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Asymptotic analysis of a queueing system with a two-dimensional state space
by

J.P.C. Blanc

ABSTRACT

The asymptotic behaviour on the long run of a queueing system
with two types of customers, a Poissonian arrival stream; paired
services and a general service time distribution is considered.
The generating function of the time-dependent joint queue length
distribution can be obtained with the aid of the theory of bound-
ary value problems for regular functions and of the theory of
conformal mappings of the unit disk onto a given domain. In the
asymptotic analysis of this generating function an extensive use
is made of theorems on the boundary behaviour of conformal

mappings.
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1, Introduction

The asymptotic behaviour of queueing systems with a one—-dimensional
state space has been extensively studied in the past, see e.g. [2],
§11I1.7.3. In the performance analysis of computer networks the study of
queueing models with a two-dimensional state space, especially of their
transient behaviour,‘is of great importance, The analysis of such queueing
processes often leads to the problem of solving a functional equation for a
bivariate generating function of a probability distribution. Until recently
the analysis of the asymptotic behaviour of queueing systems with a two-
(or more) dimensional state space was not possible because of the lack of
analytical tools, which are powerful enough for the solution of these
functional equations., However, during the last few years a method has been
developed for the solution of an important ciass of these functional equa-
tions with the aid of the theory of boundary value problems for regular
functions and by using the conformal mapping of the unit disk onto a given
domain, see [5],[3]. In these papers only stationary distributions are con-
sidered. The aim of this paper is to provide a first step in the asymptotic
analysis of queueing processes with a two—dimensional state space to which
the above mentioned method of analysis is applicable,

For this purpose a relatively simple model, related to the model studied in
[3], see also [4], has been chosen; see §2 for its description, First the
derivation of the generating function of the time—dependeﬁt queue length
distribution will be sketched., Then this paper is concerned with the
question on which conditions the process is ergodic, null-recurrent, or
transient, The answer to this question is not always obvious, see e.g. the
ergodic conditions in [5]. The relaxation time, a mesure for the speed at
which ;he stationary distribution is approached, for queueing systems with

- a two-dimensional state space is still a topic of further research.



2, The model, definitions

The following queueing model will be considered. Customers arrive at a
single service facility according to a Poisson process with mean inter-
arrival time o. With equal probabilities an arriving customer is of type I
or of type 2, An arriving customer who finds the system empty is immediate—
ly taken into service; otherwise he joins queue 1 or 2 depending on his
type. As sooh as a service has been completed, a new service is started if
any.customers are present. In general a couple of two customers of different
type is simultaneously served. If after the completion of a service only
customers of one type are present, a customer of this type.is individually
served. In each queue customers are served in order of their arrival.
Successive service times are independent random variables with a common dis-
tribution function B(t), for paired services és well as for individual ser-
vices,

Let zj(t), t 20, j=1,2, be the number of type j customers present in
the system at time t, and let Zj(0)==0° Our aim is to study the time-
dependent behaviour of the process {(Z4(t)’22(t))’t 2 0}, especially its
asymptotic behaviour as t +‘W.

In [1] the process {(z](t),zz(t)),t > 0} has been studied with the aid
of two supplementary variables, Here we shall use another approach. It
should be noted that the model that we considef is related to the M/G/1
model. Therefore, in order to obtain the distribution of fhe process
{Qzl(t),zz(t)),t > 0} first the imbedded process at departure instants will
be analysed, and then the continuous time distribution will be derived with
the aid of renewal functions, in analogy with the analysis of the M/G/1
model, cf,. [2], §TII.4.3, Denote by én,’nﬁ=0,l,.., the nth departure instant
and by éﬁ(n), n=0,l,.., j=1,2, the number of type j customers left behind

s ’ t . .
in the system at the n h departure instant. Because it was assumed that the

%



process starts at t=0 with an empty system, we take 90 =0, X, (0) =3<_2(0) =0,
It is readily seen that the process {(51(n),§2(n),§n)nﬁ=0,l,..} is an im-
bedded Markov chain which is irreducible and aperiodic. This Markov chain
will be studied in the next section,

