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Asymptotic analysis of a queueing system with a two-dimensional state space*) 

by 

J.P.C. Blanc 

ABSTRACT 

The asymptotic behaviour on the long run of a queueing system 

with two types of customers, a Poissonian arrival stream, paired 

services and a general service time distribution is considered. 

The generating function of the time-dependent joint queue length 

distribution can be obtained with the aid of the theory of bound­

ary value problems for regular functions and of the theory of 

conformal mappings of the unit disk onto a given domain. In the 

asymptotic analysis of this generating function an extensive use 

is made of theorems on the boundary behaviour of conformal 

mappings. 

KEY WORDS & PHRASES: asymptotia be"haviour, queueing system, two-dimensional 

state spaae, paired serviae, aonformal mapping 

*) Th{s report will be submitted for publication elsewhere. 





I. Introduction 

The asymptotic behaviour of queueing systems with a one-dimensional 

state space has been extensively studied in the past, see e.g. [2], 

§III.7.3. In the performance analysis of computer networks the study of 

queueing models with a two-dimensional state space, especially of their 

transient behaviour, is of great importance. The analysis of such queueing 

processes often leads to the problem of solving a functional equation for a 

bivariate generating function of a probability distribution. Until recently 

the analysis of the asymptotic behaviour of queueing systems with a two­

(or more) dimensional state space was not possible because of the lack of 

analytical tools, which are powerful enough for the solution of these 

functional equations. However, during the last few years a method has been 

developed for the solution of an important class of these functional equa­

tions with the aid of the theory of boundary value problems for regular 

functions and by using the conformal mapping of the unit disk onto a given 

domain, see [5],[3]. In these papers only stationary distributions are con­

sidered. The aim of this paper is to provide a first step in the asymptotic 

analysis of queueing processes with a two-dimensional state space to which 

the above mentioned method of analysis is applicable. 

For this purpose a relatively simple model, related to the model studied in 

[3], see also [4], has been chosen; see §2 for its description. First the 

derivation of the generating function of the time-dependent queue length 

distribution will be sketched. Then this paper is concerned with the 

question on which conditions the process is ergodic, null-recurrent, or 

transient. The answer to this question is not always obvious, see e.g. the 

ergodic conditions in [5]. The relaxation time, a mesure for the speed at 
• 

which the stationary distribution is approached, for queueing systems with 

a two-dimensional state space is still a topic of further research. 
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2. The model, definitions 

The following queueing model will be considered. Customers arrive at a 

single service facility according to a Poisson process with mean inter­

arrival time a. With equal probabilities an arriving customer is of type 

or of type 2. An arriving customer who finds the system empty is immediate­

ly taken into service; otherwise he joins queue I or 2 depending on his 

type. As soon as a service has been completed, a new service is started if 

any customers are present. In general a couple of two customers of different 

type is simultaneously served. If after the completion of a service only 

customers of one type are present, a customer of this type is individually 

served. In each queue customers are served in order of their arrival. 

Successive service times are independent random variables with a connnon dis­

tribution function B(t), for paired services as well as for individual ser-

vices. 

Let y.(t), t ~ O, j =1,2, be the number of type j customers present in 
-J 

the system at time t, and let y. (0) = O. Our aim is to study the time­
-J 

dependent behaviour of the process {(y 1(t),x_2 (t)),t ~ O}, especially its 

asymptotic behaviour as t + 00 • 

In [I] the process {(x_
1

(t),x_
2
(t)),t ~ O} has been studied with the aid 

of two supplementary variables. Here we shall use another approach. It 

should be noted that the model that we consider is related to the M/G/1 

model. Therefore, in order to obtain the distribution of the process 

{(x_
1 
(t),y2(t)),t ~ O} first the imbedded process at departure instants will 

be analysed, and then the continuous time distribution will be derived with 

the aid of renewal functions, in analogy with the analysis of the M/G/1 

th model, cf. [2], §II.4.3. Denote by d , n=O,I, •• , then departure instant 
-n ,, 

and by x . (n) , n = 0, l , •• , 
-J 

. h h th int e system at ten 

j = 1,2, the number of type j customers left behind 

departure instant. Because it was assumed that the 
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process starts at t = 0 with an empty system, we take ~ = 0, !.l (0) = x2 (0) = 0. 

