stichting

mathematisch |

centrum MC
AFDELING ZUIVERE WISKUNDE ZW 180/82 DECEMBER

(DEPARTMENT OF PURE MATHEMATICS)

T.H. KOORNWINDER

MATRIX ELEMENTS OF IRREDUCIBLE REPRESENTATIONS
OF SU(2) X SU(2) AND VECTOR-VALUED ORTHOGONAL POLYNOMIALS

Preprint

kruislaan 413 1098 SJ amsterdam

TN R SHE SR TR N O CEMT RS



Printed at the Mathematical Centre, 413 Kuvislaan, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
profit institution aiming at the promotion of pure mathematics and its
applications. 1t is sponsoned by the Netherlands Government through the
Netherlands Onganization forn the Advancement of Pure Research (Z.W.0.).

1980 Mathematics subject classification: 33A75, 22E70, 43A75




Matrix elements of irreducible representations of SU(2) x SU(2) and vector-

*)

valued orthogonal polynomials
by

T.H. Koornwinder

ABSTRACT

The matrix elements of irreducible representations of SU(2) x SU(2)
in a diag(SU(2)xSU(2))-basis are expressed in terms of vector-valued orthog-
, ;

onal polynomials, which generalize the Jacobi polynomials.

KEY WORDS & PHRASES: matrix elements of irreducible representations of
SU(2) x SU(2); vector-valued orthogonal polynomials;
generalized Jacobi polynomials; matrix elements of

principal series representations of SL(2,Q)

*)

This report will be submitted for publication elsewhere.






0. INTRODUCTION

It is well-known (cf. VILENKIN [11, Ch. 3]) that the matrix elements
of the irreducible representations (irr. reps) of SU(2) in S(U(1)xU(1))-
basis can be expressed in terms of Jacobi polynomials, such that the
orthogonality relations for these polynomials are equivalent to Schur's
orthogonality relations for the matrix elements. More generally, let G
be a compact Lie group with closed subgroup K such that each irr. rep. of
G, restricted to K, is multiplicity free. Consider the matrix elements of
the irr. reps of G in a K-basis. Is it possible to express them in terms
of some kind of orthogonal polynomials? For the case G = SU(2) x SU(2),

K = diagonal in G, this paper will give a positive answer. (Note that this
case is a covering of the pair (G,K) = (§0(4),SO(3)). The resulting
polynomials are vector-valued and orthogonal on [-1,1] with respect to a
positive definite matrix-valued weight function. It would be of interest
to generalize these results to the cases (G,K) = (S0(n),S0(n-1)) or (U(n),
U(n-1)).

The topic of this paper originated from work on the global approach
to the representation theory of a noncompact semisimple Lie group G
(cf. [7] for SL(2,R), KOSTERS [8] for SL(2,¢)). In this approach one needs
some knowledge of the matrix elements of the principal series reps of G in
a K-basis (K maximal compact subgroup of G). These matrix elements have
integral representations in terms of the matrix elements of irr. reps of K
(cf. (4.1) in the case G=SL(2,C)). Manipulation of these integral represen-—
tations will be simplified if one can express the matrix elements for K
in terms of orthogonal polynomials. Thus the results of the present paper
will be useful for the analysis on 800(4,1).

It is the author's feeling that the highly nontrivial example of
vector-valued orthogonal polynomials presented here is interesting for its
own sake. Hopefully this paper will also be useful for phycisists, who
have already studied the matrix elements for SO(4) for a long time (cf. for
instance FREEDMAN & WANG [3 ]_,~_S—;'I‘(;RE)DI§SKI¥Z_§ SI-.IEPEVLEV [10], BASU & SRINVASAN [11]).
Many authors start with the matrix elements of the principal series reps
of 300(3,1) (cf. [11,[10]) and then obtain the matrix elements for the

compact case by analytic continuation. In the present paper, with its



emphasis on orthogonal polynomials, it seemed more natural to start with
the compact case, but in the final section 4 the noncompact analogue is
briefly discussed.