For the analysis of the queueing system the following functions and

quantities are defined: for |r]| <1, Ipll <1, lpzl £1, Re p 20,

2 x. (n) x,(n) =-pd
(1) o(r;p sPy,0) 3= X r E{pl_—] pz'—2 e M,
n=0
© y, (£ y,(t)
(2) ¥(osp5p,) 3= J e Pt E{p, : P, 2 dt;
0
(3) B(s) := [ e °F 4 B(b), Re s = 03
0
T ok
(4) B, = [ t" d B(b), k=1,2,..3
0
(5) a := B,/a.

It 18 assumed that 63 < o (gee the remark in §6).

3. The imbedded Markov chain

For the transform (1) the following functional equation can be derived
in a similar way as in [2], §II.4.3, for the M/G/I1 queueing system: for

|| < 1, ]pll <1, lpzl <1, Rep 20,

(6) [Pxpz ~rBie +—-——E-—-—)]<I>(r;p1,P2,p) = PPy T B(p +—————a————)x
PPy
x [(py=1)e(r;5p,050) + (p=1)2(r;0,py,0) + (1-p; =P, +q355) @(r;50,0,0) .

In the solution of this functional equation given below it is assumed that
r and p are real, 0 <r <1, p 20,

The functional equation (6) can be reduced by considering zeros (pl’PZ) of

the kernel



(7 PP, =T B(p +

inside the region IP1| <1, Ipzl < 1, where the generating function (1) is

finite. In fact, we choose P, =W, p2==§, and w in the set

2 1 -
(8) L(r;p) := {w; |w] <1, |w|” =1 B(p +___%§ill)};
then equation (6) reduces to: for w e L(r3p),
&(r:;w,0,0) &(r:0,w,p) 1 lez ap
(9) sWyY, + SV W, = + ] e @(r;O 0,0).
- 2 2 l+oap 2T
1 -w 1 -w ll—wi |1— l

From the properties of the Laplace-Stieltjes transform (3) it is easily de-
rived that L(r;p) is a contour (i.e. it does not intersect itself) which
has the real axis as an axis of symmetry.

Next, the conformal mapping g(r;p;z) of the unit disk |z| < | onto the
domain L+(r;p), the interior of the contour L(r;p), is introduced. This
conformal mapping is uniquely determined by the conditions (cf, [7], vol.

ITI, theorem 1,2,1,3):
3
(10) g(r;p30) = 0, =5 ersesz) |,y > 0.

By [7], vol,III,88, theorem 2,24, the conformal mapping g(rj;psz) is con~-
tinuous in |z| < 1, and maps the unit circle |z| = 1 one-to-one onto the
contour L(r;p). Moreover, the symmetry of the contour L(r;p) leads to the

property: for |z| < 1,
(11) g(r;psz) = glrsps2).

By inserting w=g(r;p;:t), ltI = 1, so that w = g(r;p;%) by (11), we obtain

from (9) the equation: for Itl =1,



o(r;g(rspit),0,p) . (r;0,g(r;p31/t),p) _

(12) 1 - glrsp3t) 1T = g(r;p;1/t)
o1 - 8303012 90 ] 4eri0.0.0).

|1-g(r30;t) |2 l1-g(r3050) |2 T+ap |

Because L+(r;p) c {w; |w| < 1}, the first term at the lefthand side of (12)
is regular for [t| < 1, the second term for |t| > 1. Relation (12) forms
the boundary condition of a coupling problem (or Hilbert problem), cf. [8],

§37, It is easily solved by applying the operator

dt

=z C := {t; |t' =1},

(13) i?lr‘fé

on both sides of equation (11), for |z| < 1 as well as for |z]| > 1, The

last unknown ®(r;0,0,p) is obtained by taking z =0:

I 1 de
21 ¢ |1-g(r;o30)|* © .
I+ Tres Zli ‘g(r;p;t)jzz £
C |1-g(r;p;t)|

(14) ¢(r;0,0,p) =

By introducing the inverse conformal mapping of g(r;p:z) the functions

@(r;pl,O,p) and ¢(r;0,p2,p) are obtained, Substitution of these functions
and of (14) in the functional equation (6) leads to an expression for the
generating function @(r;pl,pz,p). This expression is deleted here because

of its length (see [1], chapter III).

