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Algebraically equivalent linear multistep solutions of Volterra integral 

equations and certain systems of ODEs*) 

by 

P.J. van der Houwen 

ABSTRACT 

It is shown that a special linear multistep method for Volterra integral 

equations of the second kind with finitely decomposable kernel, is 

algebraically equivalent with a linear multistep method applied to a certain 

system of ODEs. Furthermore, a theorem is proved which describes the effect 

on numerical solutions, generated by a rather general class of linear 

multistep methods, if the kernel function is replaced by a finitely 

decomposable kernel. 

KEY WORDS & PHRASES: Numerical analysis, Volterra integral equations of 

the second kind, linear rrrultistep methods, stability 

*) This report will be submitted for publication elsewhere. 





1 . INTRODUCTION 

A rather general class of linear multistep type methods (VLM method,s) 

for solving numerically the Volterra integral equation of the second kind, 

t 

(1.1) y(t) = g(t) + J K(t,s,y(s))ds, t EI := [t0 ,TJ 

to 

consists of the LM foPnTUZa 

(1. 2a) 
k k 
l {a.y 1 + l [B • • Y .(t .)-y .. hK .(t .)]} = O, 

i=O 1 n- j=-k 1.J n-1. n+J 1.J n-1. n+J 

and of a quadPature rule for defining the ZagtePm Y (t), i.e. , n 

(1. 2b) y (t) 
n 

n 
= g(t) + h l w .K.(t), 

j=O nJ J 
K.(t) := K(t,t.,y.). 

J J J 

In this VLM method, y denotes the numerical approximation to y(t ), his 
n n 

the (constant) integration step tn - tn_ 1,and the parameter matrices 

W = (w .. ), A= (a.), B = (8 .. ) and C = (y •• ) are to be prescribed. These 
l.J 1. l.J l.J 

parameters should satisfy B·· = y .. = 0 for j < -i. Since (1.2) is a 
l.J l.J 

multistep method, we also need starting values for y and Y (t), n = 0 
n n 

(I) k-1. 

The general VLM method (1.2) was considered in [10], where convergence 

results and a few stability results were reported. In this paper, we 

continue this analysis by using the class of finitely d.eaomposabZe kernels 

as test kernels. It should be remarked that in a few earlier papers (e.g. 

[3] and [9]), various numerical schemes has already been investigated by 

restricting the kernel to the class of decomposable kernels. For linear 

multistep methods, this was done for the conventional direct quadrature 

(DQ) methods (generated bij (1.2) fork= 0, A= 1, B ~ -I, and C = O). 

Here, we consider the general VLM method and we derive a finite terms 

recurrence relation for the numerical solution. In particular, it will be 

shown that a special family of VLM methods can be identified with an LM 

method for a certain system of differential equations. This enables us to 

get more insight into the numerical behaviour of the VLM solution. Furthermore, 

a comparison theorem will be proved which describes the effect on the 

numerical solution of (1.2) if K is replaced by a decomposable approximation. 
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2. FINITELY DECOMPOSABLE KERNELS 

It is well know (cf. [7], [6] that (I .1) can be converted into a 

system of ordinary differential equations (ODEs) if the kernel function 

K is finiteZy decomposable, that is if 

(2.1) 
m 

K(t,s,y) = l 
µ=l 

g (t)f (s,y), 
µ µ 

or more compactly, in order to simplify the subsequent formulas, 

(2 • 1 I) 
• 

K(t,s,y) = < G(t), 
• 
F(s,y) >, 

• • 

where<, > denotes the inner product, and G and Fare vectors with components 

g and f, µ = 1 (1) m. Introducing the new variable 
µ µ 

t 

U(t} := J F(s,y(s))ds 

to 
and using (1.1) we arrive at the system of ODEs 

• • 
U'(t) = F(t,y(t)) 

(2. 2) 

y(t) = g(t) + < G(t), 
• 
U(t) > 

We now try to do a simular conversion of the discrete scheme (1.2). 

For that purpose we restrict the quadrature rule used in (1.2b) to be class 

of so-calles (p,a)-reducible rules, that is rules which can be traced back 

to an LM formula for ODEs (cf. [12] and [15]). The weights of such rules 

satisfy the relations 

k 
(2.3) I 

:i.=0 
a.W .. 

