1.-
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for j > i. 

Let H0 be a fixed regular near 2(i-I)-gon contained in the fixed near 2j-gon 

HI (all inside our big 2d-gon). Let x € H0• The tj - ti-I lines on x in HI 

not contained in H0 are partitioned into sets of size t. - t. I by the near 
1 i-

2i-gons H satisfying H0 c H c HI. 

Next we might compute the size of the components of r.(x) - they have 
1 

just the right size to be r. (x) in a near 2i-gon. (This played a certain 
1 

role in a previous version of this paper. In the present context it is 

trivial.) 
-i-I 

s 1 .rr0 (t.-t.) 
J= 1 J If C is a component of r. (x) then IC I = - ......... ----

1 .h (t.+1) 
PROPOSITION. 

i-1 t-t. J=I J 
The number of components of r. (x) is .II J D 

1 J=O t.-t. 
1 J 

In Lennna 17 we saw that given a quad Q and a point x € Ni+l,O(Q), the 

set O(x,Q) := {llx €land l meets N. 0} is a subspace of L. 
1, X 

LEMMA 28. rank O(x,Q) < d(x,Q). 

PROOF. Otherwise we could find a subset Ac O(x,Q) with rank A= d(x,Q). 

Let H be the 2(i+l)-gon determined by A. Let O be the ovoid in Q determined 

by x. Then O c H (for: if u € 0 then Ac S(x,u) and rank A= d(x,u) so 

H = H(x,u) and in particular u € H), and since His geodetically closed, 

Q c H. Now d(x,y) = i+2 for y € Q\O, but this is impossible in a 2(i+l)-gon. 

D 

In particular it follows for d(x,Q) = 3 that a0 =IO(x,Q)I € {0,1,l+t2}. 

[We know that t 4 ~ t 3 + s 2(t3-t2+1) (see section i). But on the other hand 

I+ t 4 = a0 + ac + a1 ~ a0 + ac = (l+t3) (I+st2) - st2a0 , so that 

s(t3-t2+I) ~ t 2(t3+1-a0). Thus (s-t2)(t3+1) ~ t 2(s-a0) > -t2 (t2+1) > -t3 
and therefore s ~ t 2 and ifs= t 2 then only a0 = t 2+1 occurs. In this last 

case we find from a0 that t 4 = t 3 (t3+1)/(t2+1). - However, we shall see that 

t 2 = I without using these estimates, and for t 2 = l they are not interest­

ing.] 
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l. Relation between a point a hex 

A hex is a geodetically closed sub near hexagon. Let H be a geodeti­

cally closed sub near 2j-gon. 

DEFINITION. A point xis called of classical type with respect to 

H if there exists a point TIX EH such that d(x,y) = d(x,Tix) + d(Tix,y) for 

ally EH. A point xis called of ovoid type w.r.t. H if x has the same dis­

tance to all lines of H. (Note that for j > 2 a point need not be of clas­

sical or of ovoid type w.r.t. H.) 

LEMMA 29. Let d(x,H) =I.Then xis of classical type w.r.t. H. 

PROOF. Let x ~ x' EH. Let y EH. We must show that if d(x' ,y) = i then 

d(x,y) = i+I. But if d(x,y)::; i then the line xx' contains a point x" at 

distance i-1 from y, and since His geodetically closed and x'x" •.• y is a 

geodesic from x' toy we have x'x" c Hand thus x EH, contradiction. D 

As a consequence we have 

LEMMA 30. Let d(x,H) = d(u,H) = and x ~ u. Then TIX~ TIU or TIX= TIU. • 
LEMMA 31. Let d(x,H) 

type w.r. t. H. 

= i and supposer . . (x) n H # 0. Then xis of classical 
1.+J 

PROOF. Let d(x,x') = i for some x' EH. Then r.(x') n His connected and 
J 

contained in r. . (x). 
I.+J 

(For: we know that there is a point 

y E r ·+. (x) n 
l. J 

r. (x') n 
J 

H. If Lis a line on y within H then d(x',L) = 

d(x',z) = j-1 for some z EL, and L\{z} c r .. (x) n r.(x') n H. Now use con-
1.+J J 

nectedness of r.(x') n H.) 
J 

x' to some point of r.(x') 
J 

d(x,x') + d(x',y). D 

Let y EH. By Theorem 4 there is a geodesic from 

n Hin H contining y. It follows that d(x,y) = 

Now assumme that His a hex. 

