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The multi-grid method in the solution of time-dependent nonlinear partial 

differential equations*) 

by 

H.B. de Vries 

ABSTRACT 

The numerical solution is discussed of nonlinear, time-dependent 

partial differential equations. By applying the method of lines such a 

partial differential equation is converted into a system of ordinary differ­

ential ·equations to which an implicit linear multistep method is applied. 

Using Newton iteration the nonlinear implicit relations are replaced by a 

sequence of linear equations. These linear equations are solved by the 

iterative use of a multi-level algorithm. Numerical examples are given and 

a co.mparison is made with other integration techniques. 

KEY WORDS & PHRASES: NumePical a:nalysis, method of lines, initial-boundaPy 

value pPoblems, multi-gnd methods, incomplete 

LU-decomposition. 

*) This report will be submitted for publication elsewhere. 





I . INTRODUCTION 

Let the system of ordinary differential equations (ODE's) 

(1. I) 
dv k k k 
~ = f (t,y ), V 
dtv 

I , 2 

with prescribed values for yk (and dyk/dt) at t= t 0 originate from the semi­

discretization on a uniform grid Qk (with grid parameter hk) of a parabolic 

(v=I) or hyperbolic (v=2) two-dimensional partial differential equation 

(PDE). Here:, the index k refers to the grid Qk, i.e. k denotes the level of 

discretization. By applying a linear multistep method to this equation we 

are asked to solve at each time step the system of equations 

( I. 2) 

k 
where yn denotes the numerical solution at t = tn' T = tn+l-tn and {al,bl} 

are real coefficients. The (approximate) solution of (1.2) is identified 
. h k 

wit Yn+I. 
Using Newton iteration the nonlinear implicit relations (1.2) are 

replaced by a sequence of linear equations. In section 2 we describe a 

multi-grid method for the solution of these linear equations. 

The computational work involved in the Newton iteration and the multi­

grid method is considered in section 3. 

Finally, in section 4 numerical experiments are reported for a number 

of semi-discrete parabolic equations (v=I). Also comparisons are given with 

the PCGC method [5] and the SC method [6]. 

2. THE MULTI-GRID :METHOD 

Using the modified Newton-Raphson process -we replace the system of 

equations (1.2) by a sequence of m systems of linear equations on Qk[S,9]: 

(2. l) 
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h ( k) (pred) b . d b d. k k . w ere y 1.s o ta1.ne y some pre 1.ctor formula on Q , J 1.s the 

Jacobian matrix on Qk and Ik denotes the right-hand side of ( 1. 2) on Qk. 
n 

In the outer iteration (2.1) each of the systems of linear equations 

is solved by the iterative use of a multi-grid method [2] (inner iteration). 

The multi-grid method uses a coarse to fine sequence of computational grids, 
. . nk nk-1 n O ( ,k . h f. . d d O . h . d) viz." , ,, , ... •" ~, 1.s t e 1.nest gr1. an Q 1.s t e coarsest gr1. ,-whereas 

in the two-grid method the grids Qk and Qk-l are only used [2,8].' For the 

computational grids rii1 (l=0,1, ... ,k) the grid parameter hi is defined by 
l l-1 h = h /2 for l = k, k-1, ... ,1. In the two-level algorithm (cf.[5,9]) we 

have to solve a discretized problem on the coarse grid Qk-l. The multi­

level algorithm approximates the solution of this problem by application 

of a number of iteration steps of the same algorithm on the coarse level, 

i.e. the multi-level algorithm is. the recursive application of the two-level 

algorithm. Now we only have to solve directly a discretized problem on the 
.d 0 very coarsest gr1. Q 

Before we describe the multi-level algorithm we introduce the 

restriction operator Rl and prolongation operator Pl for l = 1, ••. ,k 

(cf.[5]): 

(2. 2a) 

(2.2b) 

where vJ is a grid function defined on level j for j = O(l)k. 

In the multi-grid method we consider the sequence of equations 

.l V .P l l .P [ 1 - b0 T J-J x = ¢ , J-

(2.3) 

l 
= 3f (t ( l)(O)) l = -=--z n+l' y ' 

3y 
O(l)k, 
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kl where for l < k I represents a simple transfer of values of the coarser 

grid nl from the corresponding points in the finest grid nk (called in [1] 

injection). The functions$! are defined by 

(2.4) 

~l where x is an approximation of the solution of (2.3) to be specified 

later. 