1. n-1. ,J 
= lo if 

b . 
n-J 

j = O(l)n - k -

if j = n - k (l)n 
,n~k 

where a. and b. are the coefficients of a k-step method for ODEs with 
1. 1. 

characteristic polynomials 

k 
(2.4) p(z) = I 

i=O 

k-i 
a.z 

1. 
cr(z) = 

k 
I 

i=O 

k-i 
b. z 

1. 
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Furthermore, we will use the forward shift operator E and we will occasionally 

write 

·+ • 
F = F(t ,y ), 

n n n 
• • 
G =G(t). 

n n 

THEOREM 2.1 Let K be of the finitely d,ecomposabZe fo!'m (2.1) and Zet the 

quadrature ru, Ze ( 1. 2b) be ( p , cr )-re ducib Ze with p (1 ) = 0 • Then the VLM method 

can be conVeJrtad into the form 

(2. Sa) 
• • 

p(E)U = h cr(E)F, n n n ~ 0 

k k k 
(2.Sb) I a,. V • = 1. J n-1. l l [y .. h<G .,F .> 

. 0 . k l.J , n+J n-1. i=O 1.= J=-

where for j -- 0 (1) k-1 the 

• 
g(t) + < G(t), 

-8 .. (g(t .) 
l.J n+J 

• • • 
vector u. sat~sf~es 

J 

• 
U. > = Y.(t). 

J J 

• • 
+ < G ., U . >)], n ~ k, 

n+J n-1. 

the starting condition 

D 

PROOF. From the (p,cr)-reducibility property it follows that [15] 

p(E)Y (t) = hcr(E)K (t), 
n n 

n ~ O. 

Assuming that we can write 

(2.6) 
• 

Y (t) = g(t) + < G(t), 
n 

• u > 
n 

• 
for some vector U, we obtain the equation, 

n 

• 
< G(t), 

• • 
p(E)U - hcr(E)F- > = O. 

n n 
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Apparently, by writing Y (t) in the form (2.6) the vectors (2.5a) should n 
satisfy (2.5a). The equation (2.5b) is inmnnediate by substituting (2.1) 

-+ into (1.2a). Finally, the relation between the starting vectors U.(t) 
J 

follows from (2.6). 

Notice that for decomposable kernels, the general VLM method requires 

only (n) kernel evaluations when written in the form (2.5). 

In the following subsections two families of VLM methods will be 

discussed in view of the finite recurrence relation (2.5). 

2.1 Direct quadrature methods 

The conventional direct quadrature (DQ) method is obtained from (1.2) 

fork= O, A= 1, B = -1 and C = O. Substitution into theorem 2.1 

immediately leads to the respresentation 

(2. 7) 
-+ -+ p(E)U = hcr(E)F(t ,Y ), n n n 

-+ 
y = g(t ) + < G , 

n n n 
-+ u >. 

n 

Exactly the same relation is obtain if we apply the LM formula {p,cr} to 

the system of ODEs (2.2). In other words, for d,eaomposable kernels, the DQ 

method is algebraically equivalent with an LM method applied to the system 

(2.2), provid,ed that the starting values are also equivalent. Hence, the 

numerical behaviour of the DQ method can be predicted on the basis of the 

well-developed theory for ODEs. Since the numerical behaviour of ODE 

solvers depend on the Jacobian matrix of the right side function of the 

system, we should consider the matrix 

(2.8) 

whereµ and v denote the row and column index, respectively. There are 

m-1 zero-eigenvalues and one eigenvalue given by 

(2.9a) >.. = 
m 

m af aK I gµ(t) ayµ (t,y) = ay<t,t,y). 
µ=] 
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In most cases we can base the choice of the ODE solver on the spectrum of J 

that is if aK/ay is of moderate size we choose an Adama-Moulton (AM) 

formula and if aK/ay is e.g. large negative (indicating that the system (2.2) 

is stiff), we choose a backward differentation (BD) formula (see [11, p. 242j). 

