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On oscillation properties and the interval of orthogonality of orthogonal 

polynomials*) 

by 

E.A. van Doorn 

ABSTRACT 

This paper is mainly concerned with the true interval of orthogonality 

for a sequence of orthogonal polynomials, 1which is the smallest closed inter

val containing the limit points of the set of zeros of the polynomials. We 

give bounds for the endpoints of this intervais in terms of the coefficients 

in the three term recurrence formula and show them to be generalizations of 

most existing results. Similar findings are reported for the limit interval 

of orthogonality, which is defined as the smallest closed interval contain

ing the derived set of the set of limit points. Our bounds are based upon an 

oscillation theorem for orthogonal polynomials which is of independent 

interest. 

KEY WORDS & PHRASES: orthogonal polynomials, interval of orthogonality, 

oscillation theorems 

*)This report has been submitted for publication elsewhere. 
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1. INTRODUCTION 

00 0::, 

Let {cn}n=i and {\n}n= 2 be sequences of real numbers and 

assume that A is positive. Then it is a classical result n 

that the polynomials Pn(x), n = 0,1, ... , defined by the 

recurrence formula 

(1) 
P (x) = (x - c )P 

1
(x) - AP 

2
(x), n = 1,2, ... , n n n- n n-

where it is convenient for us to define \ 1 = O, are ortho

gonal with respect to a (not necessarily unique) mass dis

tribution d~(x) on the real line. That is, there is a 

bounded, non-decreasing function~ with an infinite spectrum 

(= support of d~) such that 

00 

( 2) f Pm(x)Pn(x)d~(x) = knonm 
-oo 

(k > 0). 
n 

Pn(x) has n real, distinct zeros xni < xn 2 < .•• < xnn 

with the property 

( 3 ) 

so that 
' 

(4) 

X < X < X l = 1, 2,. , . ,n, n+1,i ni n+1,i+1' 

~. 
l 

= lim x . ni 
n-+oo 

and n. = lim 
J n-+oo 

X • n,n-J+1 
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both exist in the extended real number system (see, e.g., 

[6, Section I.5]). The interval [s 1 ,n 1 J is called the true 

interval of orthogonality since it is the smallest closed 

interval in which the support of a distribution correspond

ing to {Pn} is concentrated. The spread of the true interval 

of orthogonality is defined as n1 - s 1 , while its centre, 

defined only when s1 > - 00 or n1 < 00 , lS given by l<s1 + n1)· 

Regarding the finiteness of s 1 we will have use for a 

criterion which is essentially due to Stieltjes [207 and 

elaborated by Chihara [17. Namely, in order that s 1 >A> - 00 , 

it is necessary and sufficient that there exist numbers Yn 

such that 

( 5 ) 

where Yo > 0 and Yn > 0 for n > 0. Here Yo > 0 may be 
= -

replaced by Yo = 0' since the existence of a sequence {yn} 

satisfying ( 5 ) and Yo > 0 implies the existence of a 

sequence {y~} satisfying (5) and Yo= 0 (or, in fact, any 

number between O and y 0 ). When (5) holds one also has n1 = 00 

if and only if {yn} is unbounded. 

From (3) and (4) we obviously have s
1
• < s• < 1+1 = 

so that 

( 6 )' cr = lim s• and 
i-+oo l 

-r =limn• 
j-+oo J 

exist, again allowing for ±00
• It is important to note at 



this point that 

(7) 

and 

(8l 

= ,. 
l 

=> 

=> 
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cr = ~- ' l 

T = nj ' 

l = 0 , 1 , ••. 

J = 0 ,1, ... , 

where [;: 0 = -00 , n0 = 00 (see, e.g., [6, Theorem II.4.6]). 

It can be shown [6, Theorem JII.4.2] that the sets of 

orthogonal polynomials {P~k)(x)}~, k = 0,1, ... , which are 

determined through the recurrence formula (1) by the 

(k) oo (k) oo 
sequences {c - c } and {X = An+k}n= 2 , have true n - n+k n=1 n 

intervals of orthogonality [[;:fk),nfk)l with the properties 

( 9 ) < [;:(k+1) < cr 
= 1 = and T < (k+1) < (k) 

= n1 = n1 ' 

k = 0,1, .... 