For the solution of (2.3) we consider iterative processes based on an 

l "f-incorrrpZete LU-decomposition (ILU) of I - b0T on the levels l = l(l)k: 

(2.5) 

where 1ltf - R,e = I,e - b0T"Jl. The iteration method (2.5) (called in [2] 

relaxation method) can also be obtained by applying iterative refinement 

to the preconditioned system ( 2.(.3) (cf. [SJ ) • In the experiments we use 

the ILU-7 relaxation method as described in [5,9]. Other possible relaxation 

methods are ILU-5 and ILU-9 (see [9]). These relaxation methods are suitable 

when the components in the right-hand side fk of (1.1) are coupled according 

to a five-point molecule. 

Furthermore, we assume that on the coarsest grid n° the equation (2.3) 

with l = 0 is solved exactly by a (complete) LU-decomposition, i.e. 

(2.6) 

The multi-level algorithm (MLA) can be described in quasi-Algol as: 

proc MLA = (integer l,p,q,s, vector yl,$l) vector: 

begin 

vector 

if 

,e 
X ' 

l-1 
$ ' 

,e = 0 

l-1 z ,-
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then xO := [L OUO] - 1 c/>O 

else 

fi; 

l 
X 

end; 

t .t 
X := y ; 

for i to p do .t 
X := ~£if -1 [L J c'ii.tx.t+<J/J od; 

<Pl-1 := Rl(<P.t - [Il-bo.v/Jxl); 

l-1 O· z := 
' 

for i to q do l-1 
z 

.t-1 l-1 := MLA(l-1,p,q,s,z ,~ ) od; 

Notice that proc MLA is a recursive procedure. 

One multi-level iteration, i.e. one execution of MLA, will be denoted by 

(2. 7) MLA (k,p,q,s), 

where k indicates the highest level (finest grid Qk) and p,q ands are 

specified in proc MLA. The multi-level algorithm on level l consists of: 

i) p relaxation sweeps on level l (pre-relaxation). 

ii) a coarse grid correction (cf.[2,5]), consisting of: 
. l-1 a) computation of cp • 

b) approximation of the solution of (2.3) on level (l-1), by 

either q sweeps of MLA on level (l-1) or if l = 1 by (2.6). 

c) prolongation of the correction to level land addition of 

the correction to the latest approximate solution on level l. 
iii) q relaxation sweeps on level l (post-relaxation). 

The multi-level algorithmMLA is the linear variant of the multi-grid method and 
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has a fixed strateey, i.2. the iterations are controled by the fixed 

numbers p, q and s. Brandt [I] calls the linear variant the CS-algorithm. 

In the numerical experiments several choices for the parameters p, q 

ands will be considered. When p = O, q = I ands~ I the multi-level 

algorithm MLA can be implemented in another way. Then the recursive 

structure of MLA can be avoided (cf.[8]). 

REMARK 2.1. From (2.5) it follows that for l = 1(1) k 

(2.8) 

~l Since R has usually less non-zero diagonals than the original matrix, this 

is a cheap way to compute the residual ~l - [Il-b0TvJl] xl. In the numeri­

cal experi1nents the residual is computed by means of Rl. For instance, 

choosing p = 1 in proc MLA the residual is equal to Rl(xl-yl). For p = 0, 

i.e. only post-relaxation in MLA, we need an extra array for storage when 
~l the residual is computed by means of R. 

In order to describe the PMG (Preconditioning and Multi-Grid) method 

we introduce the notations: 

E 

m 

evaluation of the function (iflk)(j-l) defined in (2.1). 
k ( ·-1) 

number of right-hand side evaluations (~) J per integration step, 

i.e. the number of Newton iterations (2.1) per integration step. 

M number of MLA iterations on level k per Newton step. 

A particular PMG method is now denoted by 

(2.9) 

The different variants of the multi-level algorithm are determined by 

the fixed numbers p, q ands and by selecting_different procedures for the 

ILU-relaxation (2.5), the restriction (2.2a) and the prolongation (2.2b). 

We select the weighted restriction Rl and linear interpolation Pl as de­

fined in [5] (called in [4,8] 9-point restriction and 9-point prolongation, 

respectively). Most work in MLA is spent with relaxation. From the theoret­

ical and numerical results reported in [9] it follows that in two-level 

algorithm the ILU-7 relaxation is to be preferred to the ILU-5 and ILU-9 
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relaxation for the problems under consideration. In [10, Appendix A] we il­

lustrate also by a few numerical experiments that ILU-7 relaxation appears 

to be the best choice in the multi-level algorithm. Therefore, we select the 

ILU- 7 re Z.azation. 

