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ABSTRACT 

We investigate the relative power of jumps, nondeterminism, and number 

of heads for real-time finite automata. Results include showing that jumps 

add power that cannot be compensated for by nondeterminism and more heads. 

We also show that k + 1 heads are more powerful thank heads, even if the 

finite automaton is allowed head-to-head jumps. 
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1 • INTRODUCTION 

Computations of l-way multihead finite automata have been considered 

by YAO and RIVEST [1978]. They show that k + 1 heads are better thank 

heads for both the deterministic and nondeterministic versions of the machine. 

Furthermore, they show that the k-head nondeterministic variety is strictly more 

powerful than the k-head deterministic one. JANIGA [1979] studied the analogous· 

questions for 2-way real-time multihead deterministic, respectively nondeter­

ministic, finite automata, from now on called 2DRTFA and 2NRTFA, respec­

tively. He obtained, mutatis mutandis, the same results for. the 2-way real­

time machines as did Yao and Rivest for the I-way (no time limit) variety. 

Whereas the latter used "palindrome like" arrangements of(~) substrings 

to obtain their result, for the 2-way real-time case Janiga employed strings 

of k palindromes. To be more precise, let PALM be the set of palindromes in 
* . * k {0,1} {2}{0,1} • Let Pk= (PALM{*}) • Then Pk is recognized by a (k+l)-head 

. * 2DRTFA but not by any k-head 2NRTFA.{0,1,2,*} -Pk is accepted by a 2-head 

2NRTFA but not by any k-head 2DRTFA. KOSARAJU [1979] has shown that the 

jump Turing machine as defined in SAVITCH and VITANYI [1977] can be simu­

lated in real-time by multitape Turing machines. A jump Turing machine 

has multiple heads on its one storage tape and each head can be shifted in 

one step to the position scanned by any other head, irrespective of the 

distance in between. So Kosaraju's result says that the computational power 

of real-time Turing machines is invariant under placing all of the heads 

on the same (storage) tape and adding the head-to-head jump option. Here 

we show that for 2-way multihead finite automata the head-to-head jump fa­

cility does extend the class of languages accepted in real.:.time •. Inciden­

tally, this also shows that the class of languages accepted by real-time 

2-way multihead finite automata is strictly included in the class R of 

real-time definable languages (ROSENBERG [1967]). Furthermore, we show that 

for real-time multihead finite automata the jump option cannot be compen­

sated for by adding more heads and nondeterminism. An extra head cannot be 

compensated for by adding jumps, nondeterminism, and bidirectionality. 

Nondeterminism cannot be compensated for by adding extra heads and jumps. 

With respect to real-time 2-way multi.head finite automata it is shown that 

k + 1 heads are better thank. For precise definitions of the devices and 
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·tlie addressed issues we refer the reader to the references. 

2. JUMPS VS NO JUMPS 

We give example languages which are acceptable in real-time by 2-way 

2-head finite automata with jumps, but not by any real-time 2-way multihead 

finite automaton without jumps. Hence these languages belong to R, and con-· 

stitute nontrivial examples of the power of the head-to-head jump option. 
--* * In the following, let h: {0, 1,0, 1} • {0, 1} be a homomorphism which is 

defined by h(a) = h(a) = a for a E {0,1}. 

--* * w v E {0,1,0,1} , vs {0,1} , a E. {0,l}, 

h(v) = v}; 

L2 = · ~ b u c va I w 'u" E · {0 , 1 , 0, T} * , v E · {0 , 1 } * , c E {O, T} , I u I = 

= I v I , a E {0 , 1 } , b E · {0 , 1 , 0, T} , h (b) = a} • 

The reader will easily figure out more complicated examples along 

these lines. Note that L1,L2 are linear context free but not deterministic 

context free. 

LEMMA 1. L1,L2 are accepted by detePministic real-time 2-'u)ay 2-head finite 

automata with jumps. 

PROOF. Let M be a 2-way 2-head finite automaton with jumps as follows. The 

front head reads from left to right one letter at a time. Whenever this 

first head reads a barred letter it calls the second head to its present 

position. This second head starts reading from right to left one letter at 

a t~me. So M is- able to recognize L 1 • A minor variation of M can recognize 

L2. 0 

LEMMA 2. L1,L2 are not accepted by any deterministic real-time 2-'u)ay rrrulti­

head finite automaton without jumps. 
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PROOF. We prove the Lemma for L1• The proof fbr L2 is similar. Suppose L1 
is recognized by a k-head real-time 2-way finite automaton~ but not by any 

(k-I)-head one. Since L1 is not regular, such a k must be greater than 1. 