The other sections have the following contents. In section 1 matrix
elements for SU(2) are reviewed, both as a tool needed later and as a
motivating example. In section 2 Schur's orthogonality relations for matrix
elements for SU(2) x SU(2) are expressed as an orthogonality for vector-
valued functions on [0,m] and good candidates are selected for the expected
vector-valued orthogonal polynomials. In section 3 these polynomials are
really obtained together with an integral representation and a power series
expansion. There are two further matters of particular interest in section
3: First, a trick to deform the integral of an analytic function over
SU(2) into the complexification SL(2,C) by multiplication on the right of
the integration variable with a particular elément of SL(2,8) (cf. the
transition (3.3)>(3.6)) and, second, an unexpected symmetry (3.11) for the

vector-valued polynomials.
1. THE MATRIX ELEMENTS FOR SU(2)

Let £ ¢ } Z, := {0,4,1,3,...}. Let HK be the space of homogeneaus
polynomials of degree 2£ in two complex variables, made into a Hilbert
space by the choice of orthonormal basis {wﬁ | n = -2, -2+1, ... , £}:
£ {22\ £-n L+n
(1.1) wn(x,y) "= 12-n) y

\

Define a rep Tz of GL(2,C) on HE by
£ aB _
(1.2) (T (Y $ 5 (xy) = f(axtyy,Bx+dy).

The T£ 's form a complete system of representatives for (SU(2))~(cf.VILENKIN
[11, Ch. 3]).
Write Tz(g)(geGL(2,¢)) as a matrix (tﬁn(g)) with respect to the basis

functions Y :
n



£
(1.3) @)t - thﬁn@wﬁ, g € GL(2,0).
m=-

If g is a diagonal matrix then so is (t (g)) It follows from (1.1), (1.2),
(1.3) that

' £
22 \} £~ £ K E Z
(1.4 (E—n>2 (ax+yy) n(5X+5Y) - mjig mn(YG) (C-m)z Ty

Expansion of the left hand side of (1.4) yields

£ @By o ((@em) ! (L4m) ! (-n) ! (L+n) 1) 2.

(1.5) mn 'y §

L L-m-r l-n—r6m+n+r

(£-n) A (£-m) o B Yo o

reov (Cn-m) 1! (L-m-1) ! (L-n-1) ! (mén+r) !

This implies the symmetries

mnl n m E uB
(1.7) ‘mn(y 6) nm(B 6)

From (1.4) and (1.7) we obtain the integral representation

1 1 %
(1.8) £ _ /(K—n).(/&m).) .

'y 8 = (@) T (Crm) T

- (oe” "+Be

2w
. . &m . Am o,
. ;ﬂ J i —1¢) (Yel¢+6e_1¢) 621n¢d¢.
0

The following symmetry is apparent from (1.8):

£ B, _ £ Sy
(1.9) tmn(yé) - t—m —n(Ba)

Now specialize to SU(2). We will use the notation



(1.10) k(a,B) := (_ofé-g), where Ialz + |6l2 =1,
(1.11) be := k(cos}6,sini0),
tio
(1.12) m¢ = k(e ,0).
Note that
L _ =in¢
(1.13) tmn(m¢) = e Gmn'

By the Cartan decomposition each element of SU(2) can be written as m bern

¢ v

and the corresponding integration formula reads
I

4t 47
d¢ dy

(1.14) J f(g)dg = I J f(m¢bemw) sinedel}—1T T’ f e C(SU(2)).
0O 0

SU(2)

oO——=3

By Schur's orthogonality relations, (1.13) and (1.14) we obtain

L A . _ 1
tmn(be)tm,n(be)Slne de = 0, L4 L.