4, The continuous time process

By using a similar relation as [2], formula (I1.4.45), between the dis-—
tribution of (zl(t),zé(t)), t =2 0, and that of (El(n),zz(n),gn), n=0,1,..,
we obtain the following relation between the generating functions (1) and

&

(2): for lpll <1, lpzl <1, Re p > 0,



o 1 2p1—§P2
(1) ¥(osp,5py) = T 8p +——s—2) 0(130,0,0) +

Q(l;plspzsp)-

This determines the function ¥Y(p:p,,p,). In particular, (15) leads with
1’72

(14) to: for real p, p > 0,

2 e
. 27!'i _ . 2 t
(16) ¥(p30,0) = C |1-g(rsp;t) | i .
D+ + 20 [ |8Giese)|” de
271

C |1-g(rsp;0) | ©

In the next sections the aéymptotic behaviour of the process {(zl(t),zz(t)),
t > 0} as t » » will be studied. Similarly as for the M/G/1 queueing system
it can be proved with the key renewal theorem, cf., [2], p.102, p.246, that

the limits

lim Priy, () =k, y,(t) =k,J, k,=0,1,.., k

t->o0 I

2=0,1,.0,

exist, Hence, the generating function of this limiting distribution as

t -+ o can be obtained from W(p;p],pz) with the aid of an Abelian theorem;

in particular we have

an by = lim Priy, (t) =0, y,(£) =0} = Lim o ¥(p;0,0).
£ p+0 :

Before we start with the investigation of this limit we introduce for real

p, p > 0, the abbreviations

(18) Y(p3z) := g(l3p32), lz] < 13 ACp) := L(13p).



5., Asymptotic analysis

In this section the limit (17) will be investigated. First we note that,

ct. [1], p.225, for p > O,

1 |y(p;t)|2 de _ 1 1 dt
i 2 T 2w 2 t
™ e i-y(e3) |t T 1=y (pst) |

2

so that (16) can be rewritten as, cf. (18), for p > O,

o L e
271 2 t
C |1- ot
(19) ¥(030,0) = ——OC [1=¥(p51) | ‘
1+ 20 ! dt
271

C li—y(os)|? ¢

Hence, in order to obtain the limit (17) we have to determine

(20) lim 28 | ‘ e .

040 Z™ T {1y (s Hiy (o3P} &

For the determination of this limit we shall first investigate the
behaviour of the contour A(p) and of the conformal mapping Y(p;z), cf. (18),
as p + 0. In order to obtain a parametric equation for the contour A(p) it

is proved:

Lemma 1, For p > 0, u <1, and for p 2 0, u < 1, the equdtion

2n 02 = B(p + l—ou>,

)

has exactly one root o =c(pyu) on the real interval 0 < ¢ < 1., This root

ag(p;u) Zs an infinitely differentiable function of p and u, with

(22) %O(D;u) < 0, p>0, uc<li,
Further,
=1, ifu=1, a <2,
- (23) o(u) == lim o(p:u)

p40 (0, 1), otherwise;



282/0.2 + a2 - a3
(24) a'(1) =

’ o"(1) = 2

— s if a < 2,
2=-q (2-ja)3

(25) o(u) = 1 —/——-——%—-——-—/E+O(]'l'—ul), utl, ifa=2.
28,/8; = 1

Proof. With Rouché's theorem, cf., [7], vol.II,§7, theorem 2.4, it is
readily proved that for p > 0, u < 1, as well as for p 2 0, u < 1, equation
(21) has exactly two roots in the unit disk |o| < 1, From the properties of
the Laplace-Stieltjes transform B(s) it follows then that these roots are
real, and that one of them is positive, the other one negative. Hence, for
p >0, u<l, and for p 2 0, u < 1, the positive root o(pju) of (21) is a
simple root, so that the stated differentiability follows from the implicit
function theorem and the regularity of B8(s), Re s > 0,

