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The stable si:le distribution: an example in structured population dynamics*) 

by 

0. Diekmann 

ABSTRACT 

This not1a describes recent work on models for the growth of populations 

which reproduce by fission. 

KEY WORDS & PHRASES: size-dependent population gPowth., PepPoduction by 

fission., baZa:nce equation., fiPst oPdeP p.d.e • ., tPa:ns­

foY'med aPgwnents., nutPient Zimitation 

*)This report will be submitted for publication in the proceedings of a 

symposium 010. Mathematical Ecology, Trieste, 1982. 



I • INTRODUCTION 

If some characteristic of the individuals is essential for describing the 

dynamics of a population properly, one has to distinguish the individuals from 

each other according to this characteristic. As an example of such a trait, which 

can take a continuum of values, we shall consider "size" (denoted by the symbol x), 
. *) by which we mean any relevant quantity satisfying a physical conservation law. 

Then, to begin with, one has to specify the dynamics of the individuals. The 

basic processes fall into two categories: 

I Change: the size of each individual changes continuously (according to some law 

whic:h has to be specified) when nothing special happens: 
dx dt =0 g = growth rate = prescribed function of x and, possibly, other 

variables. 

JIChanee: some individuals undergo spectacular processes, while others do not. One 

has to specify the chances (per unit of time) that this will happen as a 

function of x and .... For example, 

µ 

b 

µ(x) 

b(x) 

µ (x' ... ) 

b (x, ..• ) 

chance to die as a function of x, ... , 

chance to split into two identical parts as a 

function of x, ... 

(Although we use the word "chance", we shall deal with deterministic models which 

are based on the assumption of large numbers). 

In the second step, one introduces a density function n to describe the state 

of the population and one derives an equation for n by drawing up the balance of 

I and JI: 

e.g., weight, N-, or P- content. 
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(1) 
an a 
~+~~ - µ(x)n(t,x) - b(x)n(t,x) + 4b(2x)n(t,2x) 

growth death reproduction reproduction 
sink source 

X 

where fx: n(t,~)d~ = number of individuals with size between x 1 and x2 at time t. 

(Exercise: explain the factor 4. Hint: check conservation of mass during fission). 

Thus we obtained a special case of Sinko & Streifer's (1971) mathematical model for 

organisms reproducing by fission. 

The year 1967 showed a remarkable outburst of papers formulating similar 

models for the dynamics of structured populations: Bell & Anderson (1967), 

Fredrickson, Ramkrishna & Tsuchiya (1967), Sinko & Streifer (1967). Although there 

has been some follow up (see, for instance, Streifer (1974), Oster (1977), Nisbet 

(this volume) and the references therein), we1 can conclude today, fifteen years 

later, that the mathematical theory is still in its infancy (possibly with the 

exception of age-dependent population growth). 

From a mathematical point of view, the theory is concerned with first order 

partial differential equations with non-local terms (transformed arguments, inte­

grals, ••• ) which are nonlinear as soon as interaction is taken into account. From 

a biological point of view, the aim is to use information about the behaviour 

and the physiology of individuals to describe, understand and predict the dynamics 

of the population as a whole (see Streifer's (1974) excellent survey paper for an 

elaborate presentation of the main ideas). In practice one frequently encounters 

the inverse problem: how to use measurements of the density function to derive 

conclusions about the dynamics of individuals? 

The above observations form the basis for a recently started research project 

in the Netherlands (at the Mathematical Centre), which aims at analysing specific 

examples in this category of equations and models with an eye for a general theory. 

This note is a progress report, based on work of T. Aldenberg, H.J.A.M. Heijmans, 

H.A. Lauwerier, J.A.J. Metz, H. Thieme (Heidelberg), and the author. We shall deal 

with two topics: 

i) linear equations: convergence towards a stable distribution, 

ii) nonlinear equations: interaction via the growth function (a feedback mecha­

nism which admits a clear biological interpretation). 



2. THE STABLE SIZE DISTRIBUTION 

In this section we assume that g, µ and bare functions of x only. As a 

further specification of the model we require: 

a -x 

for some a€ (0,1): 

b(x) = 0, for x € (O,a) 

b(x) > 0, for x € (a,J), b continuous, 

lim fx b(s)ds = + 00 • 

xtl a 

These are mathematical counterparts of the following biological assumptions: 
I 

i) there is a minimal size, called a, which an organism should have in order to 

have some chance to undergo fission. 

ii) there is a maximum size, normalized to be I, which an organism can reach (note 

that the chance to grow from a to x without splitting is given by 

T(x) 

exp - J b(s(t))dt 

T(a) 

X 

exp - f _!:>(s) ds J g( s) , 
a 

in caseµ equals zero; here T(x) denotes clock time when the organism has size x· 

and s(t) the size as a function of time). 

On account of i) we supplement (J,) with the boundary condition 

(2) n(t, ½a) 0 

which expresses that organisms with size less than ½a do not exist. In (I) we 

interpret the term 4b(2x)n(t,2x) as zero for x >½.The functionsµ and g are 

assumed to be continuous functions on [½a,J], withµ nonnegative and g strictly 

positive. Finally, we assume that the situation at t = 0 is known: 

(3) n(O,x) cf> (x), xE[½a,I], cp ~ o. 

Q;uestion (by analogy with Lotka's celebrated result for unlimited age dependent 

population growth). 

Is it true that 

(4) t • + oo, 
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where A0 is a real number (the Malthusian parameter or intrinsic rate of natural 

increase) and n0 (x) ~ 0 is a stable size distribution? 

Answer yes if g(2x) < 2g(x) (or g(2x)>2g(x)), 

no if g(2x) = 2g(x). 