O——3

Suppose that m + n 2 0, m — n = 0. Then the "lowest" element of the orthog-

onal system {tz | £=m, m+1, ...} is t™ . From (1.5) we obtain:
mn mn

(1.15) € (bg) = D" () (singe)™ ™ (cos}e)™ ™,

Hence, if £ # £':

T £
t__ (b)) t_ (b)) _

J En 87 mn 87 ( ii1gy2m2ntl gy 2mblnklye o
t

0 "mn



L m . . .
< -
By (1.5) tmn(be)/t (be) is a polynomial in cos 6 of degree < £ - m. It
follows that

L m _ (m-n,m+n)
tmn(be)/tmn(be) = const. Pl-m (cos®),
where the Jacobi polynomial PET;P’m+n) is an orthogonal polynomial of degree

£ - m with respect to the weight function (l_x)m—n(1+x)m+n on the interval
(-1,1). Of course, this result has been derived in many other ways (cf.
VILENKIN [11, Ch. 31).

2. THE MATRIX ELEMENTS FOR SU(2) x SU(2)

Let K := SU(2), G := K x K, K := diag(KxK), A := {a, = (m;,m_g)}

(m, is defined by (1.12)). Then G = K*AK* is a Cartan decomposition. The

0
corresponding integral formula is

L

™
(2.1) J f(g)dg = 5= J J f € C(G),
G 0 K*

. 2
J f(klaek2)31n ededkldkz,
*

K

which is a special case of HELGASON [5, Prop. X.1.19].

A complete system of representatives for G is given by the reps

2y,

T P ez
21,22 Kl Kz
(2.2) T (k],kz) =T (k])@T (kZ)’ kl’ k2 € K.
£ ,2
The representation space HE ® sz of T can be identified with the

space of polynomials in four complex variables x, y, u, v, homogeneous of
degree 221 in x, y and homogeneous of degree 212 in u, v. An orthonormal

basis of Hﬂl ® HE2 is given by the polynomials

Zl £2
(X’Ysu’v) U, (X,Y)IP- (u,v).
3 ) L2
PROPOSITION 2.1. (cf. [6, Theorems 3.1, 3.2]1). The functions ¢£]; 2(|£l+

-2, |<kst L,

j|sk) defined by



ll,ﬂz £l+£2-£ (2£+l)(2£])!(2£2)3 i
(2.3) ¢£,J (Xay,u,V) = (=1) <(£l+£2_£):(z]+£2+£+1)!>
L. +L -4
_ 1727 L Xy
e— i

form an orthonormal basis of Hﬂl ® sz such that

L K 2. .2 L Z L
' 1° 1°72 K 2
° k k— = 1 FY °
(2.4) r w00, j=2—£ I k€K
L. .2 .
2 Eefine the matrix elements of T with respect to this K -basis
1°%2
e, e, A 1L, L,.L,
(2.5) T ( )¢ v ‘l = l 1 v(g)¢ ’ g € G.
f, _l‘e _z | j=—£ [—sJ AN ‘e

. . . * .
Since the elements of A commute with the elements (me,me) in K and since

£ty Lty Liie £y,

T (me’ e)‘bz J - ¢'€,J

by (2.4) and (1.12), we conclude that

ﬂl,ﬂ
i s .
(2.6) tZ,J,K',J'(a ) = if J#3.
Zl E
By (2.4), (2.6) and the decomposition G = K *AK” the matrix elements t£ Z' .

L1,£2
will be known if we know the functions tﬂ 21,5

A
PROPOSITION 2.2. There are the orthogonality relations

t (d )31n 8de =

’J’ ’J’ ’

(2.7) TJT L‘ 2!

T j=- (b\m) 0

__eunem) o
QL LD 020,100,

PROOF. It follows from Schur's orthogonality relations, (2.1), (2.4) and
(2.6) that



z Ly 1. | B L, 2L, )
(2£ +l)(2£2+]) = o J J | "2,p;m ,p( 1 ekz)t 2,p ’m’P(k a k2)81n 6dodk, dk,
0 K K
£Am £Am B L. .2 ' o
P D S B [ ER TR DAMERICR L IS
j=-(LAm) j'=-(LAm) 0K X
e —— ,E 1 K 1
4 1 °2 . 2
p,j'(kl)t 2,5 ’m’J,(a )t ', (kz)s1n ededkldk2 =
LAm oA 2.",8."
- 1 1 2 1 72 2
(2£+1) 1) J=—(z£/\110 2 i ’esJ’m,J (a )t :J’m’J(a )sin”6ds.
EI’KZ ‘
It follows from (2.5) and (2.3) that t£ §sm J(a ) is real. [

