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The mathematical modelling of entrained biological oscillators*) 

by 

J. Grasman 

ABSTRACT 

In this paper perturbation methods are used for the mathematical anal­

ysis of coupled relaxation oscillators. The present study covers entrainment 

by an external periodic stimulus as well as mutual entrainment of coupled 

oscillators with different limit cycles. The oscillators are of a type one 

meets in the modelling of biological oscillators by chemical reactions and 

electronic circuits. Special attention is given to entrainment different 

from 1:1. The results relate to phenomena occurringinphysiological exper­

iments, such as the periodic stimulation of neural and cardiac cells, and in 

the nonregular functioning of organs and organisms, such as the AV-block in 

the heart and certain deviations from the regular circadian rhythm. 

KEY WORDS & PHRASES: relaxation oscillations, entrainment, synchronization, 

Van der PoZ oscillator 

This report will be submitted for publication elsewhere. 





1 . INTRODUCTION 

Periodicity and synchrony play an important role in the temporal orga­

nization of activity in an organism. At cellular level there is synchroni­

zation of neural and cardiac oscillators by cyclic inputs as well as mutual 

synchronization [2,12,13,14,25,28]. At a higher level organs can be forced 

to follow thie rhythm of an external pacemaker [20]. Finally, the organism, 

as a whole, <exhibits periodic activity known as the circadian rhythm: the 

rest-activity cycle of about 24 hours, which is entrained by the external 

light-dark cycle [5,26,27]. In all these examples we think of 1:1 phase lock­

ing in the first place. There has grown an extensive literature on the math­

ematical mod,elling of this phenomenon, see [6,9,15,17,27]. However, entrain­

ment with a frequency ratio different from 1:1 is also observed at all three 

levels of organization mentioned above. Cardiac muscle tissue may oscillate 

with a period being a multiple of the forcing period [12,25,28]. A heart may 

function in such a way that the contraction period of the ventricles and that. 

of the atria have a ratio different from 1:1 (AV-block), see [12,16]. In ex­

periments on,e was able to lock the respiratory cycle of the lungs to the 

phase of a mechanical ventilator in a ratio different from 1:1 [20]. The 

rest-activity rhythm of humans.driven by the light-dark cycle can also be 

different from the 1:1 ratio. For enfants it may run 2:1 or higher. It is 

reported that such a synchrony is already present for the embryo driven by 

the mothers rhythm, see [5]" Moreover, some humans, isolated from external 

dark-light cycles, exhibit a 2:1 phase locking between their body temper­

ature and their rest-activity cycle [26]. Compared with harmonic entrain­

ment, there are less studies on the mathematical modelling of nonharmonic 

entrainment for highly nonlinear oscillators, we mention ERMENTROUT [3] and 

GLASS and PEREZ [ 7J • 

In this paper we analyse a system of n coupled relaxation oscillators 

with intrinsic frequencies close to a ratio j 1:j 2: •.. :jn with ji,i=l, ... ,n 

integer. In our analysis we use singular and regular perturbation methods. 

The relaxation oscillator we consider is a Van der Pol type differential 

equation with a small parameter E multiplying the second derivative. This 

makes the system of coupled equations singularly perturbed. A second param­

eter 8 is a measure for the deviation of the intrinsic frequencies from the 
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ratio j 1:j 2: ••• :jn. Entrainment is possible if the coupling is at least of 

the same order of magnitude. It is assumed that O<e<<o<<l. In [9] the case 

of weakly coupled almost idential relaxation oscillators was analyzed and it 

was proved that the asymptotic solution indeed approximates an exact syn­

chronized solution of the system. This proof, based on the work of MISHENKO 

and PORTRYAGIN, see e.g. [18], als applies to the present configuration of 

coupled nonidentical oscillators. It is remarked that much of the results 

for harmonic entrainment of almost identical oscillators carry over to non­

harmonic entrainment. There is, however, one unexpected exception: in the 

case of superharmonic entrainment the solution depends critically upon£ as 

turns out in a numerical integration of the system for different£. The de­

pendence is such that above a small value of£ the entrainment breaks down. 

This critical dependence also affects mutual nonharmonic entrainment: the 

entrained asymptotic solution has a low accuracy compared with the case of 

subharmonic entrainment. 