Let n be the solution of equation (1.2) and define the iteration error 

£. = (yk)(j) - n. Then it is easily verified that the final iteration error 
J • pA+v(m+l) 

of (2.1) 1s E = 0(, ) as, • 0, where pis the order of accuracy of 
m 

the predictor formula used in (2.1) (cf.[5]). Thus, the order of consistency 

of the PMG method is given by 

(2.10) p* = min (p,mv+p), 

where pis the order of accuracy of the generating linear multistep method 

( 1. 2). 

3. THE COMPUTATIONAL WORK OF THE PMG METHOD 

In this section an estimate will be derived for the computational work 

of the PMG method. In this estimate the computation of matrix-indices 

(array subscripts) and other overhead costs are neglected (see also [4,8]). 

An operation will be defined as an element from the set{+,-,*,/}. Let the 

uniform grid nk for two-dimensional PDE's have N inner· points (in the ex­

periments N=((l/hk)-1) 2), and the uniform grids l,- with hi.= 2k-i. hk have 

approximately N/4k-i. inner points for l = O(l)k-1. 

3.1. The computational wot;"k per integration step 

In order to describe tne computational work per integration ·step we 

introduce the following notations: 

WPRED the computational work to compute (yk)(pred)(see (2.1)) 

WJACE. the evaluation of the matrices Ii. - b 0,v~ for l = O(l)k 

WIDEC the computational work of the ILU-decomposition on Qi. for l = l(l)k 

(see section 2) 

WE the evaluation of (~k)(j-I)(see (2.1)) 



WMLA the computational work to perform one MI.A-iteration (or cycle) on 

level k. 

For a nonlinear problem the computational work per integration step 

7 

of the PMG method, denoted by WPMG' can be given by the following expression 

(3. 1) 

where m and Mare defined in section 2. Notice that in case of linear prob­

lems the matrices Il - b0,v/ and their decompositions are determined once. 

We assume that the coarsest grid n° is coarse enough (i.e., k is sufficient­

ly large chosen) to make the solution of its algebraic system (2.3) with 

l = 0 inexpensive compared with one relaxation sweep over the finest grid 
k n [ t , SJ. 

3.2 •. The computational work of one· MI.A-iteration 

Here we derive an estimate of the computational work WMLA to perform 

one MI.A-iteration. It will be assumed that there are at least-more than two 

grids, i.e~ k: > t. The computational work in the multi-level algorithm is 

determined by (p+s) -'-.relaxation sweeps on the levels l = l(l)k, the compu-
l-I tation of cp . for l.= I (I )k, and the prolongation .and addition of the 

correction on the levels l = l(l)k. 

The number of operations of the ILU-7 relaxation on nk is equal to 17N 

(cf.[9]). Using the matrix Rk to compute the residual cf>k - (Ik-b0,v-Jk) xk 

(see Remark 2.1) the number of operations is equal to 4N. Further, the num­

bers of operations for the restrictor Rk and prolongator Pk are 2.75N and 

2N, respectively. 

Then, the number of operations in one MI.A-iteration is 

(3.2) 4 WMLA = 4_q [9.75+(p+s)17] N, q < 4. 

REMARK 3.1. Note that in the special case p = 0 and q = I the multi-level 

algorithm can be implemented without using the recursive structure (see 

also section 2). Then writing proa MI.A in this simple way the number of op­

erations in ·one MI.A-iteration is 
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(3 • 2) I 

where it is again assumed that the residuals are computed by means of the 

matrices iit for ,f_ = 1 ( 1 )k. 

3.3 The computational work of the ILU-decompositions 

k The numb,er of operations to perform the ILU-7 decomposition on Q 

(cf.[9]) is 17N. Then the computational work of the ILU-7 decompositions 

on Q,f_ for ,f_ = l(l)k WIDEC is 

(3.3) WIDEC = ~ * 17N = 22 ~ N for k· > 1 • 
3 

k C-1) 3.4 The evaluation of the function(~) J . 