Further, the next theorem is easily seen to hold as a con

sequence of [6, Theorems IV.2.1 and IV.3.27. 

THEOREM 1. + cr and k + oo. 

We ~mphasize that, apparently, cr and Tare determined 

only by the limiting behaviour of the parameter sequences 

{;n} and {An}' so that any finite number of changes in the 

para.meter values has no influence on the values of cr and T. 
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In view of this fact we are justified in calling [cr,T] the 

limit interval of orthogonality. The spread and the centre 

of the limit interval of orthogonality are defined as T - cr 

and ½Ccr + T), respectively, provided these quantities are 

meaningful. 

It is the purpose of this paper to give bounds on th~ 

true and limit intervals of orthogonality in terms of the 

parameters c and A • Our maip tool will be the oscillation n n 

theorem for orthogonal polynomials given in Section 2, which 

is of independent interest. An extension of this result will 

be derived in the Appendix. 

We note that any result on ~1 (or cr), e.g., Stieltjes' 

criterion ( 5), may be transforIP.ed into a result on n1 ( or T) 

and vice versa by considering the polynomials P (x) = n 

(-1)nPn(-x), which satisfy the recurrence relation (1) with 

parameter sequences {c = -c} and {I =A}. Therefore, as n n n n 

far as the endpoints are concerned, we shall concentrate 

only on one side of the intervals of orthogonality. In fact, 

upper bounds on ~1 and cr will be given in Section 3 and 

lower bounds in Section 4. Several known results will appear 

as corollaries to our theorems. We remark that some of these 

known results are given in the literature under the con

dition that the distribution d~ with respect to which the 

polynomials Pn are orthogonal is u~ique. This is because 

the:y a.re stated (or derived) in terms of supporting points 

of d~ instead of limit points of zeros of the polynomials 

P, while both points of view are equivalent only if d~ is 
n 
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unique (cf. [3] and [6, Chapter II]). 

In the final section some bounds will be derived on 

spread and centre of the true and limit intervals of ortho

gonality and these will be compared with existing results. 
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2. THE BASIC OSCILLATION THEOREM 

We need some preliminary results and notation first. Let 

u = {u0 ,u1 , ... ,un,···} be an infinite sequence of real 

numbers. The finite sequence consisting of the first n+1 

elements of u will be denoted by ~(n)' i.e., ~(n) = 

S(u( )) we denote the number of sign ~ n I 

changes in the sequence ~(n) by deleting all zero terms, 

with the special convention S(0( )) = -1, 0( ) denoting the 
~ n ~ n 

sequence consisting of n+1 zeros. We let S(u) = lim S(~(n)), 
n+oo 

which exists but, of course, may be infinite. 

Our next prerequisite concerns Sturmian sequences of 

polynomials. We recall the definition (see [17, pp. 7-8]). 

DEFINITION 1. A sequence of n + 1 polynomials {R0 ,R1 , ... , 

R }, n > 0, is called a Sturmian sequence on the interval n 

(a,b) if these four conditions are satisfied: 

(i) R (x) 
n 

;t 0 for X = a,b, 

(ii) R0 (x) ;t 0 for all X E [a,bJ, 

(iii) R. (x) = 
l 

0 (0<i<n) & X E [a,b] => Ri-1(x)Ri+1(x) < 

(iv) R (x) = 0 & X E [a,b] => R 1 (x)R'(x) > 0 . n n- n 

This definition is justified by the following theorem 

[17, Satz 7]. ,, 

0 , 

THEOREM 2 (Sturm's Theorem). If the sequence of polynomials 

{R
0

,R
1

, ... ,Rn} is a Sturmian sequence on the interval (a,b), 
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then the number of zeros of R in the interval (a,b) equals n 

s ( R (a) ) - S ( R ( b) ) , where R ( x) = { R0 ( x) , R1 ( x) , ... , Rn ( x)} . 

The relevance of the above for this paper resides in the 

next lemma, which concerns the sequence of orthogonal poly

nomials {P0 ,P1 , ... ,Pn,···} defined by the recurrence 

relation ( 1). 

LEMMA 1. The sequence ~(n) = {P0 ,P1 , ... ,Pn}, where n > O, is 

a Sturmian sequence on any interval (a,b) where P (a)~ 0 n 

and P (b) ~ 0. n 

PROOF. See [21, p. 45]. 