The resulting quadrature formulas are respectively the Gregory rules (see e.g. 

[2, p. 117]) and the backward differentation quadrature rules. The latter, 

rather unconventional, rules were extensively discussed in [14]. In passing 

we remark that the BD quadrature rules are more expensive than the Gregory 

rules [15]. 

The selection of {p,o} on the basis of (i.9) is not safe in cases where 
the elements of J differ largely in magnitude. Such a situation is not 

reflected into the spectrum of J so tha~ wrong conclusions might be drawn. 

However, by considering the Lipschitz constants of the succersive right

hand side functions in the systems (2.2) a safe criterion is obtained 

whether the system is stiff or nonstiff. Thus, instead of (2.9) we consider 

the Lipschitz conditions for the respective component equations in (2.2), 

that is 

-+ -+ -+ -+ II f (t,g(t)+<G(t) ,U(t)>) - f (t,g(t)+<G(t) ,V(t)>) II 
µ µ 

-+ -+ 
~ L II u ( t) - V ( t) II , 

µ 

-+ • where V hes in the neighbourhoud of the solution U and Lµ are the Lipschitz 

constants. With respect to the maximum norm we find 

m af 
(2.9b) Lµ R1 1g (t), l 1r<t,y(t)) ,. 

µ µ=) y 

Thus, it is recoIIDnended to consider, in addition to (2.9a), the Lipschitz 

constants (2.9b) 
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2.2 Indirect linear multistep methods 

The second method we investigated is the indirect linear rrrul#step 

(ILM) method which was proposed in its general form in [10]. It arises if 
. * * * * * 1.n (1.2a) a.= a., e .. = b. d.+'' y .. = b. a. ·+2 . where {a., b.} define 1 1 1 J 1 l. J l.J l. l., J l. 1 1. 

an LM formula {p*,c*}, and {d.} are the coefficients of a forward 
1 

differentiation formula, i.e. 

k 
hy'(t) Fld - l d 0Y(t +0 ) =: - T*(E)Y(t ). 

Il • 0 .(.. n-L n 1.= 

THEOREM 2. 2 For finitely d&composab le kernels of the form (2. 1 ) the ILM 

method reduces to 

(2. I Oa) 

(2. IOb) 

+ + 
p(E)U = hcr(E)F(t ,Y) 

n n n 

* * -1 * p (E)y = hcr (E)[K(t ,t ,y) - h T (E)g(t) 
n n n n n 

-1 * + + + < -h T (E)G, U > ]. 0 
n n 

PROOF. Substitution of the coefficients a 1., e .. and y .. , defining the ILM 
l.J l.J 

method, into (2.Sb) yields 

k * I a. y . = 
• 0 1 n-1 1= 

k * + + -l k-i 
h l b. [ < G . ' F • > - h l d. +. (g ( t +.) 

i=O 1 n-1 n-1 j=-i 1 J n J 

+ + 
+<G • , U .>) J n+J n-1 

k * _1 k 
= h t b. [K(t .,t .,y .)-h t d.g(t +· .) 

,l0 1. n-1 n-1 n-1 ,l J n 3-1 
1= J=O 

-1 
h < 

k 

I 
j=O 

+ + 
d.G •• ,U .>]. 

J n+J-1. n-1. 

. . . 1. ** * . Writing this relation 1.n terms of the po ynom1als p ,cr and T we obtain 

(2.10b). Equation (2.10a) is immediate from (2.Sa). 
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The recurrence relations (2.10) are recognized as LM discretizations 

of the system of ODEs 

(2.13a) 
-+ + 
U'(t) = F(t,y(t)) 

(2. I 3b) 
. + + 

y'(t) = K(t,t,y(t)) + < G'(t), U(t) > + g'(t). 

Hence, fo1~ d.ecomposable kernels, the ILM method is algebraicaUy equivalent 

with LM methods {p ,a} and {p * ,a*} applied to the system (2. I 3a) and the 

equat1'.on (2. 13b), providad that the starting values are also equivalent. 

