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The Berry-Esseen bound for studentized U-statistics*) 

by 

R. Helmers 

ABSTRACT 

Callaert and Veraverbeke (1981) recently obtained a Berry-Esseen type 
-1 

bound of order n 2 for Studentized non degenerate U-statistics of degree 

two. The condition these authors need to obtain this order bound is the 

finiteness of the 4.Sth absolute moment of the kernel h. In this note it 

is shown that this assumption can be weakened to that of a finite (4+e)th 

absolute moment of the kernel h, for some £ > 0. Our proof resembles part 

of Helmers and van Zwet (1982) where an analogous result is obtained for 

the Student t-statistic. The present note extends this to Studentized 

U-statistics. 

KEY WORDS & PHRASES: Berry-Esseen bound, Studentized U-statistic, 

Student t-statistic, jackknifing, rate of convergence 

*)This report will be submitted for publication elsewhere, 





Let x 1, x2 , •.. , Xn, n~2 be i.i.d. random variables with common distribu­

tion function F. Let h(x,y) be a realvalued function, symmetric in its ar­

guments, and with Eh(X1,x2)= v. Define a U-statistic by 

(I) U =(2)-l L'. L'. h(X., X.) 
n . lSi<jSn 1 J 

and suppose that g(X1) = E[h(X1 , x2)- \.ijx 1] has a positive variance a!. 
Let 2 -2 n -I n 2 

S = 4(n-l)(n-2) t [(n-1) L'. h(X., X.)-U] 
n i= I j 0 _ I i J n 

J:fi 
and note that n-l S~ is the jackknife estimator of the variance of U ; . n 

i.e. 
1 the sample variance of the "pseudo-values" nU -(n-l)U 1, where 

n n-

~), 

for i=l, 2, .•. , n. 
I 14+e 2 THEOREM. If E h(X 1, x2) <00 , for some e>O, and ag > 0 then,for n• 00 

I ! -1 I _1 (2) sup P({n 2 S (U -v) Sx}) - 4>(x) = O(n 2 ) 
n n 

X 

S2 . 
n 1S 

Callaert and Veraverbeke (1981) proved the theorem for the special case 

e=½. The purpose of this note is to show that the theorem is also valid 

in its present form. Our proof will rely heavily on the proof given by 

Callaert and Veraverbeke. However, to deal with the part of their proof 

which required the full force of their 4.Sth absolute moment assumption 

we will modify their proof and employ the following lemma to obtain a 

sharper result. 

LEMMA Let 

(3) L'. h (X., X.) 
n i J 

be a U-statistic with a varying kernel hn of the form 
-I 

(4) h = a+ n S 
n 

where a and S are symmetric functions of its twoar;1wnents with Eci(X 1 ,x2)=J 

and ES(X1, x2)=0.suppose that y(X1)=E[a(x1, x2)-vlx1J has a positive 

variance a2 . If E jy (X 1) I 3 < 00 and~ for some n > O, 
Y S+n l+n 

(5) E!a(X 1 , x2)!3 < 00 , EIS(X1 , x2 )1 < 00 
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then, for n • oo 

(6) supjP ({, -l(V -v)$x}) 
x 2 n 2n 

where T = 4 n- 1cr 

- Hx) I 

n Y 

PROOF. The lemma is a simple consequence of theorem 4.1 of [2]. D 

PROOF OF THE THEOREM. As in [l] we write 
l ! 

(7) n2 (Un-v) = n2 (Un-v) -1 
2 (J s 

s 2a 
g n 

n g 

and establish a stochastic expansion for 2a s -I Using nothing more than 

X2) 14+£, 
g n 

the finiteness of Eih(X1, for some £ > 0, it is proved in [l] that 

(8) 2 -1 I -2 -I n f (X.) (J s = 1-- (J n LI + R 
g n 8 g 1.= l. n 

where the function f is given by 

(9) f(x) = 4(g2 (x)-cr2) + 8 ! 00 g(y) (h(x,y)-g(x)-g(y)) df(y) 
g -oo 

for real x and~ is a remainder term which is of order n-½(ln n)-I, except 
-1 

on a set with probability O(n :) , as n+ 00 • 

It follows directly from (7) and (8) (cf LIJ, page 197) that 
I I 

(10) P({ ln 2 (U -v) R I~ 2a n- 2 }) 
n n g 

$P({!R J ~n-½(lnn)- 1}) + P({ln½(U -v)j ~2o ln n}) = O(n-½) 
n n g 

where we have applied the lemma (with a=h and B=O) to obtain the orderbound 

in the last line. As in [I], (7), (8) and (10) together imply that it suf­

fices now to establish a Berry-Esseen bound for 

-1 - I 1 I -2 - I n 
( I I) W = 2 o n 2 (U -v) (1-8" o n . E f (X. ) ) 

n g n g 1 _ 11.= 1 1. 
instead of obtaining such a bound for n 2 Sn (Un-v). 