We are now in a position to state our basic result. 

THEOREM 3 (Basic Oscillation Theorem). For the polynomials 

{ p }
00 

defined by the recurrence relation (1) one has n n=O 
(i) S(P(x)) = k <=> nk+1 < X < nk ' 

k = 0,1, ... , 
= 

(ii) S(P(x)) = 00 <=> X < T or X = T < n- for all J ' J 

(iii) S(P(x)) = k <=> ~k < X < ~k+1 , k = 0,1, .•. , 
= 

(iv) S(P(x)) = 00 <.=> X > cr or X = cr > ~. for all i, 
l 

P(x) {P
0

(x) ,P
1 

(x) , ... } , P(x) ~ ~ 1 where = = {P
0

(x),P
1

(x), ... J 

~ 
P (x) n 

= (-1) P (x). 
n n 

,. 

and 

PROOF. It is evident that (ii) and (iv) are implied by (i) 

and (iii), respectively, while (iii) readily follows from 
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from (i) by considering the polynomials P (x) = (-1)nP (-x) 
n n 

mentioned in the introduction. So it remains to prove (i). 

To this end let x and n be such that P (x) ~ O. Choose n 

n such that max(x,xnn) < n < n 0 = 00 • Pn does not have any 

zeros in (xnn' 00
), so that, by Sturm's Theorem, S(~(n)) is 

constant in this interval. From the recurrence formula (1) 

it is easily seen that this constant is zero, whence 

S(~(n)(n)) = 0. Now applying pturm's Theorem to ~(n) in 

the interval (x,n), we have S(~(n)(x)) - S(~(n)(n)) = 

number of zeros of Pn in (x,n), i.e., 

(10) S(~(n)(x)) = number' of zeros of P n in (x,oo), 

Letting n tend to infinity in (10), (i) emerges as a conse

quence of (3) and (4). • 

Aspects of the Basic Oscillation Theorem may be found in 

the literature under various guises. Thus a special case of 

it was employed by Stieltjes [20, p. 564] in the context of 

continued fractions, while parts (ii) and (iv) of the 

theorem are essentially contained in [23, Theorem 8(a)J in 

the context: of difference equations. Further, by making the 

identification 

( 11~ P (x) = det(A - xI ), 
n n n 

where In is then x n identity matrix and 
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c1 iA.2 

IA 2 0 

(12) A = n ' 

0 IAn-1 

✓ -> ... 
n-:1. C n 

our questions regarding (essentially) the zeros xnk may be 

put in terms of eigenvalues of sy:rrunetric tridiagonal 

matrices for which the Sturmian approach is well known (see, 

e.g., [16, Cha.pter 7]). Indeed, we shall repeatedly make use 

of t~is identification to obtain new results or point out 

alternative proofs. 

In closing this section we remark that Chihara ([11, [4-J, 

see also [6]) has obtained characterizations for ~1 , n1 , o 

and t which are in appearance quite different from the Basic 

Oscillation Theorem. A third characterization which may be 

conceived as a consequence of Chihara's results has been 

stated and given an independent proof by Whitehurst [22, 

Chapter 4-J. It is not very difficult to prove directly the 

equivalence of Chihar'a' s or Whitehurst' s results and the 

Basic Oscillation Theorem. 
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Our starting point in this section will be a lemma con

cerning the system of equations 

LEMMA 2. If the system of equations (13), where b > O, n 

possesses a solution z_ 1 ,z 0 ,z1 , ... satisfying znzn+l < 0 

for n > N > O, then = 

(14) a + 
M 

M+k 
}: 

m=M+1 
(a - 2/b ) > O m m 

for any two integers k > 0 and M > N + 1 (M > N + 1 if 
== == 

ZN-1 = 0). 