It is readily seen that the process { (!_1 (n) ,x2 (n) ,~)n = 0, 1, •• } is an im­

bedded Markov chain which is irreducible and aperiodic. This Markov chain 

will be studied in the next section. 

For the analysis of the queueing system the following functions and 

quantities are defined: for Ir I < 1, IP 1 I ::;; I, IP2 I ::;; 1, Re P ~ 0, 

(I) 
00 !.1 (n) !.2(n) -pd 

4>(r;pl ,P2,P) 
n 

E{pl 
-n 

:= I: r P2 e } , 
n=0 

(2) 
00 X.1 (t) Yz(t) 

'¥(p;pl ,p2) := f -pt 
E{pl dt; e P2 } 

0 
00 

(3) f e-st S(s) := d B(t), Res~ 0; 
0 

00 

(4) B := f tk d B(t), 
k 0 

k=l,2, •• ; 

(5) a := 8
1 
/a. 

It is assumed that e3 < 00 (see the remark in §6). 

3. The imbedded Markov chain 

For the transform (1) the following functional equation can be derived 

in a similar way as in [2], §II.4.3, for the M/G/1 queueing system: for 

[ 
( l-½p1-½P2)] ( · I-½p1-½P2) 

(6) P1P2 -rS\p + a <P(r;p1,P2,P) = P1P2 + r SP+ a x 

P1P2 
x [(p2-l)Hr;p 1,0,p) + (p 1-I)<I>(r;0,p2 ,p) + (I-p 1-p2 + l+ap)<I>(r;0,0,p)]. 

In the soZution of this funationaZ equation given below it is assumed that 

r and p are real, 0 < r < I, p ~ o. 

The functional equation (6) can be reduced by considering zeros (p 1,p2) of 

the kernel 
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(7) ( 
1-lp -lp) 2 1 2 2 

Pl Pz - r 13 p + a. , 

inside the region IP11 ~ I, jp2 j ~ 1, where the generating function (1) is 

finite. In fact, we choose p1 = w, p2 = ;, and w in the set 

(8) L(r;p) :={w; lwl < 1, lwl2=r13(p+l-Rew)}; 
a. 

then equation (6) reduces to: for w E L(r;p), 

(9) ~(r;w,O,p) + ~(r;O,;,p) = __ 1 __ + ( 1 
1-w 1-w jl-wl

2 
lwl

2 
a.p] 

2 -1-- ~(r;O,O,p). I 1-w I +a.p 

From the properties of the Laplace-Stieltjes transform (3) it is easily de­

rived that L(r;p) 1s a contour (i.e. it does not intersect itself) which 

has the real axis as an axis of synnnetry. 

Next, the conformal mapping g(r;p;z) of the unit disk lzl < 1 onto the 

domain L+(r;p), the interior of the contour L(r;p), is introduced. This 

conformal mapping is uniquely determined by the conditions (cf. [7], vol. 

III, theorem 1.2,1.3): 

(10) g(r;p;O) = O, a~ g(r;p;z) lz=O > O. 

By [7], vol.III,§8, theorem 2.24, the conformal mapping g(r;p;z) is con­

tinuous in lzl ~ 1, and maps the unit circle lzl = 1 one-to-one onto the 

contour L(r;p). Moreover, the synnnetry of the contour L(r;p) leads to the 

property: for lzl ~ 1, 

(11) g(r;p;z) = g(r;p;z). 

By inserting w=g(r;p;t), ltl = 1, so that w 

from (9) the equation: for ltl = 1, 

1 
= g(r;p;t) by (11), we obtain 



(12) l(r;g(r;p;t),O,p) l(r;O,g(r;p;l/t),p) = 
I - g(r;p;t) + 1 - g(r;p;I/t) 

= ___ I --- + [1 -_I g_(_r-; p ___ ;_t)~l_2_ ~ l 2 2 I j l(r;O,O,p). 
II-g(r;p;t) I jI-g(r;p;t) I +ap 