LEMMA 32. Let d(x,H) = 2. Then any two points in r 2 (x) n H have distance two. 

PROOF. Set A:= r 2 (x) n H. Clearly no two points of A can be adjacent (other-
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wise x would have a neighbour on the connecting line and d(x,H) ~ 1). 

Set B := r 3 (x) n H. If q E B then H(x,q) n His geodetically closed and 

hence a point, line or quad. Thus, if q has more than one neighbour in A 

then r 1 (q) n A is contained in the quad H(x,q) n H. 

Now suppose u,v EA with d(u,v) = 3. Letup q v be a path of length 

3 connecting u and v. Then p,q EB. Let r be the unique point in r 2 (x) n 

n pq, so that r EA. Now H(x,q) n H contains the points q,v,r and hence p 

and therefore also u, a contradiction. 0 

We see that A= r 2 (x) n H carries a pairwise balanced design: the 

blocks are intersections of A with quads, i.e., are ovoids. In the regular 

case this gives us a Steiner system S(2,l+st2,IAI). 

Much more can be said, but at this point we have assembled enough 

material to prove that regular near octagons almost never exist. In order 

to prepare for the next section let us set up some equations. Assume that 

(X,L) is a regular near octagon with parameters (s,t2,t3 ,t4) wheres> 1, 

t 2 > 0. Let H be a fixed hex and x a fixed point with d(x,H) = 2. Set A= 

r 2 (x) n H, B = r3 (x) n Hand c = r 4 (x) n H. Set B0 = {y E Blr 1(y) n A= 0}, 

B1 = {y E Bl lr 1(y) n Al= 1}, B2 = {y E Bl lr 1(y) n Al= t 2 + I}. Let a:= 

IAI, b := IBI, etc. Then we have the following equations: 

a + bO +bl+ b2 + C = 

bl + (t2+1 )b2 = 

bo(t3+l)+blt3+bz(t3-t2) = 

a(a-1)/(st2+I)st2 = 

and consequently 

b 2 = a(a-1)/t2 
-1 = sa + s c 

2 
s t3(t3-t2) 

(s+l)(l + st3 + 1 +t2 
sa(t3+t) 

-1 c(t3+I) s 

b 2/(st2+t)s 

) (I) 

(2) 

(3) 

(4) 

(4 I) 

(5) 

(6) 

Mimicking the reasoning that produced 1 + t 3 ~ (l+t2)(l+st2) (see Lermna 25) 

we have 
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(7) 

where a = max{lr 2 (y) n Hlld(y,H) = 2}; indeed, counting pairs (y,z) max 
with y ~ x, z E B0 and d(y,z) = 2 we find b0 (t3+1) $ s(t4+t).amax· 

Estimating a little bit more carefully we find by counting pairs (y,z) 

with y ~ x, z EH and d(y,z) = 2: 

From (2) and (4') we see that (t2+l)(a-l) $ st2(t3+1) so that 

s(t3+t) 
a-1 $ s(t3+1) -

t2+1 

From (2), (4'), (5) and (6) we see that 

(8) 

(8') 

One might wonder whether there are any points x in X with d(x,H) = 2. But 

such points exist if and only if Xis not classical: since the projection 

of a line in r 1(H) is a line in H we find that a pointy E r 1(H) is on one 

line meeting Hand on (t3+I)t2 lines within r 1(H). If r 2 (H) =~then t 4 = 

t 2(t3+t). Now lootk at the design of quads and hexes on a fixed line. It has 
3 t4-t2 

block size K := - and replication number R := --- . We have R = 0 (no 
t2 t3:t2 

blocks - ridiculous) or R = l (all points on a unique block - again ridi-

culous) or R ~ K. If t 4 = t 2(t3+t) then R ~ K becomes t 3 $ t 2(t2+t), so 

that t 3 = t 2(t2+1). Thus (X,L) is classical. 

m. The nonexistence of most regular near octagons. 