PROOF. Assuming that a given solution has z ~ 0 form= 
m 

M-1,M, ... ,M+k-1 5 we can write down the equalities 

and, form= M,M+1, •.. ,M+k-1, 

Summing these k + 1 equalities yields 

.( zm:+.zm:-1/bm:+1) 2 

2 m-1 2 m 
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M+k 
aM + I (a - 2 ✓b m) = 

m=M+1 m 

ZM+k ZM-2 M+k-1 ( .z. .+.z. 1 ✓b 1 ) 2 

{ + bM + I m m- m+ } = -
ZM+k-1 ZM-1 m=M z z ' m-1 m 

from which the lemma follows at once. O 

Returning to the recurrence formula (1), we let x be any 

real number, 

(15) = p (x), 
n n - -1,0,1, ... 

and l = {y0 ,y1 , ... }. Further, let {x1 ,x 2 , . .. } be any 

sequenoe of positive numbers and define 

( 16) = 1 and z n 

If we let b 1 be positive but otherwise arbitrary, 

(17) a = (c - x)/x and b +1· - A /(x X ) n n n n - n+1 n n+1 ' 

n > O. 

n > O, 

- 00 

then {z} 1 satisfies the recurrence relation (13) with n n=-

t > 0, so that Lemma 2 applies. Translating this result in n 

terms of yn' en, An' Xn and x yields 

M+k 
(1~) I 

m=M+1 

fork~ 0 and M > N + 1 (M > N + 1 if yN-i = 0) whenever 
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Y Y 1 < 0 for n > N > 0. n n+ = = 

By the Basic Oscillation Theorem one has x ~ ~
1 

if and 

only if S(j) = 0. That is, x < t 1 if and only if YnYn+
1 

< 0 

for n ~ 0, since yn = 0 is clearly impossible when x ~ ~
1

. 

Further noting that y_ 1 = 0, we conclude that the inequality 

x < ~ 1 implies the inequalities (18) for all k > 0 and 

M > 0. From this result one easily deduces the following 

theorem. 

THEOREM 4. For any sequence of positive numbers {x 1 ,x 2 , ... } 

and integers k > 0 and M > 0 one has = 

(19) 

Taking k = 0 and X = 1 for all n we obtain Corollary n 

4 .1, which is al.so a dii,ect consequence of Stiel tj es' cri-

terion (5) and therefore well known (see, e.g., [6, p. 109]). 

COROLLARY 4 .1.. ~1 < en , n = 1, 2,. • • • 

Letting k = 1 and x = 1 for all n a result emerges which n 

was first given (with an error) by Maki [11] and later 

improved by Chihara [5]. 

We remark that the other part of the Maki-Chihara result 
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to the effect that ½(cn+cn+ 1 ) - IAn+ 1 is unbounded when 

~1 > - 00 and n1 = 00 , can also be generalized in the spirit 

of Theorem 4, at least when X = 1 for all n. One should n 

simply use Maki's argument on the basis of which lies the 

result of Stieltjes mentioned in the introduction. 

Assuming that inf{c} > - 00 , we can choose k = 1 and n 

Xn = en - c in (19), where c is any number smaller than en 

for all n. After some rearran~ing we then get 

(20) 

1 

2.(.cn:-.c) (.cn+1-c) - ( An+1 (cn-c) (cn+1-c)) 2 
~1 < C + C + C - 2c ' 

n n+1 

n = 1,2, .... 

In combination with Corollary 4.1 this result yields a 

useful third corollary. Namely, if there are values of 
, 

~n =!(en+ cn+1 - ((cn-cn+1)2 + 4An+1)2), n = 1,2, ... ' 

with the property ~n < cm for all m, we can choose c equal 

to any of those ~n' ~1 say, after which the choice n = 1 

yields that ~1 < ~1 . Hence, in this case, ~1 < ~n for all 

n. If, on the other hand, sn > cm for some m and all n, 

Cororlary 4.1 implies that the same conclusion holds. Thus 

we have the following result, which is sharper than 

Corollary 4.2, while involving the same parameters. 

n = 1,2, .•.. 
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We note that upper bounds for ~1 can be obtained on the 

basis of the interpretation (11) for P (x). Namely, con-n 

sidering that the eigenvalues of A equal those of KA K, 
n n n n 

where Kn is then x n matrix consisting of elements 

k .. = 1 when i + j = n + 1 (i, j = 1,2, ... ,n) and O elselJ 
where, one also has 

(21) P (x) = det(K AK - xI ). n n n n n 

Hence, we can identify P (x) with the nth polynomial in an n 

orthogonal sequence {Pm(x)} determined by the recurrence 

formula (1) through the parameters c = c +1 (m < n), ·m n -m = 

= cm Cm> n), X = A 2 (m < n+1) and Xm = m n+ -m = 
(m > n+1). It now follows from (3) and (4) that 

(22) ~i < xn1 = xn1 < xki , k = 1,2, ... ,n-1, 

where xm1 denotes the smallest zero of Pm(x). However, the 

only practical bounds obtained by this approach are 

~1 < x11 , but this gives Corollary 4.1, and ~1 < x21 , 
-

which amounts to Corollary 4.3. 