+ Because L (r;p) c {w; lwl < I}, the first term at the lefthand side of (12) 

is regular for ltl < I, the second term for ltl >I.Relation (12) forms 

the boundary condition of a coupling problem (or Hilbert problem), cf. [8], 

§37. It is easily solved by applying the operator 

(13) I 
21ri f 

C 
.... dt 

t-z' C := {t; ltl = l}, 

on both sides of equation (II), for lzl < I as well as for lzl >I.The 

last unknown l(r;O,O,p) is obtained by taking z = 0: 

I f----~dt 
21ri I 

1
2 T C 1-g(r;p;t) 

(I 4) I (r; 0, 0, p) = ------'--""=----------'-----2-- • 
ap I f lg(r;p;t) I dt 

+ I +ap 21ri C I 12 t 1-g(r;p;t) 

By introducing the inverse conformal mapping of g(r;p;z) the functions 

l(r;p 1,0,p) and l(r;O,p2,p) are obtained. Substitution of these functions 

and of (14) in the functional equation (6) leads to an expression for the 

generating function l(r;p
1
,p

2
,p). This expression is deleted here because 

of its length (see [I], chapter III). 

4. The continuous time process 

5 

By using a similar relation as [2], formula (II.4.45), between the dis­

tribution of (y1(t),1,2 (t)), t 2:: O, and that of (!_1(n),x2(n),~), n=O,I, •• , 

we obtain the following relation between the generating functions (I) and 
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(15) 
a. ( l-½P1-½P2) 

'¥(p;p 1 ,p2) = -1- 8 P +----. qi(I ;O,O,p) + +a.p a. 

- ( + l-½p1-½P2) 
8_P d. _ 

+ a. --------- !l>(I ;pl ,P2,p) • 
a.p + I - lo - lo 

2. 1 2. 2 

This determines the function '¥(p;p 1,p2). In particular, (15) leads with 

(14) to: for real p, p > O, 

(16) 

a. I dt 
21ri f 2 t 

C lt-g(r;p;t)j '¥(p;O,O) = ____ __. __________ ..__~2:----

l + a.p + ~ f lg(r;p;t) I dt 
21ri I 

1
2 t C I -g ( r ; p ; t) 

In the next sections the asymptotic behaviour of the process {(y1(t),y2(t)), 

t ~ O} as t -+ 00 will be studied. Similarly as_ for the M/G/1 queueing system 

it can be proved with the key renewal theorem, cf. [2], p.102, p.246, that 

the limits 

lim Pr{x_
1 
(t) =k

1
, x_

2
(t) =k

2
}, 

t-+oo 
k 1 =O,I, •• , k 2 =O,I, •• , 

exist. Hence, the generating function of this limiting distribution as 

t -+ 00 can be obtained from '¥(p;p 1 ,p2) with the aid of an Ab_elian theorem; 

in particular we have 

(17) I/Jo := lim Pr{y
1 
(t) = O, y

2
(t) = O} = 

t-+<>o 
limp '¥(p;O,O). 
p,1,0 

Before we start with the investigation of this limit we introduce for real 

p, p > O, the abbreviations 

(18) y(p;z) := g(I;p;z), I z I s; I; A(p) := L(l ;p). 

,. 
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5. Asymptotic analysis 

In this section the limit (17) will be investigated. First we note that, 

cf. [l], p.225, for p > 0, 

2 
1 f jy(p;t)j dt =-1-J l dt 

21ri C I 1-y(p;t) 12 t 21ri C I 1-y(p;t) ,2 t - 1, 

so that (16) can be rewritten as, cf. (18), for p > 0, 

(19) 

2~i f l ,2 d: 
C I 1-y(p; t) l(p;0,0) = ____ _....,.._._:.,..; _____ _,_ __ • 

+ ctp I ------- dt 
21ri C I 1-y (p; t) I 2 t 

Hence, in order to obtain the limit (17) we have to determine 

(20) 1 . ctp f 1 dt . 
1.m P° l t • 

p~0 1r1. C {I-y(p;t)}{l-y(p;t)} 

For the determination of this limit we shall first investigate the 

behaviour of the contour A(p) and of the conformal mapping y(p;z), cf. (18), 

asp~ 0. In order to obtain a parametric equation for the contour A(p) it 

is proved: 

Lemma I. For p > 03 u ~ 13 and for p ~ 03 u < 13 the equation 

has exactly one root a = a (p ;u) on the real intewal O < a < I. This root 

a(p;u) is an infinitely differentiable function of p and u3 with 

(22) 

(23) 

a 
apa(p;u) < 0, p > O, u ~ I. 