In section 2 the discontinuous asymptotic approximation of a free re­

laxation oscillator is given. Furthermore, we consider the case where ape­

riodic forcing term with an amplitude of order O(o) is added to the equa­

tion. The forcing is of a type that does not change the limit cycle of the 

oscillator in the limit£+ O. In this way only the phase of the oscillator 

is influenced in the asymptotic approximation. Let T be the period of the 

driving force. Then we consider the mapping of the phase at time t to the one 

at time t + T. For the case of piece-wise linear relaxation oscillators one 

can compute this mapping explicitly. A stable fixed point of this mapping 

corresponds with an entrained solution. Without any difficulty this method 

canbeextended to coupled oscillators, see section 3. In the sections 4 and 

5 we deal with two examples of coupled piece-wise linear oscillators and 

compare the asymptotic results with entrained numerical solutions of the 

systems for£ and c fixed. Then, in the example of section 4. the sensi­

tivity of superharmonic entraiment to the value of£ is noticed. Finally, in 

section 6 we deal with chemical and electronic oscillators, that are fre­

quently used for modelling biological oscillations. It is shown, that they 

belong to the class of relaxation oscillators, that are analyzed in this 

paper. 
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2. FREE AND FORCED OSCILLATORS 

The relaxation oscillators we consider are of the type 

(2. 1 a) £dx/dt = y - F(x), 

(2. lb) dy/dt = - ax, 

where£ is a small positive parameter and Fa continuous, piece-wise differ­

entiable function satisfying F(x) • ± 00 as x • ± 00 and with one local maxi­

mum and minimum, see fig. la. Typical examples are the Van der Pol equation 

with F(x) = ! x3 - x and the piece-wise linear differential equation with 
3 

(2.2a) F(x) = 2 + x for xs;-1, 

(2.2b) F(x) = - x for - } < X < }, 

(2.2c) F(x) = - 2 + x for X >}. 

In section 6 we deal with applications in chemistry and electronic networks, 

then F follows, respectively, from the reaction dynamics and the diode char­

acteristic. In this paper we concentrate on discontinuous approximations of 

periodic solutions of (2.1) as£ • 0. In fig. la we sketch the corresponding 

closed trajectory in the phase plane. The time-dependence of the x-component 

is given in fig. lb. The approximate solution over the two branches AB and 

CD satisfies 

(2.3) 

For the Van der Pol oscillator this equation can be integrated, giving an 

implicit expression for x0 as a function oft. For the piece-wise linear 

oscillator satisfying (2.2) the approximate solution has period 
-1 

T0 = 2a ln 3 and reads 
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(2. 4a) 

(2.4b) 

(2.4c) 

-at = 3e 

-at = - e 

for 

for 

0 < t < a-I 1 3 n ' 

-I 
- a ln 3 < t < 0, 

For differentiable functions F the asymptotic stable periodic solution of 

(2.1) has a limit cycle (X ,Y) which approaches (X0 Y0) as E + 0 and the 
E E2/ , 

period satisfies TE= T0 + O(E 3). For a proof of this we refer to MISHENKO 

and ROSOV [18]. STOKER [21] states that for the piece-wise linear oscillator 

TE= TO+ O(ElnE). 

t 
y 

D 

x+ 

Fig. Ia The limit cycle 

in the phase plane as E + 0 

t A 
A X 

B 

t • 

D 
D 

C 

Fig. I b The time dependence of 

the x - component of 

the periodic limit 

solution. 

Next we take into consideration the periodic forcing of the relaxation 

oscillator (2:~I) through its y-component 

(2. Sa) E dx/dt = y - F(x), 

(2.5b) dy/dt = - ax+ oh(t), h(t+T) = h(t), 
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with 0<£<<o<<I and h(t) a piece-wise continuous function. In the limit£+ 0 

the forcing term h will not change the closed trajectory in the phase plane. 

It may only influence the velocity of the oscillator on the limit cycle. 

Consequently, a solution of (2.5) is approximated by 

(2.6) 

where (X0 (t), Y0(t)) represents a discontinuous approximation of the free 

oscillator, see (2.4). Substitution in (2.5) for£= 0 yields 

(2.7) dYO dcj> 
- = - ax (cj>(t)) + oh(t) 

~ dt 0 

or 

(2.8) dcj> _ I _ oh ( t) , 
dt - aX0 (cj>(t)) 

cj>(O) 
(0) 

= a. • 

Integration gives the following approximation valid for bounded t 

(2. 9) cp(t) = a.(O) + t 0 
a 

t 

f 
0 

h(t) dt + O(o 2). 
X (a.(O)+t) 

0 

Over one period T the forcing causes a phase shift o~(a.(O)) with 

T 

(2.10) ~ (a.) = J h(t) 
( ) dt. a O x0 a.+t 

Considering the value of cp at times t = kT, we obtain the iteration map P 

for the phase, a.(k+I) = Pa.(k) or in a explicit form 

(2. I I) 

From the iteration map we analyse the limit behavior of the system. In the 

simplest case it has a stable fixed point that corresponds with a periodic 

solution of period T. Other possibilities are higher stable subharmonic 

solutions, see fig. 2c, and chaotic solutions for o = 0(1), see [10]. 