Selecting suitable LM formulas {p;a} and {p*,a*}, we obtain an ILM 

method which is expected to have a satisfactory numerical behaviour. The 

choice of suitable LM formulas depends on the Jacobian matrix 

0 0 df I (t ,y) fay 

(2.14) J = • 

0 df (t,v)/'dy m -
g ' (t) m 

aK(t,t,y) /ay. 

The eigenvalues of J are given by m-1 zero-eigenvalues and two eigenvalues 

A satisfying the equation 

(2.15) 
2 ak m ;)f 

A - ay (t,t,y)A + l (-l)µg' Ct) ai (t,y) = o. 
µ=I µ 

* * In choosing the polynomials {p ,a} and {p ,a } , we may exploit the 

fact that the system of equations in (2.13a) can be scaled in such a way 

that the ;)f /ay are all small in magnitude, sothat (2.13a) presents an 
i: 

"innocent" system of ODEs. This is achieved by adapting the decomposition 

in (2.1). Of course, the functions g (t), and consequently the derivatives µ 
g'(t), may then be badly scaled, sothat the equation (2.13b) may become 

µ 
a difficult equation (for instance a stiff equation). 
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Systems where a subset of equations introduce time constants which differ 

by several orders of magnitude, whereas the other equations have a 

relatively slow behaviour, were investigated in e.g. [8] and [13 ]. These 

studies justify to integrate the innocent system (2.13a) by a nonstiff 

ODE solver {p,cr}, e.g. an AM-formula. Thus, we are led to an ILM 

( {p ,cr}; }p * ,cr*}) method in which the lag terms is· computed by Gregory· rules 

and the LM formula is defined by polynomials {p*,cr*} which correspond 

to a stiff solver if we have reasons to assume (2.13b) to be stiff (e.g. 

if aK/ay is large negative), and which correspond to a nonstiff solver 

otherwise. Since the lagterm implementation is the more difficult one in 

the scheme (1.2), it is an attractive feature of the ILM method that we 

can use the simple and efficient Gregory rules for computing the lag term 

irrespective of the behaviour of the kernel K. This is a first advantage 

over the DQ method where in stiff cases the lag term_ should be computed by 

e.g. the backward differentiation quadrature rules wl;i.ich are rather 

difficult.to implement. 

It should be remarked that the systems of ODEs (2.2) and (2.13) may 

be largely different in characters. For instance, one system may be stiff 

and the other nonstiff. Furthermore, since the function U(t) does not 

neces~arily have a physical interpretation, the systems of ODEs may be 

inherently unstable, whereas the VIE itself is perfectly stable. In case 

of (2.13), this difficulty can be overcome by choosing a {p*,cr*} formula 

with a sufficiently large region of reZative stabiZity. In case of (2.2), 

however, y(t) is not one of the unknown variables in the system, and is 

obtained by a weighted sum of the components of the unstable result U(t). 

If y(t) is much smaller in magnitude than one or more of the components 

of U(t), we should expect large errors in applying the DQ method, 

irrespective of the lag term formula {p,cr}. 

2.3 Other VLM methods 

There have been proposed a few other families of linear multistep 

type methods which fit into the framework (1.2). In [16] so-called 

rrruZtiZag (ML) and modified rrruZtiZag (MML) methods were introduced. 
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These methods can be shown to be discretizations of the systems of ODEs 

(2.2) and (2.13), respectively. They are, however, no standard LM 

discretizations, such as the DQ and ILM methods, and we did not succeed in 

associating to them systems of ODEs for which the (M)ML methods can be 

interpreted as standard LM discretizations. Hence, we cannot just apply 

ODE theory to these methods for selecting suitable members of the (M)ML 

family. 

