

Printed at the Mathematical Centre, Kruislaan 413, Amsterdam. The Netherlands.
The Mathematical Centre, founded 11th February 1946, is a non-profit institution for the promotion of pure and applied mathematics and computer science. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

# Rigorous high speed separation of zeros of Riemann's zeta function, III 

 byJ. van de Lune \& H.J.J. te Riele

ABSTRACT

This is an intermediate report for the purpose of announcing that the first $300,000,001$ zeros of the Riemann zeta function $\zeta$ (s) in the critical strip are simple and lie on the line $\operatorname{Re}(s)=\frac{1}{2}$. This extends our previous result that the first $250,000,000$ zeros have this property.

KEY WORDS \& PHRASES: Riemann hypothesis, Riemann zeta function, RiemannSiegel formula, Rosser's rule

## 1. INTRODUCTION

This note is a continuation of our report NN 26/82 [2]. The purpose of the present note is to announce that the first $300,000,001$ zeros of the Riemunn zeta function $\zeta(\mathrm{s})$ in the critical strip are simple and lie on the Iine $\operatorname{Re}(s)=\frac{1}{2}$. This result was obtained by extending the computations (up to zero \# 250,000,000) described in [2]. Extending the computations a little further we found 4 Gram blocks in $\left[g_{300,000,000}, g_{300,000,004}\right)$, all of them satisfying Rosser's rule. By applying Theorem 3.2 of BRENT [1] we completed the proof of our claim.

In Section 2 we present tables similar to those given in Section 2 of [2], this time for the range $\left[g_{249}, 999,999, g_{300,000,000}\right)$. The FORTRAN/ COMPASS program by which the zeros in this range were separated is the same as that explicitly presented in [2].

We hope to extend our computations in the near future.

## 2. THE TABLES

In Table 2.1 we list the number of Gram blocks of type ( $\mathrm{L}, \mathrm{k}$ ), $1 \leq \mathrm{L} \leq 8,1 \leq \mathrm{k} \leq \mathrm{L}$, in the interval $\left[\mathrm{g}_{249,999,999}, \mathrm{~g}_{300,000,000}\right)$. Similarly as in NN $26 / 82$ these counts are exact.

On the lines with $\mathrm{L}=2$ and $\mathrm{L}=3$ in Table 2.1 we also list the number of exceptions to Rosser's rule of length 2 (with " 00 "-zero pattern) and those of length 3 (with " 010 "-zero pattern), respectively. Moreover, on the line with $\mathrm{L}=2$ we also mention the three blocks with " 22 "-zero pattern found in relation to the exceptions of type 5 and 6 (cf. Table 2.3). One exception to Rosser's rule of length $L=3$ was found. Note the occurrence of two blocks of type $(7,1)$, not observed before, and one block of type $(7,7)$, which is the second one observed (the first one being $B_{195,610,937}$ ). The entries in parentheses are the approximate percentages with respect to the total number of blocks of length $L$, given in the final column.

For all Gram blocks our strategy of finding the "missing two zeros" was the same as in [2]. Table 2.1 shows the justification of this strategy.

Table 2.1

Number of Gram blocks of type ( $\mathrm{L}, \mathrm{k}$ ), $1 \leq \mathrm{L} \leq 8,1 \leq \mathrm{k} \leq \mathrm{L}$, in the interval
$\left[\mathrm{g}_{249}, 999,999, \mathrm{~g}_{300,000,000}\right)$


In Table 2.2 we present the 64 exceptions to Rosser's rule in the range $\left[g_{249,999,999}, g_{300,000,000}\right.$ ), including the local extreme values of $S(t)$. (The definitions of the various types are implicitly given in Table 2.3).