Differentiation of (21) as function of p gives

I—uo(pzu)
B'(p 2
(26) 2 5(psu) = °‘

— N s p > 0, u < 1.
% 20(psu) + = B'(p p12ugtosn) ug(p’u))

Because B'(s) < 0 for real s, s > 0, the above derivative clearly is
negative for u £ 0, p > b. But then this derivative must be negative for
u<1l, p>0, because the denominator in (26) 1is continuoué and non-
vanishing for p > 0, u £ 1, since the root o(p;u) is simple.

In the case p = 0, u =1, comparison of the derivatives of the functions 02
and B((1-0)/a) at o = 1 proves that the smallest positive root of (21) is
smaller than one if g > 2, and that it is equal to one if g < 2, In the
case g < 2 the root (1) = 1 of (21) is simple, and o'(1), ¢" (1), can be
found by repeated differentiation of (21) as function of u, for p = 0. In
the case g = 2 the root o(1) = 1 of (21) is a double root; the expansion

&

(25) can be derived from (21) by ﬁsing the assumption 83 <= (gee §2). O



With the aid of the function o(p;u) the contour A(p) can be described as,

cf. (18), (21), for'p > 0,

27 A(p) = {w; w = o(p3cos 6) ele, -1 < 8

A

L
As p, p > 0, decreases to zero the contour A(p) expands, cf. (22), to the
contour A,

(28) A :={w; w = o(cos 8) ele, —1r

A
<D
IA

T}

Lemma 2. The contour A(p), p > 0, has a tangent at every point. The
contour A\ has a tangent at every point, except in the case a = 2 at the

point w = 1; it has then at w = | a corner point with inner angle wm,

(29) wr = 2 arctan v2 lesf -1, 4 L <<,

Proof, In a similar way as in the proof of lemma 1, cf. (26),it follows

by differentiation of (21) as function of u,that

(30) -é% ofpzu) > 0, p >0, u<l; -g% o(u) >0, wu=<il,

Because the smallest positive root of equation (21) is simple except in the
case g = 2 for p =0, u =1, cf.‘the proof of lemma 1, it follows from (27)
and (28) that the contours A(p), p > 0, and A possess a tangent at every

point, with the possible exception for A at the point w = 1 when a = 2, In

the case g = 2 it is obtained from (25) that

|
31 1lim é% cos 8 o(cos 6) = - 1im-é% cos 8 ofcos 9) = {262/6% -1} 2,
840 840
. d . ..od .
11m-€§ sin 8 o(cos 8) = 11m-€€,51n.6 o(cos 8) = 1,
840 640

Hence, the lefthand and righthand tangents at w = 1 (8 = 0) have different
directions, with an inner angle given by (29). In general, By 2 Bf, so that

L sw<l, . O
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Next we introduce the conformal mapping y(z) of the unit disk |z| < I onto
the interior A+ of the contour A, satisfying y(0) = 0, y'(0) > O,.cf. (10).
Because the contours A(p) expand continuously to the contour A as p de-
creases to zero, cf. (22), (27), it follows with Carath@odory's mapping
theorem, cf. [7], vol.III, §4, theorem 2.1, that
(32) lim v(p;3z) = y(2),

p+0

uniformly for |z| < 1; because y(p3;z), p > 0, and y(z) are continuous for

|z] <1, cf. §3, this limit also holds for |z| = 1.

Corollary 1. In the case a > 2 the limit (20) vanishes.

Proof. As noted above, y(pjt),.t ¢ C, tends to a point on A as p ¢ O,
From lemma 1, cf. (23), and (28) it is clear that 1 ¢ A in the case a > 2,

so that in this case the integrand, and hence also the integral, in (20)

remains finite as p ¢ O, 0

In the case a < 2 the integrand in (20) tends to infinity at t = 1 as
p 4 0, but only at t =1, cf, (23).