REMARK. A third proof of Corollary 4.3 may be given on the 

basis of Chihara's characterization for ~1 (cf. [6, 

Theo;rem IV. 2 .1 J) 

The arguments leading to Theorem 4 need only slight 
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modification to obtain results on the limit interval of 

orthogonality. For by the Basic Oscillation Theorem we 

have x < cr only if S(y) is finite, that is, only if 

YnYn+ 1 < 0 for n sufficiently large (by definition of cr 

y = 0 will not occur but for finitely many n if x < cr). n 

Hence the inequality x < cr implies the inequality (18) for 

M sufficiently large and all k ~ O. From this it is easy 

to derive Theorem 5, which, h©wever, also derives directly 

from the Theorems 1 and 4. 

THEOREM 5. For any sequence of po"sitive numbers 

(23) a~ lim inf {[cM + 
- M-+oo XM 

I ~-2 m }:- l M+k [C [ A l ½]] [M+k 1 i-1 
m=M+1 Xm Xm-1Xm m=M Xm · 

Taking k = 0 and x arbitrary gives us the analogue of 
n 

Corollary 4.1, which has been obtained previously by Wouk 

[23, last inequality of Theorem 8(e)J and Chihara [1, 

Theorem 6], see also [6, Theorem IV.3.1]. 

COROLLARY ·5 .1. cr < lim inf {en}. 
n+oo 

We also state as a corollary the analogue of Corollary 

4.3, although its proof is most conveniently given via 

Theorem 1 and Corollary 4.3. 

COROLLARY 5.2. <1 
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An interesting case arises when we let k tend to infi

nity in Theorem 5. However, we had better do this not in 

(23), but at an earlier stage in the reasoning leading to 

Theorem 5. Namely, from Theorem 4 we see that for all 

M > 0 

s1 < lim inf {f(M,k)} , 
k+oo 

where f(M,k) denotes the expression between braces in (23). 

Hence, by Theorem 1, 

(24) cr < lim inf {lim inf {f(M,k)}} . 
M+oo k+oo 

Now let us assume that rx = 00 • Then, evidently, n 

lim inf {f(M,k)} = lim inf {f(1,k)}, so that we obtain the 
k-+oo k+oo 

next theorem. 

THEOREM 6. For any sequence of positive numbers 

(25) cr < lim inf = k+oo 

When x = 1 for all n we obtain the important Corollary 
n 

6.1, which has been given previously by Wouk [23, Theorem 

COROLLARY 6 .1. 
1 k 

cr < lim inf {-k I (c - 2IA )} . 
= k+oo m=1 m m 
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4. LOWER BOUNDS ON ~1 AND a 

As in the previous section we start our discussion by 

considering the system of equations (13). If we plot a 

solution z_ 1 ,z 0 ,z1 , ... of this system by joining success

ive coordinates (i,z.) by straight line segments, then 
l 

the points where such a line segment meets the x-axis will 

be called a node of the solution. We can now cite the 

following classical result [14]. 

LEMMA 3 (Sturm's Separation Theorem for difference 

equations). For any system of equations (13) where 

b > O, the nodes of any two linearly independent n 

solutions separate each other. 