<J(u) := lim a(p;u) 1= l, 
p~0 E(0,l), 

if u = 1, a~ 2, 

otheruise; 
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3 - a 
(24) cr'(I) = 2~a' a" ( 1 ) 

2 2 
2Bia. + a 

= 2 --------, 
(2 - a) 3 

if a < 2, 

(25) u t 1, if a = 2. 

Proof. With Rouche's theorem, cf. [7], vol.II,§7, theorem 2.4, it is 

readily proved that for p > O, u ~ 1, as well as for p ~ O, u < 1, equation 

(21) has exactly two roots in the unit disk lcrl < 1. From the properties of 

the Laplace-Stieltjes transform 8(s) it follows then that these roots are 

real, and that one of them is positive, the other one negative. Hence, for 

p > O, u ~ 1, and for p ~ O, u < 1, the positive root cr(p;u) of (21) is a 

simple root, so that the stated differentiability follows from the implicit 

function theorem and the regularity of 8(s), Res> O. 

Differentiation of (21) as function of p gives 

(26) 
0 , 1-ucr(p;u) 
µ p +--__,.;;...:..........;.. a a - a (p • u) = ____ ....._ _____ ...._-_..,.. 

op ' + _u O , P + 1- u cr (p; u) 2o(p;u) µ 
a a 

p > O, u ~ 1. 

Because 8'(s) < 0 for reals, s > 0, the above derivative clearly is 

negative for u ~ O, p > O. But then this derivative must be negative for 

u ~ 1, p > O, because the denominator in (26) is continuous and non­

vanishing for p > O, u ~ I, since the root cr(p;u) is simple. 

In the case p = O, u =l, comparison of the derivatives of the functions cr2 

and 8((1-cr)/a.) at cr = proves that the smallest positive root of (21) is 

smaller than one if a> 2, and that it is equal to one if a~ 2. In the 

case a< 2 the root cr(I) = 1 of (21) is simple, and cr'(l), cr11 (1), can be 

found by repeated differentiation of (21) as function of u, for p = O. In 

the case a= 2 the root cr(l) = l of (21) is a double root; the expansion 

(25) can be derived from (21) by using the assumption e,
3 

< 00 (see §2). D 



With the aid of the function o(p;u) the contour A(p) can be described as, 

cf. (I 8), (21), for p > 0, 

(27) A(p) = {w; w = o(p;cos 8) 
ie 

e , -,r:=,;9:=,;,r}. 

Asp, p > 0, decreases to zero the contour A(p) expands, cf. (22), to the 

contour A, 

(28) A := {w; w = o(cos 8) 
ie 

e e :;;; ,r}. 

Lemma 2. The contour A(p), p > 0, has a tangent at every point. The 

contour A has a tangent at eve-py point, except in the ease a= 2 at the 

point w = l; it has then at w =la corner point with inner angle w1r, 

(29) w,r = 2 arc tan /2 (3 / (3~ - 1 , ½ :;;; w < l. 

Proof. In a similar way as in the proof of lemma l, cf. (26), it follows 

by differentiation of (21) as function of u,that 

(30) a 
au o(p;u) > o, p>0,u:;;;l; a: o(u) > o, u < l. 

Because the smallest positive root of equation (21) is simple except in the 

case a= 2 for p = 0, u = 1, cf. the proof of lemma l, it follows from (27) 

and (28) that the contours A(p), p > 0, and A possess a tangent at every 

point, with the possible exception for A at the point w = I when a= 2. In 

the case a= 2 it is obtained from (25) that 

1· d 1· d 2 -· (3 l) 1.m de cos e cr(cos e) = - im - cos e o(cos e) = {2B/B1 
- l} 'i, 

e+o e-i.o de 

1· d sine o(cos 0) 1 · d sin a o(cos e) l • 1.m de = 1.m de = 
840 e+o 

9 

Hence; the lefthand and righthand tangents at w = 1 (0 = 0) have different 

2 
directions, with an inner angle given by (29). In general, B2 ~ s1, so that 

D 
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Next we introduce the conformal mapping y(z) of the unit disk lzl < I onto 

the interior A+ of the contour A, satisfying y(O) = O, y'(O) > O, cf. (IO). 