Lemma 3., For p > 0 the derivative é% v{p:z) ts continuous and non=
vanishing for |z| < 1. The derivative Y'(z) is continuous and non-vanish-
ing for |z| < 1, except in the case a = 2 at z = 1,

In the case a < 2, for every §, 0 < 6 < 1,
, 2-§
(33) Y(z) =1 + (z=1) y'(1) + o(|1-z|" ), z > 1, |z] <13

in the case a = 2 there exist positive constants N ., N, , such that

1° 72

G4 N [1=z| < @] <N, T, lz| < 1.
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Proof. First consider the case g < 2, Let s = s(8) denote the arc length
of A at the point w = g(cos e)ele counted from the point w = -g(~1), cf,

(28), then for -7 < 8 < 7,

(35) s(8)

8 ,
f /io(cos ¢)]2 + sin2¢ [o'(cos ¢)]2 dé.
T

H

Further, let w = w(s) be the parametric equation of A with its arc length

as parameter, so that for -mw < 6 < =,
i6
(36) w(s(8)) = o(cos 0) e ,

é% w(s(8)) = w'(s(8)) s'(®) = [i o(cos 8) = sin 6 o"(cos 6)] eie;

so that

(37) w'(s(9)) = i o(cos 6) ~ sin © 0"((;08 0) eie

/Tc(cos 6)]2 + sin26 [o"(cos 6)]2

The denominator in (37) is non-vanishing on [-w,w], because, cf. (30), (23),
g(cos 8) 2 o(~1) > 0 for =1 £ 8 < w. Further, the second derivative of
o(cos @) is continuous on [-m,7] by lemma 1, if g < 2. This proves that

there exists a constant such that for every 6], 62, - < 61 2

(38) !w'(s(el)) - w'(s(ez))] < const., [el -8

2

Moreover, it follows from (35) and (30), that for =-m < 61 < 62

< m,
(39) |sCe,) - s(8)| 2 a(-1) |6, - 8,].

Together, (38) and (39) prove that there exists a constant such that for

0<s, <s

every s, s,, 1

is the length of A),

(40) lw'(sl) - w'(s2)| < const, lsl - SZI.

By Kellogg's theorem, cf. [10], theorem IX.7, it follows from (40) that

y'(z) exists and is non-vanishing for Izl < 1, and that for every §,



0 <8 <1, there exists a constant such that for every 61, 62,
=T < 6] < 62 <,

(41) {y'(elel) - Y'(elez)l < const. |0, - |1_6

1 ]

2

By a theorem of Hardy and Littlewood, cf. [6], §IX.5, Satz 4, it then

follows that for every z, |z| <1,
v ' I-6
(42) [y'(z) - v (1)| < const., |1-z| .

This inequality implies (33).

A similar argument shows that-é% v(p3;2z), p > 0, exists and does mot vanish
for |z| <1, for every value of a.

Next consider the case ¢ = 2, By lemma 2 the contour A has a corner point

at w = 1 with inner angle wwm, cf., (29). Therefore, we introduce the

mapping, regular in C\[1,x),
‘ 1/w
(43) gw) =1 - (1-w) "7, £(0) = 0.

. . . + .
The function &(w) maps the domain A+ conformally onto a domain X , and it
. . + .
maps the contour A onto a contour X which is the boundary of X , and which

has a parametric equation given by

A
D
A

(44) £E=1- (1-0(cos 8)el®)1/¥ - .

Let § = x(8) denote the arc length of X at the corresponding point £ given
by (44), counted from the point where 8 = —-7w; and let v(x) be the para-
metric equation of X with its arc length as parameter, In a similar way as
before, cf. (37), it is obtained that for -w < 8 < w,

1

-1

45) vi(x(8)) = [1-0(cos B)eie]m [io(cos 8) = sin® o'(cos 0)] eie

1
o —=1 '
[1-0(cos e)elelm /f&(cos 6)]2-+sin26 [o' (cos 6)]2
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From (25) it is readily derived that
(46) o(cos 6) =1 = {232/3f - 1}"% le| + o(|e|2), 8 »~ 0.
From (45) and (46) it follows by straightforward calculation that

(47) lim v'(x(6)) = lim v'(x(0)) = i,
040 640

This implies that the contour X has a tangent at £ = 1, and hence by lemma
2 and the properties of the mapping £(w), cf. (43), at every point.