Let the number of operations to perform one Ek - evaluation (the right-
n k ('-1) 

hand side of (1.2)) be denoted by WE . Then, one evaluation of (~) J 

(occurring in (2. 1)) WE costs one flc - evaluation ( the right-hand side of 

(I.I)) plus (WE+ 13) N operations. It shou~d be noted that in the implemen­

tation of the Newton iteration (2.1) (~k)(J-l) is computed as: 

k v k k because I - b0, J is evaluated instead of J. 

4. NUMERICAL EXPERIMENTS 

4. I The numerical examples 

All initial-boundary value problems chosen for our numerical experi­

ments are defined on O::; t::; 1 and 



and are semi-discretized on a uniform grid nk with mesh width hk using 

standard symmetric differences. The grid nl has grid parameter hl = 2hl+l 

for l = k-l,k-2, ••• ,0. 

The problems we chose are all of the form 

(4. l) 
au 
-= at 

9 

0 :,; t :,; l, 

where the coefficient d(t,x1,x2) and the term v(t,x1,x2) are specified 

below, and the integer rands are nonlinearity parameters. The Dirichlet 

boundary conditions as well as the initial condition at t 0 = 0 follow from 

the exact solution given in table 4.1. 

Table 4.1. Specification of the test problems. 

Example Solution d(t ,x1 ,x2) r s v( t, XI ,x2) 

Ia 1 + -t 2 2 de (x1+x2) 0 
-t 2 2 -e (x1+x2+4d) -2 

lb 100 

-t 2 2 II + e (x1+x2) l+t 
2 -t -t 2 2 -e [4d+(1+4e )(x1+x2)J 

xtx2 -B X +X 2 
l sin 21ft 3 0 ( 1 . 2) . 321ft + 2 III z<xt+x2) 2(l+t) l+t sin 

- 1r(x1+x2) cos 21rt] 
b4 ~ 1/4 5 0 -2 IV 5 (2t+x1+x2) 

4.2 The numerical scheme 

In the case of parabolic PDE's, i.e. v = 1 in (1.1), we integrate the 

initial value problem (1.1) with the fourth order backward differentiation 

formula (BDF4) [7] which results in 
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(4. 2) 
I 2 ~k 

ho = 25 ' Un = 

in the iteration process (2,1). 

In order to apply (4.2) four starting values are required which were 

obtained from the exact solution of the initial-boundary value problems. 

Furthermore, the Jacobian matrices .f- for l = O(l)k, were obtained by 

analytical differentiation. In case of nonlinear problems the Jacobian 

matrices were updated at the beginning of every integration step. In section 

2 we have already specified the restriction, prolongation and the relaxation 

method (ILU-7) in the multi-level algorithm. The parameters p,q ands (see 

section 2) in MLA, the number of Newton steps per integration step m, the 

number of MLA-·i terations per Newton step M and the predictor formula in 

(2.1) are still to be specified. 

The variant MLA(k,p, l ,1:,) appears to. be rr.ore efficient .than MLA(k~p,2,;s), 

although NLA (k,p,2,s) has a slightly smaller convergence factor than 

HLA(k,p, 1,s) (cf. [4,8]). Therefore, we choose q = 1 in MLA. 

For the PMG method in [E{MLA(k,p,1,s)}M]m mode (see section 2) the pa­

rameters p,s,k,Mand m will be specified in the tables of results. In section 

4.3 different variants of MLA(k,p,l,s) will be considered. 

(4. 3) 

In [5] the predictor formula starting the iteration process (2.1) is 

cl') (pred) = k 
y • n 

Instead of the zero order predictor formula (4.3) we will also use 1n the 

PMG method the third order extrapolation formula 

(4. 4) (yk)pred = 4 (yk+yk 2) _ 6yk yk 
n n- n-1- n-3 

as predictor formula. The predictor formulas (4.3) and (4.4) are both as­

ymptotically stable (cf.[8]). Therefore, on the ground of accuracy consid­

erations it is obvious that the more accurate predictor formula (4.4) is 

to be preferred in the PMG method. In [IO, Appendix BJ the effect of the 

predictor formulas (4.3) and (4.4) in the PMG method is illustrated for 
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the examples III and IV. In the sections 4.3 and 4.4 we want to apply the 

PMG method for a large value of M, viz. M = 8. Using the predictor (4.4) 

for large values of M we can expect that the results are influenced by 

limiting precision difficulties. Therefore, the less accurate predictor 

(4.3) has been used in the sections 4.3 and 4.4. In section 4.5 we use the 

third order predictor (4.4). 