3. A COMPARISON THEOREM 

In the preceding section the kernel K was assumed of the finitely 

decomposable form (2.1). Here, we consider a general kernel K which is 

only assumed to be continuous in its arguments. Let K* be as decomposable 

approximation to K, then we want to know how the respective numerical 
... 

solutions Yn and Yn' produced by the same VLM method, differ from each 

* other. We shall write En= yn - Yu· 

THEOREM 3. I Let the polynomial ::¥. ( z) = ,.. k-i t . .{-", t1__ d" . u..z sa -isJy •J~ root con -it-ion 
i 

(i.e. no roots outside the unit circle and those on the unit circZe being 

simple). Let the row sums in the ma,trix B vanish., and let the foUowing 

Lipschitz conditions be fulfiUed in the domain of definition of K and K*: 

IK(t,S,y) - K(t,s,Y) I $; LI IY-YI' 

!K(t,s,y) - K(t,s ,Y) - K(t,s ,Y) + K(t,s ,Y) I $; 12 I t-tl IY-YI' 

!K(t,s,y) - K*(t,s,Y) I $; 8' 

IK(t,s,y) * K(t,s ,Y) + K* (t,s ,Y) I Tl I t-tl. K (t,s,y) - $; 

Then there exist a constant C independent of n and h such that for h 

sufficiently small 

(3. 1) max IE I $; C(o+n). 
k$;m$;N n 

D 
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PROOF. From (1.2) we derive by subtracting the two LM formulas 

(3. 2) 

where 

k k 
l {a.E . + l [8 •• 8Y .(t +·) 

i=O l. n-1. j=-k l.J n-1. n J 

- y •. h(8K .(t +.)+o .(t +.))J} l.J n-1. n J n-1. n J 

8Y (t) 
n 

* n 
= Y (t) - Y (t) = h l w_ 0 [8K 0 (t) + o0 (t)J 

n n l=O Thl- ,(.. ,(.. • 

8K,e(t) * * * = K(t,t,e,Y,e) - K(t,t,e,Y,l), o(t) = K(t,t,y ) - K (t,t,e,Y,e) 

We write (3.2) in the form 

(3; 2') a(E)E = V n ~ o. n n+k' 

Since a(z) satisfies the root condition we have the inequality (see e.g. Stetter 

[ 14, p. 205J 

(3. 3) Iv. I, 
J 

n ~ k, c1 constant 

where we have used that E = 0 for n < k. For v we derive the inequatility n n 

k n-i k 
Iv I n ~ l {h l 

i=O l=O 
lw • ol I l 8 .. [8Ko(t +·) + 0o(t .)JI n-1. ,,(.. j=-k l.J ,(.. n J ,(.. n+J 

k 
+h l ly .. [8K .(t+.)+o .(t .)JI} 

j=-k l.J n-1. n J n-1. n+J 
n k 

{h l I l [8 .. (18Ko(t )+oo(t )1+18Ko(t .)-8Ko(t )I 
l=O j=-k l.J ,(.. n ,(.. n ,(.. n+J ,(.. n 

+ I o o < t +. )-o o < t ) I) +y •. h < I 8K • < t . ) I+ Io . < t . ) I) J I } ,(.. n J ,(.. n l.J n-1. n+J n-1. n+J 

for some constant c2• Using the Lipschitz conditions on Kand K*, and the 

conditions one .. we find 
l.J 



Substitution into (3.3) yields 

j 

[h2 l 
l=O 

n 
~ c5 {h(l+nh) l 

l=k 

11 

I 2 2 E,e.l + n h Tl+ nho}. 

Finally, by applying a well-known Gronwall inequality (see e.g. [2, p. 925]) 

we find 

I I nh(nhn+o) nh(l+nh) J 
k~~~N En ~ CS 1-h(l+nh)C5 exp[CS 1-h(l+nh) ' 

where we assume h sufficiently small. since nh ~ Nh = T - t 0 the theorem 

is proved. D 

According to the well-known theorem of Stone-Weierstrass, the class 

of continuous functions of the decomposable form (2.1.) is dense in the 

class of all continuous functions. Hence, K can be approximated by a 

decomposable function K* within any degree of accuracy (for an interestifig 

discussion of this subject we refer to [6]). Consequently, the quantities 

o and Tl in the theorem can be made arbitrarily small. Thus, if we have a VLM 

method which satisfies the conditions of the theorem and if we know the 

numerical behaviour of that method for the class of decomposable kernels, 

then we know approximately its behaviour for non decomposable kernels. 

Such a method is the 'lLM method: it has an a(z) polynomial which 

* satisfies the root condition because a(z) = p (z), the row sums of the 

matrix B =($ .. )do vanish and, according to theorem 2.2, we can derive 
1J 

its numerical behaviour from known results for ODEs. 