From now on fli L and m (Z,me%Z £L-meZ) such that £ < m. (Because
of unitariness of T thlS last on ition is not an essential restric-

tion). Then the indices E K in tg §sm 2 J(a ) can assume all values in 12
b 3 9
such that

(2.8) L, + &, > m, |£]—£2] <k, L+l -lez

(cf. Figure 1)

Figure 1,



and j ¢ {-£, -£+1, ..., £}. Thus, (2.7) can be viewed as the orthogonality

relations for the vector-valued functions

2,2, 1’,1 ,!.2 £, ,IZ

(2.9) o~ (t!, ~Lam,- z(a ) t42 —£+1;m,- t_'_](a )""’t£ . z(a ),

where (21,32) run through all values satisfying (2.8). Like at the end of
section 1 we pick the "lowest'" elements of this orthogonal family. Candi-
dates for these elements are all functions of the form (2.9) with El + £2=In.

Suppose that we can prove that for all 6 in (0O,m) the matrix

2.10 t2(m+P)sz(m P)
( ) ( 'e’Jsm’J (a )) P = —,@, -£+1, ooy L
is nonsingular. Then, for n = 0, 1, 2, ... and k = -£, —£+1, ..., £ we can

define the real vector-valued functions

E,m K

(2.11) x e PG = (P 6,05 B 0 G5 ey B (0)
on (-1,1) by
L,k 14
1°72 _ ¢2 (@p) , 3 (m-p)
N I CRNRE ot L O

Also define

(2.13) wﬁ:g(cose) = sind j2;£ tzf?t32;2(m P)(a )tzf?jgz;z(m q)(a ).
Then

Pyl = 51 '
(2.14) wE™ (cose) (Wﬁ,q(wse))p,q L, ..o, R

is a positive definite real symmetric matrix for all 6 in (O,m) and it

follows from (2.7), (2.12), (2.13) that the vector-valued functions Pﬁ’t
H]

satisfy the orthogonality relations



1

£
1 Z s -
@ g B[ et e

_(2£+1) (2m+1) s S
= 1 1
(armt1) 22 mon' Kk

In this paper we will show that the matrix (2.10) is indeed nonsingular

. £,m
for 6 in (0,7) and that P’
( 9 ) n,k,p

the orthogonality relations (2.15) will characterize the vector-valued

is a polynomial of degree n - |p+k|. Hence

functions Pﬁ’z up to constant factors.
9

3. THE VECTOR-VALUED ORTHOGONAL POLYNOMTIALS
I
First we derive an integral representation for the canonical matrix
elements. Consider (2.5) with g = ag and evaluate both sides for
(x,y,u,v) = (a,B,-B,a), where Ialz + ]Blz = 1. In view of (2.3) and (2.6)

we obtain

£]+£2—m( (2m+1)(2£1)!(2£2)! )%

=D @, m T, ey !
1ie -1ie
tm (ez o e’ B)(eie|a|2+e_ie|B|2)’e.']+£2—m _
. zZ—LI’j 4e_%16§'e%iea' B
KIEZZ : )£]+£2—£( (2£+1)(2£])!(2£2)! >£
= -1 '
£=|£1_£2| (£1+12—Z§!(£]+£2+£+1).
K £2

tz’J,m’J(a )tz Z (k(a B)).