In the tables of results we listed the accuracy measured by the number 

sd of corre.ct significant digits at t = I defined by 

(4.5) sd = mi~ (- 101og J exact solution-numerical solution J). 
Q 

Furthermore, we use the notations: 

r the average reduction factor of the MLA-algorithm, i.e. av 

(4. 6) r = av 

where JI JJ ,~ is the Euclidean norm, (Vk) (i) is the i-th iterand of the MLA-

iteration ~~d (Vk)(O) is the starting value for the MLA-iteration in the 
. . . (2 1) . b (Vk) (O) ( k) (j-J) J-th Newton iteration . given y = y • 

lq0 . 1 the number of operations to obtain a factor O. 1 reduction of the error 

by application of the multi-level algorithm, i.e. 

(4. 7) 1
10 

= WMLA / log rav I, 

where WMLA is the number of operations of one MLA-iteration. 

By numerical experiments we compute the values of rav and w0 _1. Based 

on these numbers we determine what variants of the MLA are more efficient. 

4.3 The effect of grid refinement and the parameters p ands 

In table 4.2 we illustrate the effect of the parameters p ands in 
k MLA and the: effect of the grid parameter h on r (4. 6) and w0 1 (4. 7) 

b b ~ ' 
for problem I . For the linear problem I the starting values of the BDF4 

are computed at t = O,r ,2T ,3,. We take just one integration step (i. e,,=t), 

because we are only _interested in the solution of a linear system. 
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It is obvious that the effect of grid refinement and the parameters p and 

sis independent of the choice of the predictor formula in the PMG method. 

In the PMG method we choose m = I and M = 8 for problem lb. In order to 

avoid the limiting precision difficulties we choose the zero order predictor 

formula (4.3). 

Table 4.2. Results for problem lb with T = 1/4, m = I and M = 8. 

MLA-mode: MLA (k, I , I , I ) MLA(k, I, l ,0) MLA (k, 0, l , l ) 

WMLA: salN 2 34N 3 353N 

k hk r wo. l r w r WO. l av av O. I av 

2 1/20 0.022 35.2N 0.066 30.2N 0.072 29.8N 

2 1/24 0.021 34.8N 0.067 30.4N 0.072 29.8N 

3 1/32 0.023 35.6N 0.067 30.4N 0.074 30. lN 

3 1/40 0.023 35.6N 0.066 30.2N 0.073 29.9N 

3 1/48 0.022 35.2N 0.065 30.0N 0.072 29.8N 

The results in table 4.2 show that the average reduction factor r av 
of the MI.A-algorithms are independent of the grid parameter hk. The numbers 

of operations in one MLA(k,l,I,l) and MLA(k,I,I,0)-iteration are given by 

(3.2) and the number of operations in one MLA(k,0,1,1)-iteration is given 

by (3.2)'. For this problem the variant MLA(k,1,1,0) is more efficient than 

the variant MLA(k,1,1,0). Although MLA(k,0,1,1) is slightly more efficient 

than MLA(k,1,1,0) we prefer the variant MLA(k,1,1,0), because it is cheaper 

in storage (see Remark 2'.. I) and its average reduction factor of the error is 

smaller. Smaller values of r lead to more accurate numerical solutions. av 
The numerical results in [10, Appendix B] show that for the accuracy 

smoothing before the coarse grid correction is preferable to smoothing after 

the coarse grid correction. 

REMARK 4. I. Implementation of MLA(k,O, 1, l) in a "space-economic" way results 
. k [ k v k] k in more computational effort. In this case the residual~ - I -b0T J x 

is determined by means of the original matrix, which results in ION opera­

tions instead of 4N. Then, it is obvious that in this case MLA(k,0,1,1) is 

less efficient than MLA(k,1,1,0). 
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In [3] Hemker shows that in order to obtain a small error in a multi­

level cycle pre-relaxation is to be preferred, while post-relaxation is 

preferred in a multi-level cycle to obtain a small residual. 

4.4 Comparison of the PMG method with the PCGC method 

The PCGC method is based on the same Newton-iteration (2.1), but now 

the systems of linear equations occurring in (2.1) are solved by the itera­

tive use of a two-level algorithm (TLA). Notice that in TLA the grids nk 
k-1 and n are only used. The two-level algorithm TLA consists of p ILU-7 

relaxation sweeps on Qk, a coarse grid correction and againsILU-7 relaxation 
k sweeps on Q • In the coarse grid correction we solve a dis:cretized problem 

on nk-l iteratively by means of µ-iterations with ILU-7 relaxation (cf.[9]). 