Suppose a + 1 < -b < 0 for n > N > 0 and let two n n = 

arbitrary numbers zN > 2N-1 > 0 determine a solution = 
- 00 

{zn}-1 of ( 13). Then we have by induction 

2 -z n n-1 = -(a +1)(2 1-2 2 ) - (a +b +1)2 
2 

> 0 n n- n- n n n-

for n > N. The above lemma now implies that any solution 

{z} of (13) has at most one node in the interval [N-1, 00 ). n 

Hence, also noting that znzn_ 2 < O if zn_1 = o, we can 

state the following lemma, which is also essentially con

tained in [9]. 
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LEMMA 4. If an + b + 1 < 0 and b > 0 for n > N, then n n 

any non-trivial solution {zn} of (13) for which z z < m-1 m = 
for some m > N, has the property that sign(zm+k) = 
sign(zm) if zm ~ 0' and = sign(-zm_ 1 ) if z = m 0' for all 

k > 0 • 

Back to our orthogonal system (1) we let x be any real 

number and define the quantities y as in (15). Further, n 

0 

we let {x
0

,x1 , ... } be any sequence of positive numbers and 

define 

(26) = 1 and z n 

Finally, we let b 1 be positive, 

Then {z} satisfies the recurrence relation (13) with n 

bn > O, so that the second condition in Lemma 4- is satis-

fied for n > O. In terms of en, An' Xn and x the first 

condition in this lemma reads 

(28) 
An 

C - -- - X > X 
n X n ' n-1 

provided n > 1. Supposing (28) to be valid for n > O, we 

can choose b 1 > 0 so small that an+ bn + 1 < 0 for n > O. 

Hence, Lemma 4 applies and we have sign((-1)kyk) = 
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= sign(zk) = sign(z0 ) = 1, since z_ 1 z 0 = 0. Thus by the 

Basic Oscillation Theorem, x < ~1 . A trivial argument sub

sequently leads to our next theorem. 

THEOREM 7. For any sequence of positive numbers 

{x 0 ,x1 , ••. } one has 

(29) 

REMARK. This theorem may also be obtained via the identi

fication (11) for P (x). Namely, the zeros x 1 ,x 2 , ... ,x 
n n n nn 

of Pn(x) are the eigenvalues of An and therefore also of 

the matrix ~- 1A ~ , where~ = diag(¢1 ,¢ 2 , ... ,¢n) and n n n n 

¢i > 0. With Gersgorin's Theorem (see [12, p. 146]) one 

may subsequently prove that 

(30) 
¢i-1 

xn1 > min {ci - --;;;-:-IAi 
i<n 'l'l 
= 

where ¢ 0 = 1, say. Taking {¢i} such that ¢i+1 

and l~tting n tend to infinity yields (29). 

= X ·¢./IA - 1 l l l+ 

Various consequences of Theorem 7 suggest themselves, 

e.g., one could take Xn = 1 for all n, or, x0 = 1 and 

Xn = An+ 1 (n > 0), the latter result being implicit in 
,, 

Maki [11]. We will explicitly state as a corollary the 

case x0 = 1 and Xn = IAn+l (n > 0), since this result im

proves directly upon Lemma 3 of Nevai [15, p. 21]. 
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COROLLARY 7 .1. inf { en - /)..n - /)..n+1} < ~1 · 
n>1 = 

By choosing x0 = 1 and xn = An+ 1 /(cn+ 1 - ¢n+ 1 ) (n > 0), 

where¢ < c (n > 1), we obtain the following useful, n n 

alternative formulation of Theorem 7. 

THEOREM 7 1 
•• For any sequence {¢ 1 ,¢ 2 , .. ~}, with ¢

1 
< c

1 

and¢ < c 
n n 

I (n > 1), one has 

Thus formulated, Theorem 7 is seen to improve upon a 

result of Leopold [10] which, specified for the present 

context, amounts to (31) with a fixed value¢(< en for 

all n) for all¢ . n 

As a final lower bound for ~1 we mention a theorem of 

Chihara. Actually, Chihara gives the corresponding result 

for cr, but his argument applies equally well here (cf. 

[2], [4] and [6, Theorem IV.3.3]). 

THEOREM 8 (Chihara). For any chain sequence {Bn}~= 1 one 

has 

REMARK. {Bn}~= 1 is a chain seg:uertce if there exists a 
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sequence {gk};=O with 0 < g 0< 1 and 0 < gk < 1 (k > 0), 

such that Bn = (1-gn_ 1 )gn; {gk} is called a parameter 

sequence for {Bn}. For instance,{~} is a chain sequence 

for which{½} is a parameter sequence. 