Hence, by Schur's orthogonality relations:

£,,2 : (2£+1)(2m+1)(£ +£ -2)! (£ +£ +£+1) i
1 ( l)z—m( \

2
G.1 ?ﬂ,j;m,j(ae) = (K +Zf-m) (E +£ +m+l)' )
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e;ieu e-%ieB
Ed (eie |a|2+e—iel812)£1+£2—mtm ( _lie_ .‘.ie_ )
: Kz—ﬂl,j -e 27°B e? 0 /"
% _
CE (@B dk(w,B).
2 l,J

Next, by some manipulations we will modify this integral representation
into a form which is more suitable for our purpose. Substitution of (1.7)
into (3.1) yields

2m 2 1
'e‘l ,22 ﬂ ,'32 . " /al + m

_ 1 [ [ iey (2. =i, 2
tsz’m’J( ) cﬂ,j;m,j E;-J J (e [a| +e lB] )
K O

i(¢+19) —1(¢+16))m+£ ﬂ L 1(6-38) — i(-6+}0) m-21-+£2
. (ce 2 2(-Be lHae 0
213¢ £ (k(
e £ £ O, B))dk(a B)d¢,
where
Kl’z K_m{(2£+1)(2m+1)(£1+£2—2)!(£1+£2+£+1)!(m?j)!(m+j)3
(3.2) p,im, -1 \ €, +,mm) T+ tm+ 1) T+l -L£,) T (mL +L,) ) )

In this last integral representation consider the K-integral as the inner
integral and make the transformation of integration variable k(o,B)+

- k(E}E)m;2¢. Then the integrand no longer depends on ¢ and we obtain

L K Z L . £ +£_-m
1’ _ 2 2. -igy 12,7172
(.3) tE,J,m,J( ) cﬂ »jsm,i ) ( |al e [BID
K
. 12 0L +£ m+£ -£
aegle_se 216) 1 (aeé i = 5 e
. fz

Kzle,j(k(a98))dk(a’6).
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LEMMA 3.1. Let K be a connected compact Lie group which has a complexifica-
tion K,. Let f be a complex analytic function on an open connected left—K-
invariant subset V of K, containing K. Then

(3.4) J f(k)dk = J f(kk')dk, k' e V.
K K

PROOF. The right hand side is a complex analytic function of k' on V which

is constant on K. g

Now observe that the integrand in (3.3) is the restriction to SU(2) of

the complex analytic function

£l+£24m ,

18 BY)

aG-—e_l6

o B
(YS)'-* (e

0.0 L,

i0.0 4y _iie EC

—Be_i ) (-ye * " +6e

4 a B
. tﬂl'zz,j(Y 6) on SL(2,C).

For 0 < 8 < 7 apply Lemma 3.1 to this function with K' chosen as

e-%ie e%ie
o in/4 ., . -}
(3.5) gy i= e (2 sin 8) ( 1ie —%ie)‘
e e
We obtain:
£ .2 2. ,L )
(3.6) tﬂij;i,j(ae) = cﬂlj;i,j e3"1m/2(25in6)m.
ya £ +£,.-m
N t{;j(ge) J[ (2|s|2cose+a§-?is) b2
p=-£ %
m—ﬂ +£ \ m+!. -K
ce NP Py (,0)) dk(s,8)
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PROPOSITION 3.2. We have

1
} (m+p) , § () (28+1) (m-3) ! (m*§) ! (m=p) ! (mp) 1\
(.7 to,dsm, (%) ( ) Tl T ey T )

£+m e31rim/2

. (1) (2sing)™ t (ge)

For 0 < 6 < m the matrix (t%(m'l'p)”(m p)( ))

£,33m,] Jop=AL,...,2 18 non—-singular.

PROOF. Formula (3.6), together with (1.13) and the invariance of the

integral in (3.6) under right multiplication by m, yields

¢

i (m+p) , } (m-p) _ (@), i (m-p) 3mim/2
tz’J’ m, ] (ay) CE,J, ,Jf (25in6)™

gy [ 6 j PRED™PL (c(a,0))dk(a,8).
K

The integral can be evaluated by using (1.5), (1.14), the beta integral and
the Chu-Vandermonde sum