THEOREM 7. Let (X,L) be a reguZar near octagon with parameters (s,t2,t3,t4). 

Then one of the foZZowing hoZds: 

(i) s = l 

or (ii) t2 = 0 

or (iii) t2 = 

or (iv) t3 = t 2(t2+t) and t 4 = t 2(t3+t): (X,L) is classical. 
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PROOF. Let Kand R be the block size and replication number of the design 

(Steiner system) of quads and hexes on a fixed line as discussed in the 

previous section. We need a slightly stronger result than Fisher's inequality 

R ~ K. 

LEMMA 33. In a Steiner system S(2,K,V) we have R = 0 or R = I or R =Kor 

R = K + I or R > K + IK. More precisely., if R = K + m then Klm(m-1). 

PROOF. The number of blocks V(V-1)/K(K-1) is integral, and V = I+ R(K-1) so 

KIR(R-1). • 

Similarly we need an inequality for generalized quadrangles slightly 

sharper than s:,; t 22. 

LEMMA 34. In a generalized quadrangle GQ(s,t2) with t 2 > I we haves 
2 2 ors= t 2 -t2 ors= t 2 -t2-1 ors:,; t 2 (t2-2). 

= t 2 
2 

PROOF. One of the eigenvalues has multiplicity s 2(st2+1)/(s+t2) so that 
2 2 2 (s+t2)!t2 (t2 -1). Ifs= t 2(t2-2) + cr then t 2 = (s+t2)+(t2-cr) and 

(s+t2)1 (t2-cr)(t2-cr-l). For O < cr < 2t2 , cr # t 2 ,t2-l it follows thats+ t 2 
= t/-t2 +cr:,; t/- (2cr+l)t2 +cr(cr+I), a contradiction. D 

The idea of the proof is that the Krein condition q! 1 ~ 0 for octagons 

gives an upper bound for t 4 while R ~ K gives a contradictory lower bound 

for t 4 . We use the Krein condition q! 1 ~ 0 for hexagons to give a lower 
t3 

bound for K =-.As we saw in section i we have tz 
2 2 4 (s-l)(t3 - ((s +l)(t2+1)-l)t3 + s (t2+1)) ~ 0. (9) 

2 Assumes> I, t 2 > I, t 3 # t 2(t 2+I). Ifs# t 2 then, as we shall show now, 

· (9) implies 

Indeed, (9) has the form p(t3) ~ 0 where p(x) is a polynomial of degree 2 

with positive first coefficient. If we find numbers A,B such that A< Band 
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p(A) < 0, p(B) < 0 it will follow that either t 3 < A or t 3 > B. 
2 

Now ifs~ t 2 -t2-l then the left hand side of (9) is negative for 
2 s 2 d . f 2 . . 2 s 2 

t 3 = s t 2 -ti an i s = t 2 -t2 it is negative for t = s t ---- l 
2- 2 t2+1 3 2 t2-1 

and t 2 ~ 4. It is also negative for t 3 = s t 2_1 if t 2 ~ 3, regardless of 
2 2t2+1 

the value of s. This shows that if s -:/: t 2 and t 2 ~ 4 then either t 3 < s --1 
2 s 2 t2-

or t 3 > s t 2 -~ - 1. The former possibility contradicts t 3+1 ~ 
2 

(t2+l)(st2+1) ands~ t 2(t2-l). In the latter case we obtain (10) using 

t 2 lt3• Remain the cases t 2 = 2 and (t2 ,s) = (3,6). If t 2 = 3 ands= 6 then 

(9) implies t 3 ~ 58 or t 3 ~ 89; but t 3 ~ 4.19-1 = 75 and t 2 lt3 so t 3 ~ 90 

as claimed in (10). If t 2 = 2 thens E {l,2,4} hences= 2. But all near 

hexagons withs= 2 are known; the only sporadic one has t 3 = 14 and thus 

satisfies (1 O). 