Because the contours A(p) expand continuously to the contour A asp de­

creases to zero, cf. (22), (27), it follows with Caratheodory's mapping 

theorem, cf. [7], vol.III, §4, theorem 2.1, that 

(32) lim y(p;z) = y(z), 
p-1-0 

uniformly for lzl < l; because y(p;z), p > O, and y(z) are continuous for 

lzl ~ I, cf. §3, this limit also holds for JzJ = 1. 

CoroZZary I. In the case a> 2 the Zimit (20) vanishes. 

Proof. As noted above, y(p;t),.t EC, tends to a point on A asp+ O. 

From lemma 1, cf. (23), and (28) it is clear that i A in the case a> 2, 

so that in this case the integrand, and hence also the integral, in (20) 

remains finite asp+ O. D 

In the case a~ 2 the integrand in (20) tends to infinity at t = I as 

p + O, but only at t = I, cf. (23). 

Lemma 3. For p > 0 the derivative a~ y(p;z) is continuous and non­

vanishing for Jzl ~ 1. The derivative y 1 (z) is continuous and non-vanish­

ing for JzJ ~ I, except in the case a= 2 at z = I. 

In the case a< 2, for every o, 0 < o < 1, 

(33) 
2-0 

y(z) =I+ (z-l) -y'(I) + O(JI-zl ), 

in the case a= 2 there exist positive constants N
1
, N

2
, such that 

(34) I z I ~ I. 
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Proof. First consider the case a< 2. Lets= s(e) denote the arc length 

of A at the point w = o(cos e)eie counted from the point w = -a( ...:I), cf. 

(28), then for -TI$ e $ TI, 

(35) s (e-) = 
8 Ii 2 2 2 f [o(cos ~)] +sin~ [o'(cos ~)] d~. 

-TI 

Further, let w = w(s) be the parametric equation of A with its arc length 

as parameter, so that for -TI$ e $ TI, 

(36) ie w(s(e)) = o(cos e) e 

ie d~ w(s(e)) = w'(s(8)) s'(e) = [i o(cos 8) - sine o'(cos 8)] e , 

so that 

(37) 
i o(cos e) "'." sine o'(Gos e) ie 

w' (s (8)) = --------------- e • 

/[o(cos 8)] 2 + sin2e [o'(cos 8)] 2 

The denominator in (37) is non-vanishing on [-TI,TI], because, cf. (30), (23), 

o(cos e) ~ o(-1) > 0 for -TI$ e $TI.Further, the second derivative of 

o(cos e) is continuous on [-TI,TI] by lemma I, if a< 2. This proves that 

there exists a constant such that for every e 1, e2, -TI$ e
1 

$ e
2 

$ TI, 

(38) . 

Moreover, it follows from (35) and (30), that for -TI$ e1 $ e2 $ n, 

Together, (38) and (39) prove that there exists a constant such that for 

By Kellogg's theorem, cf. [IO], theorem IX.7, it follows from (40) that 

y'(z) exists and is non-vanishing for lzl $ I, and that for every o, 
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O < o < I, there exists a constant such that for every e1 , e2 , 

-~ ~ 01 ~ 02 ~ ~, 

By a theorem of Hardy and Littlewood, cf. [6], §IX.5, Satz 4, it then 

follows that for every z, lzl ~ I, 

(42) ly'(z) - y'(I)I < const. II-zl
1
-

0
• 

This inequality implies (33). 

a A similar argument shows that az y(p;z), p > O, exists and does not vanish 

for lzl ~ I, for every value of a. 

Next consider the case a= 2. By lennna 2 the contour A has a corner point 

at w = I with inner angle w~, cf. (29). Therefore, we introduce the 

mapping, regular in ~\[l, 00), 

(43) 1/w ~(w) = I - (1-w) , ~(O) = O. 