REMARK. Theorems 7 and 8 are in a sense best possible 

since equality may be obtained in (29) and (32). To this 

end one should take Sn= an(~ 1 ) = An+i/((cn+i-, 1 )(cn-, 1 )) 

(which is a chain sequence according to [6, Theorem IV.2.1]) 

in Theorem 8, and Xn = (cn-, 1 )(1-gn_ 1 ), with {gk} a para

meter sequence for {an(,1 )}, in Theorem 7. Thus we have 

actually obtained a new characterization for the true 

interval of orthogonality. 

Using an argument similar to that for Theorem 7 or, 

alternatively, exploiting Theorems 1 and 7, one easily 

produces the following general lower bound for a. 

THEOREM 9. For any sequence of positive numbers 

{x0 ,~1 , ..• } one has 

(33) 
An 

lim inf {c - - x} < cr. 
n+oo n Xn-1 n = 

We will explicitly state as a corollary of Theorem 9 

the case where Xn = IAn+i for n > 0. 
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COROLLARY 9.1. lim inf {en - ✓An - ✓An+ 1 } < cr. 
n+oo 

The latter result has been given by Wouk [23, Theorem 

8(f)J, while it is a slight generalization of a result of 

Chihara [2, p. 704]; see also Nevai [15, p. 22]. 

In this context we remark that the proof and subsequent 

formulation of another one of Wouk's results [23, Theorem 
I 

8(h)J contains an error. The corrected version of this 

theorem is an easy consequence of the above corollary. 

For completeness' sake we finally mention the analogue 

to Theorem 8, Chihara's lower bound for cr. 

THEOREM 10 (Chihara [2], [4], see also [6, Theorem IV.3.3]). 

For any chain sequence {en} 

REMARK. It can be shown that the left hand sides of (33) 

and (34) can be made arbitrarily close to cr by a suitable 

choice of {x} and {B }, respectively. 
n n 
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5. BOUNDS ON SPREAD AND CENTRE 

As mentioned in the introduction we can straightfor

wardly produce lower (upper) bounds for n1 (or T) on the 

basis of upper (lower) bounds for s1 (or cr) by considering 

the polynomials P (x) = (-1)nP (-x) which are determined 
n n 

by the recurrence formula ( 1 ), via the parameters c = -c 
n n 

and In= An' and thus have [-n1 ,-s1 J ([-T,-crJ) as their 

true (limit) interval of orthogonality. Then various 

upper (lower) bounds on the spread of the true (or limit) 

interval of orthogonality may be obtained by combining 

upper (lower) bounds for s1 (or cr) with lower (upper) 

bounds for n1 (or T). Similarly, we should combine upper 

(lower) bounds for s1 (or cr) with upper (lower) bounds for 

n1 (or T) to obtain upper (lower) bounds on the centre of 

the true (or limit) interval of orthogonality. We will not 

pursue this approach in any detail except that we show how 

known results on the spread of the true interval of ortho

gonality may be reproduced in this way. Also, we show that 

additional information on the centre of the true (or 

limit) interval of orthogonality may be obtained by ex

ploiting Stieltjes' criterion (5). 

Let us first note that as a consequence of Corollary 

4.~ and its dual result for n1 we have the following 

theorem, which is essentially due to Mirsky [13], who 

states it in a finite eigenvalue context (the term spread 



- 24 -

is taken from Mirsky). 

THEOREM 11. 

This is the simplest result combining parameters c and 
n 

An· A bound involving only en's, which is not necessarily 

worse than Theorem 11, is 

(35) C - C , n m n ,m = 1, 2, ... , 

which follows from Corollary 4.1. However, Theorem 11 does 

improve upon a result involving only A 's which, as (35), .n 

was given already by Shohat [18], [19], viz., 

(36) n = 2,3, •••• 

But then, the latter inequality can be sharpened in an

other direction on the basis of (19) (with Xn = 1) as 

follows. 

THEOREM 12. For any two integers k > 0 and M > 0 one has 
= 

(37) 

In particular, it follows that n1 - ~1 > 4 ✓A when 

Am-+¼ as m + 00 • 

So much for the spread. 
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Regarding the centre of the true interval of ortho

gonality let us assume n1 < 00 • Then, by Stieltjes' cri

terion (in dual form), we have 

for n > o, where y 0 = 0 and yn > 0 for n > 0. For con7 

venience we define y_ 1 = 1. By (29) we then get 

(38) 

Subsequently substituting Xn = y 2n_ 1 for n > 0 yields 

Combining this inequality and its dual result, we obtain 

the next theorem. 