Clearly, a fixed point a satisfies 
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(2. 12) 

for some integer m and is stable if 1)>' Ca) < 0. Phase locking will only occur 

if 

(2. 13) 

t 
(k+l) 

a 

0 

,,, 
/ 

,,, ., 

,, 
/ 

(k) 
Ci, • 

/ 
/ 

,,, 

Fig. 2a. The iteration map P 

Ci, 

t 
(k+l) 

0 

/ 

/ ,, 

(k) 
Ci, • 

,,, 
/ 

/ 
/ 

/ 

/ 

/ 

Fig. 2b. The phase shift function 1)> 

Fig. 2c. A higher order fixed point of the map P. 



3. COUPLED OSCILLATORS 

We are now on the position to handle systems of coupled relaxation 

oscillators satisfying 

(3. ta) Edx./dt = y. - F.(x.) 
1. 1. 1. 1. 

n 
(3. lb) dy./dt = - a.x. + o l H .. (x.,y.), 

i i i j=l l.J J J 
i = 1, ••• ,n, 

7 

where 

lator 

H .. is assumed to be continuous with respect to x. and y .• Each oscil-
1.J J J 

describes a free oscillation given by (X. 0 (~.(t), Y. 0 (~.(t)) with 
1. 1. 1. 1. 

(3. 2) 

Let H •• 
1.1. 

(3.3) 

~.(t) = a~O) + t 
1. 1. 

0 
a. 

1. 

t 

J 
0 

(0) (O) 
H .• (X. 0 (a. +t),Y. 0 (a. +t))dt z 

1.1. 1. i i i + O(o ). 
(O) 

x.o(a. +t) 
i 1. 

= a.p.x., then the phase of the free oscillation satisfies 
i 1. i 

In case the oscillators are coupled the phase functions are approxitftated by 

(3.4) ~-(t) = ~. 0 (t) 
1. 1. 

Let us assume that the unperturbed oscillators (o=O) have autonomous periods 

T. satisfying 
1€ 

(3.5) 

where j., i = t, ••. ,n are integers. The fact that H .. = p.x. results in au-
1. ii i i 

tonomous periods of the perturbed system that differ O(o) from this ratio. 

Next we introduce the common unperturbed period T being the smallest number 

for which the·quotients T/TiO' i = t, .•• ,n are positive integers. The 

phase shift function is defined by 

T 

(3.6) lj, •• (a.,a.) = .:.!. J 
1.J i J ai 0 

H .. (X.(a.+t),Y.(a.+t)) 
l.J J J J J d . ~ . -"""---=--..,,.,,=-,.(---')1'---"--- t , 1 T J • X. a.+t 

i 1. 
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For the iteration map P of the phases a~k) at times t = kT we obtain 
1 

(3.7) (k+l) (k) (1-op. )T + o I (k) (k) 
(mod)TiO a. = a. - lj, •• (a. ,a. ) 

1 1 1 j;&i 1J 1 J 

for i = 1, ••• , n or a (k+l) 
= Pa(k). More specifically, the phase shift func-

tion lj, •• depends upon s .. = a. - a. as is seen from (3.6) by shifting the 
1J 1J 1 J 

integration interal over a .• If we set a1 = O, then all_ phase differences 
J 

s .. are determined uniquely from the 
1J 

(3.4) has a periodic solution with a 

remaining n - 1 phases a .• The system 
J 

period of about T if the following 

system of n algebraic equations for a 2 , ••• ,an and q has a solution: 

(3. 8) P1•T + I l/J •• (s .. ) = q, 
•J.. 1J 1J 
Jr1 

i = I, ... ,n. 

The period of the approximation fore+ d takes the value T + oq. It is more 

difficult to analyse the higher dimensional iteration map than the one 

dimensional one of the preceding section unless there is a regular struc­

ture in the coupling and the distribution of autonomous frequencies. Numeri­

cal simulation of the map P for a system of 144 coupled oscillators, see 

[9], suggest the existence of chaotic solutions with a domain of attraction 

of nonzero measure. In the numerical experiment the 144 oscillators were 

spread out over a two-dimensional periodic spatial structure (a torus) with 

coupling to the nearest neighbours and gave arise to persistent chaotic 

phase waves, resembling fibrillation of the ventricles. 