The function ~(w) maps the domain A+ conformally onto a domain X+, and it 

maps the contour A onto a contour X which is the boundary of X+, and which 

has a parametric equation given by 

(44) ie I /w - (I - cr(cos 0)e ) , 

Let~= x(e) denote the arc length of X at the corresponding point~ given 

by (44), counted from the point where 0 =-~;and let v(x) be the para­

metric equation of X with its arc length as parameter. In a similar way as 

before, cf. (37), it is obtained that for-~~ 0 ~ ~, 

(45) vl(x(0)) 

. .!....1 
[1-cr(cos 0)e16 ]w [io(cos 0) - sine o' (cos 0)] ie = -------------. -1--.-.-.-.--.-.-.-.-...... ---.-.-.-.-.-.-.--.-.-.-.-.-.-- e • 

I 1-cr(cos 
--1 

0)ei01w 



From (25) it is readily derived that 

(46) e -+ o. 

From (45) and (46) it follows by straightforward calculation that 

(47) lim v' (x(e)) = 
e+o 

lim v'(x(8)) = i. 
8-1-0 

13 

This implies that the contour X has a tangent at~= I, and hence by lemma 

2 and the properties of the mapping ~(w), cf. (43), at every point. 

Further, it follows from (45) and (46) that fore -1- 0 and fore t O, 

v'(x(e)) = i + o(lel). 

This leads to the inequality: for every e
1

, e2, -TI~ e
1 

~ e2 ~ TI, 

From (44) it follows that 

(49) 
l-1 

x'(e) = o(lelw ), e -+ o, 

so that, by using [8], §5, for every e 1, e2, -TI~ e1 ~ e2 ~ n, 

Together, (48) and (SO) imply that for every x 1, x2, 0 ~ x 1 ~ x2 ~ x0 (x0 

is the length of X), cf. (40), 

Now let f(z) be the conformal mapping of the unit disk lzl < I onto the 

domain X+ with f(O) = O, f'(O) > O. Then again by Kellogg's theorem it 

follo;s that f'(z) exists and is non-vanishing in lzl ~I, and that for 
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lf '(eie1) - f'(eie2)I le e lw < const. 1 - 2 • 

As in the case a< 2, cf. (42), this leads to: for lzl ~ 1, 

(52) f(z) = l + (z-1) f'(l) + O(ll-zl 1+w), z + l. 

By using the inverse mapping of (43) and the uniqueness theorem for con­

formal mapping, cf. [7], vol.III, §2, theorem 1.3, we have 

(53) y(z) = l - (1 -f(z)]w, I z I ~ l, 

so that (52) leads to: for lzl ~ 1, 

(54) z + l. 

Because ½ ~ w < l, cf. lemma 2, (54) proves (34). The existence of y' (z) / 0 

for I z I = l, z "f l, follows from (53) and the existence of f' (z) / 0 for 

lzl=l. D 

With the aid of the foregoing lemmas we are able to prove the following 

theorems on the limit (20). 

Theorem 1. In the case a> 2 the limit 

(55) lim I l f 1 d t I 
21ri l t ' p-tO C {l -y(p;t)}{l -y(p;t)} 

is finite; in the case a= 2 this limit is infinite. 

Proof. See for the case a> 2 the proof of corollary 1. Consider the 

case a= 2. Let£ be a constant, 0 < £ < ¼1r, and write the integral in (55) 

as follows: 

l 
21T-£ de l £ de (56) (, - f +- f 21T ·e 2 21T ·e 2 . 

£ I l - Y (p; e 1. ) I -£ I l -y(p;e1 
) I 



Because y(p;t) • o(p;l), cf. (10),(11),(27), it follows from lemma 1 and 

(32) that y(p;t) + 1 (p "'0) if and only if t • t. Hence, the first inte­

gral in (56) remains finite asp"' o. Now consider the second integral in 

(56), From lemma 3 it follows that there exists a constant M (independent 

of p), such that for p > 0 and -& ~ e ~ t, 

(57) ie 1 
ly(p;l) ... y(p;e ) I < M lei 11. 

This implies the inequality: for p > 0, -& ~ e ~ t, 

15 

This inequality leads to the following lower bound for the second integral 

in (56): fore and M independent of p, p > O, 

(59) 

4 M~ • ::i [log{l -y(p;l) +M~} - log{l -y(p;l)} .. -----]. 
M l .. y (p; 1) + M~ 

Because e and Mare positive and because y(p;l) + 1 asp"' 0 9 it is obvious 

that this lower bound tends to infinity asp"' 0. This proves the assertion 

in the case a• 2. 