(c-b)n

[

(3.8) 2Fl(—n,b;c;l) = 0,1,...3 c=b, c#¢ 0,~-1,..., -n+l,

Finally use (3.2). 0O

THEOREM 3.3. Formula (2.12) holds with

(3.9) ﬁ‘l’:,p( y = abs o J (2]8) PxraB-ae) "g™ (-B)™ el o (@)K (,8) ,
K
where
(3.10) Jm L (_I)ZK((Zm*I)!(n+mr£)!(n+m+ﬂ+1)!(mr£)!(m+£+l)l>£
: n,k,p ' n. (n+2m+1) ! (m-k) ! (m+k) ! (m-p) ! (m+p) ! :

There are the symmetries



13

K,m _ K’m E m Z
(3.11) Pn,k,P =F ,P,k n,-k, % Pn,—p,—k’
(3.12) 1’, m (—x) (-1 )n"'k"'pr 1? x).

PROOF. Formula (3.9) follows from (3.7), (3.6) and (3.2). The symmetries are
derived from (3.9) by the use of (1.6) and (1.9) in the case of (3.11) and
by (1.13) in the case of (3.12). [J

0f course, by the use of (2.12) and (3. E),zthe symmetries (3.11) imply
certain symmetries for the matrix elements tzl’ 2 jlas It would be interest-
m, .

ing to get a deeper understanding of the first of these symmetries.
Now expand the integrand in (3.9) with respect to x and use the invari-

ance of the integral under right multipliéation with mg, and (1.13). We

obtain
n
(3.13) PLE (x) = Aﬂ"f{‘ dz’;l x4,
n,K,p n,k,p q=|p+k| n,k,p,q
gq+p+k even
where
Joom (-1)2k+ (a-k-p) yn=q

4 kspsa - (B(ak-pN) T (@ mp) (o) T

f o} (@*k+P) 1 (q-k-p) gminth (k=p-q)gmn+} (<k+p=q)

K

tﬁp (k(a,8)) dk(a,B) .

By using (1.5), (1.14) and the beta integral we obtain, for k+p = O:

(3.15) gbom L,m = (‘1)£+m+% (qtktp) yn=q '(/C+m+n-%(q+ki))'
R k,P’q n,-k,-p,q (;(q_k—p)).(n—q) (k+p) (£+m+n+1)' o
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@) L) o (g, £, d (atkep) +1 |
@K T-p) 3 2\k+p+l ,—~m-n+} (q+k+p) /

For q = p + k use (3.8). Then, for k + p = 0:

(3.16) Z m £,m _ (—1)£+m+P+k2n_p—kn!(m+n—k)!(m+n—p)!
: n k,p,k+p n,-k,-p,k+p (m-£+n) | (m+£+n+1) ! (p+k) ! (n-p-k)! °
1
((ﬂ+k> L) LN
*\TR)TE-pT) :
£L,m . .
Hence P is a polynomial of degree n - [ ptk L

n,k,p

I

THEOREM 3.4. The vector-valued polynomial Pﬁ’i satisfies the conditions
H

z (-1 )!' MM (m-k+1) o (k1) S <"

m -p

(3.17) n P(x) : I
ok (n.(2m+2)h(m—£+l)n(m+£+2)n)

+ polynomial of degree less than n,

i :
(3.18) y I PR (o wﬁ:‘;(x)dx=o

for all q in {-£,...,L} and all n' Zn {0,...,n-1}.

PROOF. Use (3.13), (3.16) and (3.10) for (3.17), and (2.15) together with
(3.17) for (3.18). 0

Note that (3.17) and (3.18) completely determine Pz’m They also imply

n,k’
(2.15) forn#n'. However, from the point of view of Theorem 3.4,, the

orthogonality relations (2.15) for n = n', k # k' are rather unexpected.

REMARK 3.5. Lemma 3.1 can also be applied in order to extract the factor
mn(b ) from the integral representation (1.8) for t (b ). Substitute

o := cosif, B := sini0 in (1.8) and make the successive transformations of
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integration variable ¢ » z » Y » yx, where e21¢ =z = elwcotgée, X

]
N
<

' g AL
(L-m) ! (£+m) 1\ t_ (b,) =
((/a-n) T(Z+n) 1) mn 0

-i—% (z cos $6+sin ée)z_m(—z sin {6+cos %e)zﬂnzn—ﬂ_ldz

(0)

. m- m+
(sin §86) Dcos ie) n

2m . . .
1 (elwcoszie+sin2%e)£-m etV (n-£) (l—elw)zﬂndtp
2w

0

= (-2i)P"™(sin 18)" P (cos }6)™*".