Further, it follows from (45) and (46) that for 6 + O and for 6 4 O,

v'(x(8)) =i + o(]e]).
This leads to the inequality: for every el, 92, - £ 61 < 62 <,
(48) lv'(x(el)) - v'(x(ez))l < const, |61 - 82 .

From (44) it follows that
1

—-1

(49) x'(8) =o0(le|” ), 6 >0,
so that, by using [8], §5, for every Gl, 62, -1 <0, £0, =7

(50) |91 - 8,| < const, lx(el) - x(ez)lw.

2l %

Together, (48) and (50) imply that for everylxl, Xy, 0 < X, < x, < X, (x0

is the length of X), cf. (40),

w

(51) Iv'(xl) - v'(xz)l < const, le - %,

Now let f£(z) be the conformal mapping of the unit disk lzl < 1 onto the
domain X  with £(0) = 0, £'(0) > 0. Then again by Kellogg's theorem it
follows that f'(z) exists and is non—vanishing in lzi £ 1, and that for

every 61, 62, -T < el < 62 < m,



14

.

|f'(eiel) - f'(eiez)l < const, IBI -9,]%

2
As in the case a < 2, cf. (42), this leads to: for |z| <1,

(52) £(z) = 1 + (z=1) £'(1) + o(|1-z|'™), z > 1,

By using the inverse mapping of (43) and the uniqueness theorem for con-

formal mapping, cf. [7], vol.III, §2, theorem 1.3, we have
(53) y(z) =1 - [1-£(21°, - |z] <1,

so that (52) leads to: for |z| <1,

(54) v(z) = 1 - [£'(11° a-2)" + o(]1-2|*), z > 1,

Because 3§ < w < 1, cf., lemma 2, (54) proves (34). The existence of y'(z) #0
for Izl =1, z# 1, follows from (53) and the existence of f'(z) #0 for

lz| = 1. ‘ ]

With the aid of the foregoing lemmas we are able to prove the following

theorems on the limit (20).

Theorem 1. In the case a > 2 the limit

. 1 1 dt
(55) lim |5— =,
00 “™ T {1 -y(3)H1 -y (o3P} ©

is finite; in the case a = 2 this limit is infinite.

Proof. See for the case g > 2 the proof of corollary 1., Consider the
case ¢ = 2, Let € be a constant, 0 < € < im, and write the integral in (55)

as follows:

2m=¢
1 de
(56) o [

de
i6.2 °
1-y(p3e™™)|

;€
- + = |
e II_Y(p;ele)lz 2T —e I
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Because y(p31) = o(p3l), ef, (10),(11),(27), it follows from lemma 1 and

(32) that y(p3t) =1 (p ¢+ 0) if and only if t = 1, Hence, the fifst inte=
gral in (56) remains finite as p ¢ 0, Now consider the second integral in
(56), From lemma 3 it follows that there exists a constant M (independent

of p), sueh that for p > 0 and - < 6§ < ¢,

(55) ly(os1) = yloset® | < u |9|%-

This implies the inequality: for p > O, =e € 6 € g,
(58) | —y(p;eie)l € |1=y(p31)| + M Ielé-

This inequality leads to the following lower bound for the second integral

in (56): for ¢ and M independent of p, p > 0,

€ de r 4o
(59) f z [ i
e [1oy(p3ei®) |2 =g {1 =y(p31) +M|0| )2

4 MYe
= [log{l =y(p3l) +MVE} = log{l =y(p31)} = 1.
w2 1 =y(p3l1) +M/e

Because ¢ and M are positive and because Y(p;l) + 1 as p ¢+ 0, it is obvious

that this lower bound tends to infinity as p ¢ 0. This proves the assertion

in the case g = 2, ‘ 0
Theorem 2,
(60) 1im-2‘-’%f ‘ 1 S‘gwo, | ifa=2,
p+0 € {1=y(pst)H1 =y(psp)} 1=1a
] & 2
A ay () ’Lfa °