(60) lim ap J 1 I ~ • 0' 
p-1-0 m c {1 -y(p;t>Ht -y(p;'t>} t • L~-L~ 

ay'TiT' 

i.f a illi! 2, 

i.f a < 2. 

D 

PPoof. First let a• 2. Again we split up the integral as in (56). As 

noted in theorem 1 the first integral in (56) remains finite asp"' O, so 
,. . 

that multiplied by a.p it vanishes as p "'o. From (34) it follows that for 

0 < t < ¼ff and for 9 say, 0 < p < l, there exists a constant K such that 
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for -e::;; 8::;; £, 

(6 I) 
• 8 

lr(p;I) - y(p;ei )I > K Isl. 

Because the point w = y(p;l) = cr(p;l) is the point on A(p) with the largest 

absolute value, cf. (27),(30), the angle which the line joining the points 

i8 y(p;l) and y(p;e ) makes with the positive direction on the real axis is 

obtuse, so that the cosine rule implies that for p > 0, -e::;; 8::;; e, 

(62) 
·e 2 ·e 2 11 - y(p;ei) I~ 11 - y(p;l)I + lr(p;I) - y(p;ei )I • 

From (61),(62), the following upper bound for the second integral in (56) 

is obtained: for O < p < I, 

(63) 
8 d8 
f is 2::;; 

-ejl-y(p;e )j 

8 d8 f ----2,-..· -~2 -,-2 = 
-e {1 - y (p; 1)} + K 8 

In a similar way as (25) it can be found that in the case a= 2, 

(64) y(p;I) = o(p;I) = I - + O(p), p ,I, o. 

Consequently, 

(65) lim P = O; 
p,1,0 I - y (p; I) 

. [ 8K ]18=£ !~~ arctan 1 -y(p; I) S=.:_£ = 1r. 

Hence, the upper bound for the second integral in (56) given in (63), 

multiplied by p, tends to zero asp ,1, O. This proves the assertion for 

a= 2. 

Next coFsider the case a< 2. Because for p > 0 the function cr(p;u) is an 

infinitely differentiable function of u, u::;; I, cf. lemma I, A(p) is an 

analytic contour, cf. [9], p.186. This implies that the conformal mapping 
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y(p;z) is regular on the boundary lzl = 1, cf. [9], p.186, so that it can 

be continued analytically into (a part of) the region lzl >I.Further, 

because by lemma 3 the derivative a~ y(p;z) is non-vanishing at z = I, and 

since y(p;l) t I asp+ O, it follows (see [I], section II.5 for a more 

rigorous proof) that for p close to zero there exists a t
0

(p) > I such that 

(66) 

With this t
0

(p) we write for p close to zero, 

(67) f 1 dt f K(p; t) 1 dt 

I 1
2 t = C { t - to (p) }{ t to (p) - I } t ' 

here 

(68) 

C 1 -y(p; t) 

K(p; t) 
t - t

0 
(p) t t 0 (p) - 1 

:= I -y(p;t) 1 -y(p;l/t)" 

From (66) it follows by differentiation and by using y(p;I) = o(p;l) and 

(26), that 

(69) 

Hence, 

d I 81 
lim d y (p; 1) /y' ( 1) = 2 -a Y, (I)• 
p+O P 

(70) lim K(p;I) = -{y'(l)}-2• 
p+O 

Moreover, it follows from (33) and the fact that for p > 0 the conformal 

mapping y(p;z) is regular at z = I, that for every o, 0 < o < I, there 

exists a constant such that for ltl = 1 and p close to zero, 

(71) IK(p;t) - K(p;l)I < const. It-I 1°. 