T
. —Tl-r- j’ (cos x+i sin X cos B)K_m ezm‘x(sin )()’“m dy
0

Now assume m > n and use [2, 1.5 (29)]. Then

£ m _
(3.19) tmn(be)/tmn(be) =
T
= const. J (cos x+i sin x cos e)ﬂ'm eznlx(sin x)!'ﬂndx

0

with nonzero constant. Again by [2, 1.5 (29)], the right hand side of (3.19)
is a polynomial of degree £ - m in cos 6 which takes a nonzero value if
cos 6 = 1, In GREINER & KOORNWINDER [4, § 1.3] the integral representation

for Jacobi polynomials resulting from (3.19) is obtained in a quite different

context.
4. THE NONCOMPACT ANALOGUE

Let now G := SL(2,C) with Iwasawa decomposition G = KAN such that
it o
e

K=5U2), A=fa, = 4o |te®}, Ni={( D|zeal

t 0 e
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Let k(a,B) in K be defined by (1.10) and m¢ by (1.12). M F={m¢| 0<¢<4bm}

is the centralizer of A in K.

Let nx’k(lem;ke£ZD be the rep of G which is induced by the rep

m, a n.H-51k¢eXt of MAN: a principal series rep. Then nx’le is unitary

¢ t

and decomposes as 2=k kfl TI'. Choose a K-basis for which Tr)"k has matrix
=K g 9000

k. £, m=k,k+1,...;p==£,...,£3;q=-m,...,m) such that

) A
elements "Z’
H] 9 E

A,k _ L
(k) = Sﬂ,m tp,q(k)’ k € K. Then

"2,p3m,q
ALKk £, (2 2, -A-m-1
(4.1) a3 @) = (20+1) J (e | Zset|g| DA
K !
-1 1
o /8 2ty 2% \ £ o
o R . k s dk 5 5
th(-e%tE I A CANLRCR)

cf. RUHL [9, § 3-5], KOSTERS [8, § 3.11.
Similary to (3.3) we derive from (4.1) that:

Aok _ —t| 12, t),(2\-A-m-1
(4.2) "ﬂ,j;m,j(at) = e,m,] J (e |a|“+e |B|%) .
K

| (e Hamedtyymk hig, egymok tﬁj(k(a,e))dk(u,ﬁ),

where
i /(2£+1)(2m+1)(m—j)!(m+i)!\% 4
(4.3) K, 2,m, S\ (k) | (@t ! )
For s > 0 let
=
(4.4) h = (2shs) (—%s is )"
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Then we can apply Lemma 3.1 to (4.2) with k' := hs for 0 <t < s. We

obtain:

o - £ 2
(shs) Y t..(h).

p=—£L Pl s

ok @)

(4.3) £,53m,5 3 T i,,m,

: J (cht—cothsshtK|a|2—|B|2)+(a§;3§)EEE)'X-m-l.
K shs

(ash%(s—t)—Bsh%(s+t))m+k(ash%(s—t)¥§éh%(s+t))m—k.

. tﬁp(k(a,B))dk(a,B), 0<t<s.

, .
If Rel < m~1 then the limit passage s+t is certainly allowed in (4.5):

2
Ak _ _1y2m m a
(4.6) ﬂlﬁ,j;mﬁj(at) B ck"e’msj( l) (ZSht) P=z_£ tpj (ht).
O I C O R TR
K

Closer examination of the integral, using (1.14), shows that (4.6) holds.
with convergent integral if Rel < 0. Thus it is meaningful to study the

: . £,m .
vector-valued function x (Pn,k,p(x))p=-l,...,£’ defined by (3.9), for
complex n, Re n > 0, and for x > 1. In particular, this function has a

nice asymptotics as x > =,
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