2 Assume s 'f' t 2 , R > K + l. Write R = K + m. We saw already that there 

is no regular near octagon with parameters (2,2,14,t4), so t 2 > 2. By (10) 

we find 

2 
s 2 

~ s -s, 

so that (by Le111111a 33) 

m ~ s 

and using t4 ~ 
2 

s (t3-t2+1) + t3 it follows that 

2 2 t4-t2 2 l 
s 

~ R = K+m ~ s + +-- = s . 
t3-t2 t3-t2 

2 2 Now (regardless of the value of s) s < t 3 - t 2 , for otherwise s ~ t 3 - t 2 
~ st2 2 + st2 so that s ~ t 2 2 + t 2 , a contradiction. Therefore R ~ s 2 + 1. 

i.f K 2 h . f 11 h h R 2 2 Now > s -s t en it o ows t at m > s so t at ~ s + , a con-
2 tradiction. Consequently K = s -s, ands= t 2(t2-1). From t 2(t2+1)!t3 (t3+1) 

(see the remark Lemm.a 18) we find (since si= 2 (mod t 2+1) and K = 2 (mod 

t 2+1) so that t 3 = -2 (mod t 2+1)) that 2 = 0 (mod t 2+1), a contradiction. 

2 
Thus we proved that any counterexample to the theorem satisfies s = t 2 

or R = K or R = K + 1 • 

2 Next suppose s = t 2 , R = K + m, m(m-1) > K. In this case m(m-1) ~ 2K. 
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From (9) we derive (for t 2 2 3) 

5 3 2 
t3 > t - t - t2 2 2 

- St 
2 t2+1 

or t 3 < s t=J· 2 
( 1 1) 

2 

Thus if t3 
2 tz"~:1 

then 2 s t=T 2 

(12) 

The inequality Rs 

If follows that Rs 

2 . 
S + 1 l.S 

4 
t 2 + 1, 

still valid in our present case. 

and 

< 2 8 m - t 2 + t 2 + , 

4 2 2(t2 -t2 -t2-7) s 2K s m(m-1) 

t2 s 5. 

If t 2 = 5, s = 25 then K 2 588, Rs 626, ms 38, K = ½m(m-1), R 

and m(m-1) 2 1176, m(m+I) s 1252, impossible. 

½m(m+ I) 

I 
If t 2 = 4, s = 16 then K 2 229, Rs 257, ms 28. Now either K = 3 m(m-1) 

1 
and R == 3 m(m+2) so that m(m-1) 2 687 and m(m+2) s 77 I, impossible, 

or K = ½m(m-1) and R = ½m(m+I) so that m(m-1) 2 458 and m(m+I) s 514, 

i.e., m = 22, K = 231, R = 253, t 3 = 924. But these parameters violate 

(9) • 

If t 2 = 3, s = 9 then K 2 62, Rs 82, ms 20. Since 62( m(m-1) we have 
I 

K 2 63 and ms 19, m(m-1) s 342. If K = 5 m(m-1) then ms 16, Ks 48, 

contradiction. If K = ¼m(m-1) then m I 7, K = 68, R = 85, contradic-
1 

tion. If K = 3 m(m-1) then m = 15, impossible. Finally, if K = ½m(m-1) 

then m = 12, K = 66, R = 78, t 3 = 198. These parameters satisfy (9) 

but die on the condition t 2 (t2+l)Jt3 (t3+1). 

If t 2 = 2, s = 4 then (9) does not yield any restriction, but by the Mathon 
3 2 bound we have t 3 s s + t 2 (s -s+l) = 90 and t 3 2 (t2+l)(st2+1) = 27. 