EZuaidation: Consider two organisms A and B with equal size. A splits into a and 

a. During some time interval a, a and B grow. Then B splits into band b. How do 

the sizes of a and b compare? If g(2x) = 2g(x) they are identical and the initial 

condition is, apart from multiplication, copied again and again. This merry-go­

round character implies that all properties of the initial condition remain mani­

fest for all times. In sharp contrast, when g(2x) < 2g(x), only a one-dimensional 

projection (the constant C) of the initial condition influences the asymptotic 

behaviour. 
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We refer to Diekmann, Heijmans & Thieme (in preparation) for a precise mathematical 

formulation and a proof (in addition this paper will contain extensions to periodic 

environments, like in Thieme (preprint 1982)). The following mathematiaai techniques 

are used: 

i) eigenvalue problem,. integral operator equation,. positive operator theory 

,. dominant eigenvalue (Heijmans, preprint 1982). 

ii) evolution equation,. integral operator equation,. existence and uniqueness 

of a solution,. definition of a semigroup. 

iii) semigroup +compactness+ dominant eigenvalue,. asymptotic behaviour for 

t • + 00 (it is remarkable thqt the condition on g is used only to get 

compactness of the semigroup after finite time). 

Moreover, it is possible to derive a transcendental equation for A0 (and the other 

eigenvalues; Heijmans (preprint 1982)), which in the case a~! takes the form 

I I; 

f b (I;) (- I b(17)+µ(17)+A \ 

2 g(l;) exp g(17) d11) di; I. 

a !s 

Here the left hand side with A= 0 has the usual interpretation: it is the off-· 

spring of the average individual (with x=a taken as the reference point). Similarly, 

n0 and C($) are quite computable. So, although the proof uses abstract machinery, 

the outcome is rather concre.te. 



3. THE LIMITED WORLD 

How does a population of, say, unicellular organisms, react upon a given, 

limited, supply of nutrients? This question innnediately leads to another one: how 

do the organisms use nutrients for growth and reproduction? The main advantage of 

structured models is that one can use submodels for processes within the individ­

uals and combine these to obtain an overall population model (Streifer, 1974). 

Sinko and Streifer (1971) made a detailed model for a population of the 

planarian worm Dugesia tigrina, starting from the assumption that the important 

physiological characteristics can be described by their mass alone. They specified 

how the available food was distributed among the individuals, how the consumed 

food was used for maintenance and growth and how the "birth" function was influ­

enced by food shortage. Moreover, they solved the resulting equations numerically 

and compared the outcome with available data. 1 

In addition to the detailed modelling of real populations, one can try to 

enlarge understanding and intuition by analysing relatively simple idealized 

mathematical models. That is the approach taken here. 

So assume that g = g(x,c) and b = b(x,c), where c describes the concentration 

of some important chemical substance. In a chemostat we would have 

(5) 

1 
de - = y -dt ,._, I h(x,c)n(t,x)dx - µc 

!a inflow "---------~ 
uptake by the popu­
lation 

.___, 

outflow 

for some function h. (If we are dealing with a structural chemical, as is assumed 

below, we may set h equal to ag, for some constant a). 

Questions: 1) Do we still obtain a stable size distribution? 

2) If so, how does the time-dependent factor (the amplitude) behave? 

We don't know (yet) the answers in general. However, in the very special case that 

(abusing notation) 

(6) {

i) 
.. ) 
~~-) 
l.1.1. 

b(x,c) 

g(x,c) 

g(x,c)b(x), 

S(c) g(x), 

µ independent of x, 

we have the following 

g(2x) < 2g(x), 
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Answez,s 1) Yes. 

2) The asymptotic time dependence is described completely by a computable 

system of autonomous o.d.e. 's. 

First we comment on the assumptions. In Aldenberg et al. (in preparation) it is 

shown how (i) arises in a variant of the previous linear model, where one postu­

lates a stochastic division threshold (the chance to undergo fission is determined 

by the size gained, independent of the time needed to realize this size increase). 

When energy (from food) is involved inc (ii) is certainly unrealistic, since it 

ignores the basic metabolism. However, it might apply to phosphate or nitrate 

limitation since these chemicals are used for building material. (Anyhow, we admit 

that (ii) is suggested by the fact that it makes mathematical life easy). Finally, 

(iii) is appropriate in a chemostat. That explains why we took the sameµ in (5). 

Next, we sketch the analysis of (1) & (5)1 under assumption (6). Abstractly, 

we can write the equation for n as 

dn 
dt = - µn + S(c)An, 

where A is a linear operator. Let A0 be the dominant eigenvalue of A and n0 the 

corresponding eigenfunction. Substitute 

(7) n(t,x) 

where n1 is in the appropriate complementary subspace. By a trick (based on time 

scaling; note that under our assumptions growth and division scale in the same 

way) one can prove that n 1(t,x) + o as t + + 00 Hence we can take limits in the 

equations for p and c to obtain: 

(8) 
JP, 
le'= 

p(A0 S(c)-µ) 

y - H(c)p - µc 

where by definition 

1 

H(c) J h(x,c)n0 (x)dx. 

½a 
Note that both Ao and Hare amenable to numerical calculation. We refer to 

Aldenberg et al. (in preparation) for the details and for other feedback meahanisms 

which can be modelled and analysed in a similar manner. 

So, under some rather special assumptions, these complicated models yield 
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o.d.e. systems which can be analysed in all detail. This certainly is encouraging. 

Theoretically at least, one can relate in this way parameters in an o.d.e. total 

population model like (8) to (observable?) properties of individuals like growth 

and fission rates. Whether or not this has any practical significance remains to 

be seen. 
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