4. ENTRAINMENT OF TWO OSCILLATORS WITH FREQUENCY RATIO 1:3 

As an example we deal with two coupled oscillators, which fore • 0 

have the same limit cycles in the phase plane and with autonomous frequencies 

that differ about a factor 3. We take a type of coupling that the simplifies 

computations: 

(4. 1 a) 

(4. lb) 



with F(x) given in (2.2). Carrying out the computations set out in the 

foregoing section we arrive at the phase shift functions 

(4.2a) 

(4.2b) 

9 

with y = 3-t/3 + 3213 - 3113 - 3-213 • For 1/3 In 3 ~ 
= ~- .(S+l/31n3). 

S < 0 we have~- .(S) = 
1J 

1J 

Let us compare these asymptotic results for£= 0 with numerical 

solutions of (4.1) for fixed small parameter values, £ = 10-3 and o = .25. 
I 

In fig. 3a we present the result for subharmonic entrainment, (a1,a2) = 

= (1,0). It is observed that the values of the entrained numerical 

solutions (p 1,S(£)) are close to the stable branch of the phase shift 

function ~12 (e). The value S(£) is found as the difference in time at the 

successive intersections of x 1(t) and x2(t) with the line x = 0. For the 

case of superhamonic entrainment, (a1,a2) = (0,1), the outcome is quite 

different, see fig. 3b. The phase shift curve turns out to be very sensitive 

to the value of£. As a result of this superharmonic entrainment is only 

possible when the autonomous ~requencies are much closer to the ratio 1:3 

than in the case of subharmonic entrainment. For£= .002 this bandwith is 
-3 reduced by a factor two and again at£= 4.10 • At£= .005 superharmonic 

entrainment virtually breaks down. Finally, in fig. 3c we sketch the result 

of mutually entrained numerical solutions, (a1,a2) = (1,1). The values 

(p 1,S(£)) for the numerical solutions are away from the stable branch of 

the relative phase shift function ~12 (e) - ~ 21 (-S). A further comparision 

shows that the outcome of the numerical solutions is consistent with the 

results for super- and subharmonic entrainruent. 
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Fig. 3a. Subharmonic entrainment 

S+ 

I 

I 

, 
I 

Fig. 3c. Mutual entrainment, 

x(S) = $12<s) - $21<-s). 

Fig. 3b. Superharmonic entrainment 

Fig. 3d. Dependence upon E for 

superharmonic entrainment 

5. ANOTHER EXAMPLE OF SUBHARMONIC ENTRAINMENT 

When carrying out the computations of the forecoing section for auton­

omous frequencies with a ratio of about 1:2. the influence functions $ 12 
and $ 21 turned out to be identically zero in the first order approximation 

with respect too. The computation of the next order term is possible but 

quite laborious. A further investigation shows that the cancellation is due 

to symmetry and that it occurs for any ratio containing an even integer with 

F(x) = - F(-x). For coupled oscillators that run different, nonsymmetric 
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limit cycles, one can compute the phase shift functions as well, as is seen 

in the following example: 

(5. 1 a) 

(5. 1 b) 

wheres= 4ln3/(ln2+ln3), F(x) is given by (2,2) and F1 (x) satisfies 

(5.2a) F 1 (x) = - 2 + x for x ~ 1, 

(5.2b) F1(x) = - 1/3 - 2/3 x for - 2 < x < 1, 

(5.2c) Fl (x) = 3 + x for x::;; - 2. 

Clearly, T10 = 2T20 = ln 2 + ln 3 for o = 0 and€+ 0. The phase shift func­

tion is given by 

(5. 3a) 

(5.3b) 

(5.3c) 

(5.3d) 

¢12 (8) = - .629 e8 - .302 esS for O ~ B > -3/4 In 2 + 1/4 In 3, 

¢12 (8) = 8.17 e8 - 12.86 esS for -3/4 ln 2 + 1/4 ln 2 ~ 8 > -T 10/4, 

In fig. 4 entrained numerical solutions are plotted for€= 10-3 and 

o = .25. Compared with the subharmonic solutions of the preceding example 

we note a higher sensitivity with respect to£, probably due to the addi­

tional discontinuity in the derivative of the phase shift function. 
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-1, 

Fig. 4. The influence function for subharmonic entrainment. 