THEOREM 13. If t 1 > -oo or n1 < oo, then 

(40) sup {c} • n 

Similarly, we obtain the corresponding result for the 

centre of the limit interval of orthogonality. 

THEOREM 14. If cr > -oo or T < oo, then 

(41) lim inf {en}~ 
n+oo 

½(cr + T) < lim sup {en} . 
n+oo 
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Appendix. A SECOND ORDER OSCILLATION THEOREM 

In this appendix we shall assume ~1 > - 00 • We define 

where {Pn} is given by (1), and wish to study the beha

viour of the sequence g(x) = {Q0 (x),Q1 (x), •.. }. To this 

end we define the polynomials P~(x), n = 0,1, ... , by 

i.e., {P~} is the set of 'kernel pol'ynom:ia•1s with parameter 

~1 which is associated with our original system {Pn} (see 

[6, Section I.7]). These kernel polynomials form an ortho-

* * gonal system. The zeros of Pn(x) will be denoted by xnk' 

k = 1,2, ... ,n, and in an obvious manner we define the 

* * . numbers ~k and nk, k = 0,1, .... The following lemma holds. 

LEMMA Ai. * * For all k > 0 one has ~k = ~k+i and nk = nk• 

PROOF. There is a separation theorem saying that 

(A3 )' * xnk < x k < x 1 k 1 n n+ , + 

[6, Theorem I.7.2], whence the second statement holds. 
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Regarding s; we can only conclude from (A3) that 

(A4) s < s* < 
k = k = sk+1 ' k = 1,2, .... 

However, there exists a distribution d¢(x) with respect to 

which the polynomials P are orthogonal whose support conn 

tains the points sk, k = 1,2, ... , but no other points 

smaller than cr [6, Theorem IIi.4.5]. The polynomials p* may 
n 

be shown to be orthogonal with respect to the distribution 

d¢*(x) = (x-s 1 )d¢(x) [6, Theorems I.7.1 and II.3.1]. 

Clearly, ct¢* has no supporting points smaller than s 2 . 

* * Further, we see from (A4) that s 1 < s 2 , But s 1 < s 2 would 

* be contradictory to the fact that the support of d¢ con-

tains at least one point in the interval (- 00 ,s~J (see [6, 

* Theorem II.4.4 (i)J). Therefore, s 1 = s2 , We can now in-

voke [3, Theorem 5] to reach the conclusion that d¢~ is 

the unique distribution corresponding to {P;} whose sup

port is contained in [s 2 , 00 ). Therefore, d¢* is a 'natural 

representative' [6, Chapter II] and a subsequent appeal to 

[6, Theorem II.4.5] yields s~ = sk+l" • 

The following second order oscillation theorem is the 

main result of this appendix. 

TH£·OREM A1 . 

satisfy 

The polynomials Q defined by (A1) and (1) n 
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(AS) S(g(x)) = S(~Q(x)) = k 

iff ~k < x < ~k+i (k = 0,1, •.. ). Here g(x) = {Q 0 (x),Q
1

(x), 

... } and ~Q(x) = {Q 0 (x),Q1 (x)-Q0 (x),Q
2

(x)-Q
1

(x), ... }. 

PROOF. The fact that s(g(x)) = k iff ~k < x ~ ~k+i is a 

restatement of the Basic Oscillation Theorem. The second 

part follows by application of the Basic Oscillation 

Theorem to the polynomials p* and observing that, by n 

When n1 < 00 a similar theorem may be obtained for the 

polynomials 

(A6) = P (x)/P <n 1 ) , 
n n n = O , 1 , • • • • 

Evidently, both theorems generate dual results by consi

dering the polynomials Q (x) = (-1)nQ (-x) and R (x) = n n n 
(-1)nR (-x), respectively. 

n 

In closing we remark that a finite version of Theorem 

A1 is stated in [7] and [8] in the context of birth-death 

processes. Indeed, the results of this paper apply to 

these stochastic processes as will be substantiated in a 

subsequent paper. 
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