A particular two-level algorithm will now be denoted by TLA(p,µ,s). Further­

more, for the PCGC method which is also based on (2.1) we introduce the 

following notation [E{TLA(p,µ,s)}M]m, where E and mare defined in section 

2 and here M denotes the number of TLA(p,µ,s)-iterations per Newton step. 

In this section we compare the PMG method in [E{MLA(k,1,1,l)}M]m mode 

with the PCGC method in [E{TLA.(1,4,l)}M]m and [E{TLA.(1,8,l)}M]m mode. In 

the comparison we have to choose the same number of pre-and post-relaxations 

in both methods (here,p = s = 1). Other choices for the parameters p ands 

lead to the same conclusion. Further, the choice of the predictor formula 

is not so important here, because both methods are based on (2.1). For the 

same reasons as explained in the preceding subsections we choose the zero 
b order predictor formula (4.3). For problem I the starting values of the 

BDF4 are computed at t = 0,T,2T,3T with T =¼(i.e., just one integration 

step). 

In figure 4.1 the average reduction factor r ((4.6) with M = 8) of 
av k 2 

the MLA-and TLA-algorithms are illustrated as a function of 1/(h) for 

the linear example Ib(i.e.,m = in both methoas). In MLA(k,1,1,1) we put 

k = 1- for hk = 1/10, 1/12, k = 2 for hk = 1/16, 1/20, 1/24 and k = 3 for 

hk = 1/32, 1/40, 1/48. The experimental values of r obtained by TLA av 
(1,4,1), TLA(l,8,1) and MLA(k,1,1,1) are denoted by 0,1 and x, respectively. 
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MLA (k , J , l , I ) 
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The values of r ((4.6) with M = 8) as a function of J/(hk) 2 
av 

obtained by TLA(J,4,t), TLA(J,8,t) and MLA(k,I,l,I) for problem 
lb . h I W1t T = 4. 

2400 

k Figure 4.1 shows that for the range of h values the average reduction 

factor of MLA(k,l,l,t) remains more or less constant, whereas the average 

reduction factor of TLA(l,4,t) and TLA(l,8,1) increases if hk decreases. 

In order to co,mpare the efficiency of the PMG and PCGC method we have to 

consider only the computational work in the inner iteration (MLA-or TLA­

iteration), because both methods are based on the same Newton iteration. 

For this linear example the decompositions and Jacobian avaluations are re­

quired only once. Therefore, the preliminary work can be neglected without 
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affecting the comparison. The number of operations of one MLA(k,t,t,1)-ite­

ration (WMLA) is atmost 58½N, whereas the numbers of operations of one 

TLA(l,4,1)-and TLA(l,8,1)-iteration are (cf. [9]) 59.75N and 76.75N, res­

pectively. Thus, for small hk values the PMG method is more efficient than 
b the PCGC method for problem I. 

In table 4.3 the sd-values for problem lb are illustrated obtained by 

E[TLA(l,4,1)]4, E[TLA(l,8,1)] 4 and E[MLA(k,I,I,1)] 4 for a range of hk-values. 
k The PCGC method loses accuracy when the grid parameter h decreases. In the 

PMG method the accuracy remains more or less constant (sdce4.8, being the ac­

curacy of the BDF4 method for c= 1/4). 

Table 4.3. sd-values for problem lb with T = I/4 obtained by 

lE [ TLA (I , 4, 1 ) ] 4, E [ TLA ( 1 , 8, 1 ) ] 4 and E [MLA (k, I , 1 , 1 ) ] 4 • 

k h k E[TLA(l, 4, 1 )] 4 E[TLA(l ,8, 1)]4 E[MLA(k, I, 1, l)] 4 

1 1/10 4.71 4.71 4.71 

1 1/12 4. 72 4. 72 4. 72 

2 1/20 4.83 4.70 4.76 

2 1/24 3.19 4.71 4.75 

3 1/32 1.51 3.68 4~ 77 
' 

3 1/40 .65 2.09 4.76 

j 
3 1/48 • 16 l • l 9 4. 77 

Additional experiments have shown that for the nonlinear example IV 
- k 

with T = 1/10, h = 1/32, k = 3, m = 1,2,3,4 the PMG method in 

[E (MLA(k, I, l, l))Jm mode is more efficient than the PCGC metbnd in 
m · ID 

[E (TLA( I, 4, l)) J and [E (TLA(l, 8, 1))] mode. In both methods the zero order 

predictor formula (4.3) has been used. The computational work in the PMG 

method is more or less equal to the computational work in the 

[E(TLA(l,4,l))]m method, but the PMG method is more accurate. The PMG method 
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m and the [E(TLA(I,8,1))] method produce the same accuracy for the same va-
lue of m, however the PMG method is cheaper. 