This implies that by splitting up the second integral in (67) as 

" 

(72) I [I K(p;t) 
1 dt f K(p;t) 

to(p) 
dt] --2 t t , 

t 0 (p) - 1 C t - t 0 (p) C t t 0 (p) - 1 
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we may apply on both integrals an extended version of the Sochozki-Plemelj 

formulas (cf. [8], §16, [l], lemma I.3.6), which leads to 

limp f K(p;t) 
I dt 

- ½ K(0; I) 
l dt 

(73) t-t
0

(p) -= + p I K(0;t) t=-7, 
p+0 n C t 1r1 C 

limp f K(p;t) 
to(p) 

dt =lK(0·l) I dt 
tt

0
(p)- +pf K(0;t) t:=t· p+0 1ri C 

t 2 , 
,r1 C 

Finally, by using, cf. (69), that 

(74) 
(2 - a) y' (I) = ----=-2a ___ ' 

the assertion for a< 2 follows from (67),(72),(73) and (70). • 

6. Asymptotic behaviour of the queueing process 

With the aid of the analysis of the preceding section we are able to 

formulate the main theorem on the ergodic properties of the queueing system. 

Theorem 3. The queueing system with two types of customers and paired 

services described in section 2 is transient if a> 2, it consists of nuZZ 

states if a= 2, and it is ergodic if a< 2. Further, 

(75) $
0 

= lim Pr{z.1(t) = 0, y2(t) 
t~ 

= = I - ½a 
O} I - ½a+ ay'(I)' if a < 2. 

Proof. For the queueing process defined in section 2 the state space 

{0, I ,2, •• } x {0, 1,2, •• } is irreducible, and the process is aperiodic. 

From theorem l, (19) and (2), it follows that in the case a> 2, 

00 

f Pr{y1(t) = 0, z.2(t) = 0} dt < 00
, 

0 

so that in this case the queueing process is transient. 

In the case a= 2 we have by theorem l: 



00 

f Pr{yl(t) = o, I.2(t) = 0} dt = oo. 

0 

However, from theorem 2, (17) and (19) we obtain in this case 

lim Pr{y1 (t) = 0, I_2 (t) = 0} = 0. 
t~ 
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Hence, in the case a= 2 the queueing system consists of null states. 

Finally, in the case a< 2 theorem 2 leads with (17) and (19) to (75), thus 

showing that the process is ergodic. • 

Remark. The above result has been proved here under the assumption that 

s3 < 00 • Theorem 3 also holds without this assumption, but the proof becomes 

more tedious. Because the expansion (25) is not valid if s
3 

= 00 , more gen­

eral theorems than Kellogg's theorem have to be applied in order to prove 

the inequalities (34), cf. [I], theorem II.8.2, [10], chapter IX, part I. D 

With the same technique as applied in the proof of theorem 2 also the 

generating function of the limiting distribution ·of the process {(y
1
(t), 

I,2(t)),t ~ O} as t + oo can be obtained in the ergodic case from the function 

W(p;p
1
,p

2
), cf. (2),(15). We only state here the result: if a< 2, for 

IP 1 I ~ 1, IP2 1 ~ 1, 

(76) 

(I-pl) (I-p2) 

+ I -fol -½p2 

I - Yo(pl) Yo<P2) 1 
{I -yo(pl)Hl .,;.Yo<P2)}J' 

here $
0 

is given by (75) and y0 (w) stands for the inverse conformal mapping 

+ of y(z), which is first defined for w € A u A, and then continued analytic-

ally to the region lwl ~I.For the first moments of the process we find: 

(77) lim E{y.(t)} = !a[1 + 
t~ -J 

j = 1,2. 
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The queueing model as described in §2 can be generalized by the assump­

tion that an arriving customer is with probability c. of type j, j = 1,2, 
J 

c 1 + c 2 =I. For this case a similar theorem as theorem 3 can be proved. In 

fact, the analysis becomes simpler when c 1 I½, because the first term in 

the asymptotic expansion of ~(p;O,O) at p = 0 depends only on the Laplace­

Stieltjes transform of a busy period in an M/G/1 system. The result is that 

in the general case the system is ergodic if and only if max{c1,c2}a < I, 

cf. [I], theorem II.8.5. 

An interesting subject for further research is the relaxation time for 

this type of queueing systems with a two-dimensional state space. The re­

laxation time is a measure for the speed at which Pr{y1(t) = O, z2(t) = O} 

tends to its limiting value as t + 00 , cf. [2], §III.7.3. 
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