Table 2.2

The exceptions to Rosser's rule of length 2 and 3
in the interval $\left[g_{249,999,999}, g_{300,000,000}\right.$ )
63 exceptions of length 2 " with zero pattern " 00 ".
Notation: $n$ (type) local extreme $S(t)$, where $n$ is the index of the Gram block $B_{n}=\left[g_{n}, g_{n+2}\right)$ containing no zeros

```
250076378(1) -2.036397
252442158(2) 2.085094
252904232(2) 2.112235
255145220(1) -2.002286
255285972(2) 2.034861
256713230(1) -2.015377
257992082(1) -2.042307
258447957(6) 2.005655
259298046(2) 2.091955
262141503(1) -2.006009
263681744(2) 2.006016
266617122(1) -2.046423
266628045(2) 2.048158
267305763(1) -2.028836
267388405(2) 2.012716
267441673(2) 2.085691
267464886(1) -2.006418
267554908(2) 2.112706
269787480(1) -2.080890
270881434(1) -2.026487
270997584(2) 2.021752
```

272096379(2) 2.001554
$272583009(1)-2.032037$
$274190882(2) \quad 2.008416$ $274268747(1)-2.018420$ $275297430(2) 2.014738$ $275545477(2) \quad 2.032087$ $275898480(2) 2.005068$ $275953000(1)-2.007296$ $277117197(5)-2.069283$ 277447311(2) 2.058999 $279059658(2) \quad 2.037126$ $279259145(2) \quad 2.033129$ $279513637(2) 2.000375$ 279849070(2) 2.048163 280291419(1) -2.021221 $281449426(2) \quad 2.000609$ $281507954(2) 2.001841$ 281825600(1) -2.033191 $282547094(2) \quad 2.002833$ 283120964(2) 2.028096 283323493(1) -2.032511
286688824(1) -2.046407
287222173(2) 2.048065
$287235535(2) \quad 2.024894$
287304862(2) 2.003208
287433571(1) -2.021945
$287823551(1)-2.038399$
$287872423(2) \quad 2.016959$
$288766616(2) \quad 2.024072$
$290122964(2) 2.039001$
$290450849(5)-2.068090$
$291426142(2) \quad 2.075533$
$292810354(2) \quad 2.048278$
293109862(2) 2.013978
$293398055(2) \quad 2.042772$
$294134427(2) \quad 2.043302$
294216438(1) -2.005490
$295367142(2) \quad 2.049246$
297834112(2) 2.022351
299099970(2) 2.030191

1 exception of length 3 with zero pattern "0 10 ".
${ }^{B}{ }_{266,527,881}$, followed by a Gram block of length 1 containing 3 zeros; local extreme $S(t)=-2.008550$.

Table 2.3 contains the frequencies of occurrence of the various types of exceptions to Rosser's rule in the range $\left[g_{249}, 999,999, g_{300,000,000}\right)$. Note that the number of exceptions of type 2 is twice the number of exceptions of type 1. There are neither exceptions of type 3 nor of type 4 in the range under consideration.

Table 2.3

Various types of exceptions to Rosser's rule and their frequencies in $\left[g_{249,999,999}, g_{300,000,000}\right)$
Exceptions of length 2
Gram block of length
2 without any zeros


Exceptions of length 3
$\left|\begin{array}{l}\text { Gram block of length } 3 \\ \text { containing } 1 \text { zero }\end{array}\right|$


Finally, from Tables 2.1 and 2.2 we have counted the following numbers of Gram intervals in $\left[g_{249,999,999}, g_{300,000,000}\right.$ ) containing exactlym ( $0 \leq m \leq 4$ ) zeros.

| m | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ | $6,832,292$ | $36,424,554$ | $6,654,012$ | $89,143^{*)}$ | 0 |
| $\%$ | 13.7 | 72.8 | 13.3 | 0.2 | 0.0 |

4. REFERENCES
[1] BRENT, R.P., On the zeros of the Riemann zeta function in the critical strip, Math. Comp., 33 (1979) pp. 1361-1372.
[2] LUNE, J. VAN DE \& H.J.J. TE RIELE, Rigorous high speed separation of zeros of Riemann's zeta function, II, Report NN 26/82, June 1982, Mathematical Centre, Amsterdam.
*) We take the opportunity to correct a misprint in the corresponding table in [2]: the printed number 88,312 should read 88,314 .