Each of the intermediate values for t 3 dies on the condition (t2!t3 and 

t 2(t2+l)it3 (t3+1) and the eigenvalues of H have integral multiplicities). 
2 2 t0+l 

Thus we proved that if s = t 2 and R > K + I and t 3 2 s ~ then 
2 t2 

K = m(m-1) and R = m. Also, that regardless of the value of s, t 2 > 2. Now 
2 2 

Rs s +1, so ms s, but by (12) we find m > t 2 -1, i.e., m = s, so that 
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K == 
2 

s -s, 
3 2 · 

t 3· = .t2 ( t 2 - I) • In other words, if we write q : = t 2 then 
2 5 3 = (q ,q,q -q ). The multiplicity of the eigenvalue -t3-1 of His 

2 
s t3(t3-t2) 3 

(l+st3 + l+t2 ).s (t2+1) 
5 2 7 5 3 2 (l+q (q -l)+q (q-l)(q -q -q))q 

-2--------------=--~3------,-4-2-=-----
s (t2+1 )+st/t2+1 )+t/t3-t2) I + (q -q) + (q-1) (q -q -I) 

5 2 8 3 2 5 2 3 
(I +q ( q - I) - q ( q -q+ I)) q 

5 4 2 q -q +q -2q+2 

(q +I )q 
5 4 2 q -q +q -2q+2 

q -2 
5 4 2 "I. 0 (mod I ) , 

q -q +q -2q+2 

a contradiction. 

Thus we proved that 

2 
Supposes= t 2 and t 3 

2 s = q. From (9) derive 

On the other hand, 

3 + q 

+l 
2 + q + 2q + 18, 

18 
+q+2+2 

2 t2+1 
< s t-=-f or R ~ K + I • 

2 
3). Again write q := t 2 

3 2 
q + q + 2. 

Using the notation of the previous section we find from (8) that 

a-I 
t3+I 6 4 3 2 

~ s(t +I) - s -- < q + q + q + 18q 3 t 2+1 

so that 

Let R0 and K0 be the replication number and blocksize of the Steiner system 
3 a-I 

S(2,st2+1,a) on A. Then K0 = st2 +I= q + 1 and R0 = - 3- < 
3 18 

q +q+l+q. 
q 

If RO> KO+ /iz0 then q ~ 4. If q = 4 then K0 = 65, R0 ~ 73, R0 < K0 + liz0 • 

If q = 3 then Ko= 28, Ro~ 36, m :=Ro-Ko~ 8. Since Kolm(m-1) we have 

m = 8, R0 = 36, a-1 = 27.36, t 3+1 ~ 4.36, 143 ~ t 3 ~ 141, contradiction. 

Thus RO ~ KO + 1 and a ~ ( q3 + I) 2 . 

Let x be chosen such that a= a • From (8') and (7) we find 
3 5 max 6 3 2 5 

s(t4+1) > (t3+1)(a-q -2+q) so that a< q +q +q +2-q (since t 4+1 < 
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(s 2 +l)(t3+t)). 

If RO = K0+il then a 

If RO = KO then a = 

If RO = l then a= 

6 3 = q +2q +l, impossible. 
6 3 l . .bl . q +q +, impossi e again. 

3 6 2 2 s(t4+l) 5 3 
K0 = q +l, q +q = s(s +I) > --- > -l+q (q +l), 

t 3+t 
contradiction. 

6 2 3 5 3 2 
If R0 = 0 then a= 1, q +q > -q -l+q (q +I) , contradiction. 

At this point we have shown that any counterexample to the theorem 

satisfies R = K or R = K + I. 

Suppose R = K + l. This means that the planar space of lines, quads and 

hexes on a given point is locally affine. 

PROPOSITION .. A regular locally affine planar space has line size -two; the 
2 points and planes form a Steiner system S(3,q+l,q +I), i.e . ., a Mobius plane. 

(cf. [I] Thm. 24 and [6]). 

PROOF. If the space is locally AG(2,q) then we have q2 lines/point, q2+q 

planes/point, q+I planes/line, q lines/pt in a given plane. Let there be 

k points on each line. Then there are I+ (k-l)q points in each plane, 
2 I + (k-1 )q points in the whole space, and the total number of planes is 

2 2 (I+ (k-1 ) q ) . ( q + q) 
l+(k-l)q 

2 
(1-q)(q +q) 

l+(k-l)q (mod I). 

Using that (q,l+(k-l)q) I we find that q2-J - 0 (mod l+(k-l)q), 

k+q-1 = 0 (mod l+(k-l)q) so that l+(k-l)q::;; q+k-1, 

Le., (k-2)(q-l):,;; 0. LJ 
t3 

In our case k = t 2 + I , q = so that R = K + 1 can occur only when tz 
1. 