Proof, First let ¢ = 2, Again we split up the integral as in (56). As
noted in theorem | the first integral in (56) remains finite as p ¢ 0, so
that ﬁultiplied by ap it vanishes as b +0, From (34) it follows that for

0 <& < {n and for, say, 0 < p < 1, there exists a constant K such that
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for —e £ 06 £ ¢,
io
(61) [y(ps1) - y(pse )| > K le].

Because the point w = y(p;1) = o(p;1) is the point on A(p) with the largest
absolute value, cf. (27),(30), the angle which the line joining the points

6

y(ps;1) and y(p;el ) makes with the positive direction on the real axis is

obtuse, so that the cosine rule implies that for p > 0, - £ 8 < ¢,
i6 2 i6, 2
(62) [1 = v@se™) | 2 [1 = y(;D|™ + [yl - v(pze™)|%.
From (61),(62), the following upper bound for the second integral in (56)
is obtained: for 0 < p < 1,

€ €
de de
J )

- < ,
-£ |1--y(p;e19)l2 -€ {1--Y(o;1)}2 + K70

(63)

= 1 arctan[—-—fﬁs————} O=¢
K{l =y(p3)} I-vy(p;1) |lo=—€"

In a similar way as (25) it can be found that in the case a = 2,

B.p
: 1
(64) y(ps1) = o(p31) = 1 = Ve + 0(p), p ¥+ 0,
- 28 /82 -1
2°71
Consequently,
. . oK 0=¢
ovo 1 TY(3D) 040 P=v(p;1) [16=-¢

Hence, the upper bound for the second integral in (56) given in (63),
multiplied by p, tends to zero as p ¥+ O, This proves the assertion for
a= 2,

Next consider the case a < 2, Because for p > 0 the function o(pju) is an
infinitely differentiable function of u, u < 1, cf. lemma 1, A(p) is an

analytic contour, cf. [9], p.186., This implies that the conformal mapping
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v(p3z) is regular on the boundary |z| = 1, cf. [9], p.186, so that it can
be continued analytically into (a part of) the region |z| > 1, Further,
because by lemma 3 the derivative<é% y(p32z) is non-vanishing at z = 1, and

since y(p31) + 1 as p ¥+ 0, it follows (see [1], section IL.5 for a more

rigorous proof) that for p close to zero there exists a tO(p) > 1 such that-
(66) Y(p;to(p)) = 13 and to(p) +1 as p ¥ 0.

With this to(p) we write for p close to zero,

1 dt 1 dt
(67) — = [ R(p;t) - — -,
éll—y(p;t)lz t G e~y Hee (o)~ 11 ¢
here
t=t, (p) tt,(p) -1
(68) K(p;t) 9 0

Ty Ty (3l/D)" .

From (66) it follows by differentiation and by using y(p;1) = o(p;1) and

(26), that
B
p¥0 e 040 p ~a Yy (D)
Hence,
(70) lim K(p;1) = —{Y'(l)}_z,
p+0

Moreover, it follows from (33) and the fact that for p > 0 the conformal
mapping y(p3z) is regular at z = 1, that for every §, O <8 < 1, there

exists a constant such that for |[t| = 1 and p close to zero,
é
(71) |[R(p3t) - K(p31)| < const. |t-1]".