A similar theorem van be proved for the family of VLM methods for 

which a(z) = a0zk (without further conditions on the parameters$ .. or 
1J 

.. ). Hence, in particular, the DQ 
1J 

method satisfies the relation (3.2) 

therefore its numerical behaviour canbe predicted by using decomposable 

kernels as test kernels and by applying ODE theory to the system (2.2). 

and 

Finally, we remark that on the basis of this theorem one may decide 

to approximate the given kernels by a decomposable one and use -the 

relations (2.5) directly for generating a numerical.solution. 
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Such an approach has been advocated by Bownds in a number of papers [1,4-6] 

who starts with the system (2.2) and applies a suitable ODE solver (not 

necessarily an LM formula). Alternatively, one may start with the system 

(2.13) which is sometimes better conditioned (smaller Lipschitz constants) 

than the system (2.2) as we will see in the next section. 

4. NUMERICAL ILLUSTRATION 

Consider the following modification of an example given in [4] 

(4.1) J(t) = 5o(l-t2)ln(l+t) + 75t2 - Sit+ 1 

t I 

- too0J ln(l+t-s)y(s)ds, 0 ~ t ~ T = 4, 

with exact solution y(t) = 1-t. In order to illustrate the preceding 

discussion, we associate to the kernel in (4.1) the decomposable kernel 

(4. 2) * 20 K (t,s,y) = 3 [t(t-lO)y - 2t sy + s()O+s)y] 

obtained by quadratic interpolation on the interval O ~ t-s ~ 4, and define 

F(s,y) = [y,sy,s(lO+s)y]T 

-+- 20 G(t) = 3 [t(t-10),-2t,l]. 

In case of the DQ method the Jacobian matrix J defined in (2.8) has 

m zero-eigenvalues. It is wrong, however, to conclude that the system (2.2) 

is an innocent system, because the Lipschitz constant L defined in (2.9b) 

differ largely in magnitude. For example, at t=4 we have L1 ; 400, 

L2 ; 3200 and L3 ; 9600. Consequently, we should not e:r:peat the G'PegO'PJj 

rules to be stable in this problem, unless his sufficiently small. 

Next consider the ILM method with Gregory quadrature for the lag 

* * term. The choice of {p ,cr} depends on the matrix J defined in (2.14). 

The eigenvalues are given by (2.15) that is 
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Thus, for O ~ t < 5/2 there are two purely imaginary eigenvalues the 

modulus of which decreases from~ 8.17 until 0., and fort,. 5/2 there is 

one positive and one negative eigenvalue with increasing modulus to become 

~ 6.32 at t = 4. The moderate size of these eigenvalues indicate ·that it: 

is not really crucial how {p*,o*} is chosen. The AM fonrru.Zas may be Zess 

aaaurate than expected for Zax>ge h, because.of instability at the 

beginning and end of the integration interval, whereas .. the higheP order 

BD forn1Utas may be Zess aaaurate for smaZZ h, because of instability in the 

middle of the integration interval due to the interval of instability along 

the imgginary axis. 

In table 4.1 the numbers of correct significant digits obtained at the 

point t = 4 are listed (this number is defined by - log 10 (relative 

error)). The various methods aredenotedby DQ (G ), ILM (G - AM) or 
r r p 

ILM (G - BD) where r denotes the order of the Gregory formula and p 
r P 

the order of the AM or BD formula. The results in table 4.1 confirm the 

predictions derived above). 

Table 4.1 Results for problem (4.1) 

h=l/4 h=l/8 h=l/16 h=l/4 h=l/8 h=l/16 

DQ (G2) * * 3.3 DQ (G5) * * 2.3 

ILM (G2-AM2) .6 1.1 1.2 ILM (G5-AM5) 1.1 * 4.3 

ILM (G2-BD2) 1.8 2.2 2.7 ILM (G5-Bn5) 2.5 2.2 2.6 

ILM (G2-BD5) 1 • 5 3.6 2.3 ILM (G5-BD2) 1.0 2.0 2.5 
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