Suppose R = K. This means that the planar space of lines, quads and 

hexes on a given point is locally projective. By DOYEN & HUBAUT [3] we have 

2 3 q+l-k e {0,1,k -k+l,k +l} 

if the space is locally PG(2,q). In our case q+I 
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If q+l-k = 0 then 

If q+l-k = then 

k2-k+l 

t = 3 
t = 3 

t 2 (t2+I) and our hexes are classical, contradiction. 

t 2 (t2+2) but t 3+I ~ (t2+I)(st2+I), a contradiction. 
2 t3 · 

If q+l-k = then (t2+I) +I= t > st2+s+l (recall that we already 

t:fiat s:::; t 2 • excluded t 3+I = (t2+I)(st2+I)), so 

Above we saw R:::; s 2+I so that 
3 Consequently q+l-k = k +I, i.e., 

t 2+I:::; s, a contradiction. 

The fact that our planar space is locally projective means that two hexes 

intersect in 0, a point or a quad but not in a line. Returning to the 

situation of the previous section this means that b 1 = 0 so that a= 
stz(t3+l) 3 2 

I+ tz+l = l+st2(t2 +2t2 +2t2+I). In particular a is constant. If x 

does not have neighbours in r 3 (H) then we have equality in (7') (with 

a = a) so that max 

(t3+I) (l+st3) 
t3 

= s(t -t )- + 3 2 t 2 

t2 = t3, 

t3 
a(s(t4-t2)+(t3+I)) = a(s(t3-t2)½ + 

(t3+1)), 2 

(t3+1) + 
st2(t3+I) 

, 
t2+1 

a contradiction. Therefore there exists a pointy with d(y,H) = 3 in the 

near octagon X. 

then 

This pointy must be of ovoid 
s2t3(t3-t2) 

IOI = l+st3 l+t · 
2 

type w.r.t. H. If O is the ovoid r/y) n H 

Counting pairs (u,v) with u ~ y and v E O and d(u,v) = 2 we find 



t4+1 2 
:?: I+ st3 , s --+ s t2 t3+1 

t3 t4-t2 t 4+I 
s - = s > s--> 

t2 t3-t2 t3+1 

s > 
t3Ct2-l) 

2 
:?: t 3 + 

2 2t2 
t2 

2 
impossible (since s s t 2 ). 
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2 
st3 - s t2, 

2 + t 2 - 2, 

This completes the proof of theorem, except that we have not yet seen 

that t 3 = t 2 (t2+I) implies t 4 = t 2(t3+I). But this was proved in the sec­

tion on eigenvalues. 

n. Not every near hexagon with quads is regular. 

In [-1] Aschbacher describes a nonregular near hexagon which has an 

automorphism group acting transitively on points and lines but not on quads, 

i.e., sand t exist but not t 2, although any two points at distance two deter­

mine a nondegenerate quad. Here we shell give a description of this near he­

xagon in a slightly different, more .geometric way. Fix a 6-dimensional vector 

space V over F3 equipped with a nondegenerate quadratic form Q of Witt in­

dex 2, say 

and let (x,y) = Q(x+y) - Q(x) - Q(y), x,y EV be its associated bilinear 

form. Then V contains 126 projective points (i.e., I-dimensional subspaces) 

<x> with Q(x) =I.The points of the near hexagon are the orthonormal ba­

ses of V consisting of 6 of these projective points, that is 

I, (x.,x.) 
1 J. 

= O, Is i~j s 6, 

i 'f j}. 

Two points p,q EX are called adjacent if lpnql = 2, or, equivalently, the 

set of lines L of the near hexagon is 
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The parameter diagram of this near hexagon has the form 

A 

15 
30 

Thuss= 2, t = 14, t 2 (A) = 4, t 2 (B) = 2, and the quads are of type GQ(2,4) 

and GQ(2,2) respectively. The automorphism group of (X,L) contains P0_(6,3) 

transitive on points, lines and the quads of each type. 
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