By slightly modifying the decomposition of W employed in CI] we write 
n 

(12) W = W I + W 2 n n n 
_1 

where 2o r. 2 W 1+v 1.s a U-statistic with varying kernel h of the form 
g n n 

-I V (cf(3)) with h = a+ n B where a and B are given by 
n n 

1 -2 
(13) a(x,y) = h(x,y) - ~ og (g(x) f(y) + g(y) f(x) ) 
and 

1 -2 
(14) B(x,y) =- -8 0 g ((h(x,y)-v) (f(x)+ f(y)) - 2(g(x) f(y) + g(y)f(x))-2µ) 

with µ = f g (x) f (x) d F (x) and where W 2 is a remainder term satisfying 
-oo n 



-1 
E W ~ = O(n 2 ) and n ... 

(15) P({ 1-W -EW ,~ n-½}1-) = 
n2 n2 

We note in passing that Wnl and wn2 are precisely equal to the terms 

! * 
n2 U + Znl - EZnl + zn2 and EZnl + zn3 in [1] which together form the 
lo n 

g 
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decomposition of W employed in that paper. The orderbound (15) was proved 
n 4 

in [1] requiring o! > 0 and the finiteness of Eh (X1, x2). Thus wn2 is 

also of negligible order of magnitude under our present assumptions. It re­
-• mains to consider W 1• The statistic 2cr n ~ W 1 + \l is a U-statistic of the form n g n 

V ( cf (3)) with varying kernel h = a. + n - IS where a. and S are given by 
n n 

(13) and (14) and satisfy the requirements Ea.(X1, x2)=v and ES(X1, x2) =O. 

It follows that, if the assumptions of the lemma are satisfied, we have 

the Berry-Esseen bound 

(16) sup IP({W 1 ~x}) -
X n 

Hx) I = 
-1 

O(n 2 ). 

To check the assumptions needed for (16) we note first that in this case 

y (X1 )=E [a.(X1, x2)- v lx1 J = E[h(X1, x2) - v lx1 J = g(X1) and an applica­

tion of Jensen's inequality for conditional expectations yields 

Elg(X1)1 3 ~Elh(X1, X2)-vl 3 <m, so that the assumptions o~>O and 

EI Y(X1) 13 <m of the lemma are clearly satisfied. Secondly we verify assump­

tion ( Y) of the lemma. By the independence of x 1 and x2, the er-inequality, 

and the relations (13) and (14) we see that it suffices to show that the 
5 

(:f + n)th absolute moments of h(X1, x2), g(X1) and f(X1) and the (l+n) th 

absolute moment of h(X1, x2). f (X1) are all finite, for some n > O. In view 

of the remark following (16) we need only to consider the last two of these 

moments. Application of Schwarz inequality, the er-inequality and relation 
. 4+4n 2+2n (9) easily leads to the requirements E(g(X1)) <a,, E(h(X1, x2)) <m. 

Jensen's inequality for conditional expectations can be applied once more 

to find that we only need Eh(X1,x2) 4+4n<m to guarantee this. As n > 0 is 

arbitrary, the proof of (16) is now complete. Combining (16) with (15), the 

remark preceeding (15) and the argument leading to (11) completes the proof 

of the theorem. D 
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REMARKS 

1. The idea behind the present modification of the proof given by Callaert 

& Veraverbeke (1981) is that by applying the Berry-Esseen bound (6) to 

Wnl we implicitly use rather delicate characteristic functions methods, 

whereas in Callaert & Veni--erbeke ( 1981) crude momentbounds are employed 

to deal with pa_:rt of Wnl. As a consequence it is possible to relax their 

4.5th absolute momentassumption - which Callaert & Veraverbeke (1981) 

really need only in their treatment of the wn1-term - to that of a 

finite (4+e::)th absolute moment for the kernel h, for some E > O. 
! -1 

2. If we take h(x,y) = ½(x+y) the statistic n 2 S (U -v) reduces to the one-
n n 

sample Student t-statistic. For this very special case the theorem was 

proved in Helmers and van Zwet (1982) in a similar fashion. Note, however, 

that in this case Wnl simplifies, whereas wn2 becomes even non ra~dom 

so that relation (15) is superfluous.Thetheoremyields the rate n- 2 for 

the accuracy of the normal approximation for Student's t, provided 

I I 4+E: O<E x1 < 00 , for some E > 0, whereas Callaert and Veraverbeke ( 1981) 

need a finite anrl positive 4.5th absolute moment for F to prove this. 
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