This implies that by splitting up the second integral in (67) as

1

—r 1 4t
)
to(p) 1

to(p) ’.EE]
t-t,(p) ¢

(72) [f K(p;t) f R(p;t) -
c c ANOES
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we may apply on both integrals an extended version of the Sochozki-Plemelj

formulas (cf. [8], §16, [1], lemma I.3.6), which leads to

. 1 1 dt 1 dt
(73) lim 5— [ K(p3t) ———F~ — = = $K(031) + -— [ K(03t) ——,
040 2wl C t to(p) t 27i C t -1
t,(p)
. 1 0 dt 1 dt
lim = [ K(p3t) ———~— — =} K(0;1) + 5— [ K(03t) ——.
040 27l c t to(p) 1 ¢t 2wi c t=1
Finally, by using, cf. (69), that
— )
(74)  lin— - 2z D)
p¥0 ty(p) - 1
the assertion for g < 2 follows from_(67),(72),(73) and (70). O

6., Asymptotic behaviour of the queueing process

With the aid of the analysis of the preceding section we are able to

formulate the main theorem on the ergodic properties of the queueing system.,

Theorem 3. The queueing system with two types of customers and paired
services described in section 2 is transient if a > 2, it consists of null

states 1f a = 2, and it is ergodic if a < 2. Further,

. 1 - la .
(75) wo = tiﬁ Pr{zi(t) =0, ZQ(t) = 0} = =1z +2ay'(1)’ if a < 2,

Proof. For the queueing process defined in section 2 the state space
{0,1,2,.,.,} x{0,1,2,..} is irreducible, and the process is aperiodic.

From theorem 1, (19) and (2), it follows that in the case a > 2,
J Pr{z](t) =0, ZQ(t) = 0} dt < o,
0

so that in this case the queueing process is transient,

In the case g = 2 we have by theorem 1:
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0
[ Pr{y, (t) = 0, y, (t) = 0} dt = =,
=1 =2
0
However, from theorem 2, (17) and (19) we obtain in this case
1im Pr{z&(t) =0, zz(t) = 0} = 0,
o0
Hence, in the case g = 2 the queueing system consists of null states.

Finally, in the case a < 2 theorem 2 leads with (17) and (19) to (75), thus

showing that the process is ergodic, g

Remark, The above result has been proved here under the assumption that
63'< o, Theorem 3 also holds without this assumption, but the proof becomes
more tedious. Because the expansion (25) is not Valid if 63 = o, more gen-
eral theorems than Kellogg's theorem have to be applied in order to prove

the inequalities (34), cf. [1], theorem II.S.Z, [10], chapter IX, part I. [

With the same technique as applied in the proof of theorem 2 also the
generating function of the limiting distribution of the process {(z](t),
zz(t)),t > 0} as t + «» can be obtained in the ergodic case from the function
W(p;pl,pz), cf. (2),(15). We only state here the result: if a < 2, for

p,l <1, |p,l s 1,
lpy] =1, eyl =1

7 (0 y,(8) I-ip,~ip,
(76) ¥(p,,p,) = lin Elp, b, 2 1=, s(-————-—a )[1 .
too
{1 %p] 2P2
(I‘Pl)(l—pz) I - BY??TT;‘P?? 1 - YO(pl)'YO(pZ) ]
T-1p, - 1o, (1'-%p1'f%t52>'. =, G HT =¥, 1)’
8 o PIPZ

here wo is given by (75) and YO(W) stands for the inverse conformal mapping
of v(z), which is first defined for w ¢ Ay A, and then continued analytic-

ally to the region |w[ < 1, For the first moments of the process we find:

an lim E{y,(t)} = %a[l T a—z']’ j=1,2.
oo J 2 231
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The queueing model as described in §2 can be generalized by the assump-
tion that an arriving customer is with probability cj of type j, j = 1,2,
cl-bc2:=l. For this case a similar theorem as theorem 3 can be proved. In
fact, the analysis becomes simpler when ¢ # 1, because the first term in
the asymptotic expansion of ¥(p;0,0) at p = O depends only on the Laplace- -
Stieltjes transform of a busy period in an M/G/1 system. The resuit is that
in the general case the system is ergodic if and only if max{cl,cz}a <1,
cf. [1], theorem II.8.5.

An interesting subject for further research is the relaxation time for
this type of queueing systems with a two—dimensional state space, The re-
laxation time is a measure for the speed at which Pr{ZJ(t) = 0, ZQ(t) = 0}

tends to its limiting value as t + », cf, [2], §III.7.3.
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