Since~ is real-time, there must be at least one head which moves right at 

each step. For each constant c we can find an input word w such that, during 

the processing of w by~, some head lags behind the vanguard head more 

than c squares. If this were not so, then all heads are at all times with c 

squares of the vanguard head, and we could replace~ by an ordinary finite 

automaton with a larger finite-state control which keeps track of the sym­

bols under the k-I nonvanguard heads of the simulated machine. This would 

imply that LI is regular, which would be a contradiction. Since by assump­

tion LI is not recognizable by a (k-1)-head real-time 2-way finite automa­

ton, for each constant c we can find an input word w such that, during the 

processing of w by~, all k-I heads lag behind the vanguard head more than 

c squares. For suppose this were not the case. Since the vanguard head 

moves right at each step, at least one head must be at all times 

within c squares of the vanguard head, and similarly to the above, we would 

be able to replace~ by a (k-I)-head machine ~-l with a finite-state 

control which also keeps track of the symbol under the neighboring head of 

the vanguard head. Contrary to the assumption, this would imply the false­

hood of the lemma for k-1. So suppose that, subsequent to processing an 

input prefix, all other heads of~ lag behind the vanguard head more than 
. ---IC 

c squares, and the vanguard head now starts to read a suffix w E {0,1,0,l} 

such that lwl ~ c +l. In this situation, no other head of~ will ever scan 

a symbol from w. Let the input prefix, which forces the k-1 nonvanguard 

heads more than c squares behind the vanguard head, be z. At time lzl + I, 

all these k-1 heads scan a particular element of z. Set l = (c/2) - I. We 

next consider how~ will behave on suffixes chosen from the set 
· l-. l 

{0,1} {00}{0,I} • The constant c is chosen to be even and to be large 

enough to complete the argument. The number of distinct positions on z 

which these k-1 heads can reach, multiplied by the number of distinct 

states which the finite control can attain when the vanguard head 
- k-1 # O, is bounded above by c x Q, wnere Q is the set of states of 

finite control of~- The number of . . {0 },e_ • 2£. strings 1n ,1 1s • If 

crosses 

the 

l k-1 2 ~ c x #Q, which happens for c large enough, two distinct such 



strings, say u 1 and u2 , lead to the same 

after processing zu1 and zu2• Therefore, 
- R and zu2o Ou1 or rejects them both. Since 

not accept L 1 • D 

instantaneous description of Mk 
- R ~ accepts either both zu10 Ou 1 

u 1 ~ u2 it follows that~ does 

LellDJlas 1 and 2 immediately yield the following. 
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THEOREM 3. There are 'languages recognized by rea'l-time 2-way 2-head deter­

ministic finite.automata unth jumps which are not recognized by rea'l-time 

2-way deterministic rrru'ltihead automaton without jumps. 

The languages L1 and L2 which witness Theorem 3 are simple and the 

proof of Theorem 3 is also fairly simple. By appealing to a more complex 

proof of a result by Janiga, we observe that Theorem 3 can be strengthened 

to allow the machines with jumps to be nondeterministic as well. Recall the 
00 

discussion in the Introduction and consider the language P = Uk=lPk. It is 

easy to see that Pis recognized by a 2-head 2DRTFA with jumps. However, 

JANIGA [1979] showed that Pis not accepted by any multihead 2NRTFA without 

jumps. Hence we get the following. 

THEOREM 4. There are 'languages recngnized by rea'l-time 2-way 2-head deter­

ministic finite automata with jumps which are not recognized by any reaZ­

time 2-way nondeterministic mu'ltihead automaton without jumps. 

3. HEAD COUNT HIERARCHY FOR JUMP MACHINES 

We next show that the well known maxim 11k + 1 heads are better thank 

heads" remains true even if the real-time finite automata is allowed to 

have head-to-head jumps. Indeed, this result indicates that almost nothing, 

including jumps and nondeterminism, can make up for the power of an extra 

head. 

The witness languages for this head hierarchy are denoted Sk and their 

definition requires one other preliminary definition. For each k ~ 1, de­

fine a partial function fk from k tuples of strings over the alphabet {0,1} 
* to a string in {O, 1} • Specifically, fk (x1 ,x2 , ... ,~) = z provided that 

lx11 = lx21 = ••. = Ix. I = lzl and, for 1 ~ i ~ lzl, (z). = l~ 1(x.). mod 2. 
K 1. J= J 1. 
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Here (w). denotes the i th digit of a string w. Less formally, if we regard 
l. 

each x. and z as a vector of some number of O's and l's then 
J 

fk(x 1,x2 , ••• ,~) = z provided that z is the bit wise mod 2 sum of all the 

vectors xj. For each k ~ I, define Sk = {x1*xz*···*~*zl 

= l~I and fk (x1,x2 , ••• ,~) = zy, for some y}. 