6. APPLICATIONS IN THE THEORY OF CHEMICAL AND ELECTRONIC OSCILLATIONS 

The physiology of periodic phenomena in organisms can be quite complex 

and is in most cases not understood in sufficient detail. In the process of 

investigation one uses prototypes of biological oscillators in order to get 

more insight in the mechanism of entrainment and related phenomena. Besides 

abstract mathematical models there are prototypes of oscillators orginating 

from anorganic chemisty, e.g. ,the BELOUSOV - ZHABOTINSKII reaction [23] and 

from electronic circuit theory: the Van der Pol oscillator [24]. In this 

section we show that two such models can be cast in the form of relaxation 

oscillators of the type we study in this paper. 

First we consider a hypothetical chemical reaction with periodic fluc­

tuations in the concentration of some of the reactants: the Bruxellator, 

see [I]. Schematically we have the following reaction: 

(6. I a) 

(6. lb) 

(6.Ic) 

k1 ' 
A. k . X, 

-I 

k2 
B + X ~ Y + D, 

-2 

k3 
2X + Y ~ 3X, 

-3 



(6. Id) 

Keeping the reactants A,B,D and Eat a constant level and setting the re­

verse reactions all zero, we obtain for the concentrations of X and Y 

(6. 2a) 

(6.2b) 

Introduction of nondimensional variables defined by 

(6.3a) 

(6.3b) 

transforms (6.2) into 

(6.4a) 2 du/d-r = 1-U-8u+au (w-u) = 8f(u,w;8), 

(6.4b) dw / d-r = 1 - u = g ( u, w) • 

13 

This system has the equilibrium point (u,w) = (1,1+8/a), which is stable for 

8 < I+ a. Varying 8 we find that the equilibrium point is unstable above the 

critical value 8 = 1 +a.Then a stable limit cycle with amplitude 
C 

.L 

(8-8 ) 2 branches off. For 8 >a+ 1 > > I with 8-a = 0(1) the limit cycle 
C 

turns into a relaxation oscillation, see fig. 5. The only difference with 

(2.1) is the null curve f = 0 with one stable branch depending strongly upon 

8, as it is situated in a 1/8-neighborhaed of thew-axis in the u,w-plane. 

A local stretching transformation, e.g. v =I+ u - exp(-8u), will give 

f(v,w,O) = 0 the required shape. Furtermore, we may study space dependent 

dynamics by diffusion coupling of a set of this chemical oscillators. Con­

sisering diffusion of only thew-component with a diffusion coefficient 

owe arrive at a type of system analyzed in section 3: 
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(6. Sa) 

(6.5b) 

dv./dt = Bf(v. ,w. ;O) 
1 1 1 

dw./dt = g(v.,w.) + o l w. - w1,, 1 1 1 ! J 
J 

i = 1,2, ••• ,n, 

where the sunn:nation is taken over the neighboring oscillators. In [9] such 

a system of identical piece-wise linear oscillators was analyzed with the 

asymptotic method of section 4 and gave arise to bulk oscillations, stable 

phase wave patterns and persitent chaotic phase waves. The regular oscilla­

tory patterns agree qualitatively with nunnnerical results by AUCHMUTY and 

NICOLIS [1] for Bruxellators with diffusion coupling. There are also other 

approaches to the mathematical analysis of coupled chemical oscillators, we 

mention [4,19,22]. 

w 

' ' f=O 
\ 

0 

I 

I 

: g=O 

' I .... ,... - - -

2 

u -+ 

/ ,. 
,. 

, ,. , 

- - - - null curves 

3 

,. 
, 

/ ,. 

4 

Fig. 5. Limit cycle of the Bruxellator for a= 5 and 8 = 7. 

Finally, we discuss the occurrence of entrained oscillations in a elec­

tronic circuit. GOLLUB e.a. [8] analyzed the circuit given in fig. 6a. The ,,. 
two tunnel diodes have characteristics a sketched in fig. 6b. For this 

circuit with R = 0 the voltage and current satisfy the system of differen­
c 

tial equations. 

(6.6a) 

(6.6b) 
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For R small and c1 and c2 of even smaller order of magnitude this· system is 

of the type we studied with asymptotic methods. In [8] the same type of en­

trainment is observed as we derived for the piece-wise linear oscillators. 

In addition they observed chaotic states for the circuit with R = 0 and 

Rc IO. This choice yields differential equations for 1 1 and Vi that are 

different from the ones of section 4. 

R 

Fig. 6a. The circuit with two 

tunel diodes 
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