THEOREM 5. For any k ~ I, Skis accepted by a(k+I)-head IDRTFA (without 

jumps) but not by any k-head 2NRTFA with jumps. 

PROOF. It is trivial to produce a (k+I)-head IDRTFA which accepts Sk. So we 

need only show that no k-head 2NRTFA with jumps can accept Sk. 

For the case k = I, note that I-head 2NRTFA's accept only regular sets, 

and SI is not regular. 

Next suppose k >I.Let M beak-head 2NRTFA with jumps which is 

claimed, for purposeR of deriving a contradiction, to accept Sk. Let l be 

a fixed, sufficiently large, integer. We will consider how M computes in 

accepting computations on inputs of the form xIOl*x20l*•··*~Ol*z where z 

and all the xi's are of length land f;xIOl,x2ol, ... ,~O~ = zOl. For each 

such input, we fixed one accepting computation of Mon that input and con­

sider the configuration of Mas the vanguard head reads the final *• 

By a configuration we mean the state of the finite control and the 

position of the tape heads. When the vanguard reads the final *, M must be 

in one of s(k(2l+I))k-I configurations, wheres is the number of states 

in the finite control of M. Set c(l) = s(k(U+I))k-I_ There are 2kl such 

inputs. So 2kl/c(l) such inputs must leave Min the same configuration when 

the vanguard head reads the final *· 

We now focus on these inputs and their fixed accepting computations, 

all of which leave Min the same configuration when the vanguard head 

reaches the last *· In this one configuration, some position i 0 ("some x. ") 
· (k-I )l 1 0 

has all heads at least l squares away from X• • There are 2 · choices for the io 
other Xj, j ~ i 0, and 2kl/c(l) inputs all together which 

configuration. But, for sufficiently large l, 2kl/c(l) > 

leave Min this 
(k-I )l 2 • So, there 

must be two such inputs that differ only in position xi • For notational 
0 

convenience suppose i 0 = I; the proof is similar for any other i 0 • With 

i 0 = 1, there are two inputs: 
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Ol ol ol x1 * x2 * • •. * xk * z 1 

such that: x 1 ~ Yt and, in the accepting computations on these inputs, both· 

computations leave Min the same configuration when the vanguard head reads 

the final*• Furthermore, in that configuration all heads are least l 

squares away from XJ or Yt• 

Since no head is within l squares of x 1 or y 1, the string in that first 

position cannot effect the next l moves of Min either computation. Hence, 

by a standard "cut and paste" argument, M accepts 

However, this is a contradiction since this string is not in Sk. 0 

4. NONDETERMINISM 

For our last Theorem, we observe that the result that nondeterminism 

adds to the power of 2-RTFA holds for machines with jumps. The witness 

language is L = {xzy*zRlx,y,z E {O,t}*}. It is easy to see that Lis 

accepted by a 2-head 2NRTFA, even without jumps. However, ROSENBERG [1967] 

has shown that Lis not accepted by any deterministic real-time Turing 

machine and the results of KOSARAJU [1979] showed that a 2DRTFA with jumps 

can be simulated in real-time by a deterministic real-time Turing machine. 

Hence, Lis not accepted by any 2DRTFA with jumps and so we get the 

following. 

THEOREM 6. There are languages accepted by 2-head 2NRTFA (without jumps) 

but not accepted by any rrrultihead 2DRTFA with jumps. 



(k+1)-2NRTFA + JUMPS 

/4~ 
(k+1)-2NRTFA k-2NRTFA + JUMPS 

/ 
k-2NRTFA 

\ \ 
(k+1)-2DRTFA + JUMPS 

(k+1 )-2DRTFA 
k-2DRTFA + JUMPS 

k-2DRTFA 

Figure 1. Inclusion diagram for the computing power of real-time 2-way 

multihead finite automata according to number of heads, deter­

minism, and jump option. 

5. SUMMARY 

All results above hold whether or not we assume end markers or that 

the heads can detect coincidence. 

We conjecture that Theorem 3 also holds for the corresponding Turing 

machine versions which are allowed to modify the contents·of each square 

7 

on the storage tapes but a bounded number of times, for some fixed constant 

bound. 

Figure is a summary of the inclusions which hold for 2DRTFA's and 

2NRTFA' s. All inclusions are proper. Classes which are not connected by a se­

quence of directed arrows are incomparable. Hence we see that there are 3 
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distinct parameters: nondeterminism-determinism, jumps-no jumps, and the 

number of heads. Looking back at the theorems in more detail, we observe 

that jumps plus nondeterminism cannot make up for an additional head; addi­

tional heads plus nondeterminism cannot make up for jumps; ancl jumps plus 

additional heads cannot make up for nondeterminism. 
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