For nonlinear problems the number of operations per integration step 

to perform the !LU-decompositions in the PCGC method and the PMG method is 

equal to 21.25N and 223N, respectively. The computational work of the evalua­

tion of theJacobianmatrices per integration step in the PCGC method and the 

PMG method is equal to~ WJ and~ WJ, respectively, where WJ denotes the com­

putational work of the evaluation of Ik b0 .v Jk. 

To implement the PCGC method we need 23½ arrays of length N for storage. 

The PMG method requires the storage of Il - b0 .v Jl for l = O(l)k, Ll, uf-
~l O O k ( '-1 ) · 

and R for l = l(l)k, L, U, (~) J and ~+I for s = 0(1)4 when the n -s 
BDF4 method (4 .• 2) is chosen as implicit formula (1.2). Then to implement the 

PMG method with ILU-7 relaxation we need at most 24~ arrays of length N for 

storage. 

The final conclusion (based on the experiments) is that for a small 

grid parameter hk the PMG method is considerably more efficient than the 

PCGC method when also the preliminary work and the storage requirements are 

taken into account. 

4.5. Comparison of the PMG method with.the sc·method 

From the results of the preceding subsections and [IO, Appendix] it 

follows that the PMG method in E[MLA(k,I,1,0)] 2 mode with the third order 

predictor formula (4.4) appears to be a good choice. This particular PMG 

method has been compared with the SC method described in [6]. Notice that in 

this PMG method one Newton iteration ((2.1) with m=l) is sufficient in order 

to obtain a fourth order accurate method (see Section 2). 

The SC method is also based on BDF4 (4.2). In the SC method the system 

of equations (1.2) is solved by a splitting method (ADI) and this iteration 

process is accelerated by using Chebyshev polynomials. The initial appr~~i- · 

mation used in the iteration processJ.s the third order extrapolation formu­

la (4.3) smoothed by an adjusted Jacobi iteration. The resulting fourth or~ 

der, fourstep splitting method (called SC method) has a real stability 

boundary bounded below by cffi4, lli being the number of iterations and the 

constant c is approximately equal to 4. In the SC method we performed only 
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one Newton iteration in solving each implicit relation. 

In the PMG method the initial-boundary value problems were semi-dis­

cretized using standard differences on the uniform grids nl, l = O(l)k with 

hk = 1/24 and k = 3. In the SC method we only use one grid, viz. nk. 

Our test examples are problem II and III both with hk = 1/24 and k = 3. 

For these examples the starting values needed by the PMG method and the SC 

method were obtained by computing them from the exact values prescribed at 

t = -3., -2., -., o. 
In order to compare both methods we introduce the following notations: 

I:f total number of fk-evaluations (the right-hand side of (I.I) ) 

I:J total number of Jacobian evaluations on nk for the SC method and-on 

nl with l = O(l)k for the PMG method 

ACE the additional computational effort expressed in the total number 

of operations on nk for the SC method and on nl with l = O(l)k for 

the PMG method. 

A conclusion based on the sd- and I:f- values as to which method is the 

more efficient one is difficult, since on should also measure the additional 

computational effort required by both methods. Therefore, we list in the 

tables of results also the ACE-values required by the PMG method and the SC 

method. For a nonlinear problem the value of ACE for the particular PMG 

method used in this section is given by!* 119N operations and the value 
16· 

of ACE for the SC method is given by [T + 15 * I: ICHEB]N operations, where 

N is the number of inner points of the grid nk and I: ICHEB denotes the total 

number of Chebyshev iterations in the SC method. The I:f-values in the PMG 

method and the SC method are given by ~ and i * I:ICHEB + .f , respectively. 

For a more detailed discussion of the additional computational effort in the 

PMG and SC method we refer to [JO, Appendix C]. 

It should be noted that for nonlinear proelems the computational work 

of the evaluation of the Jacobian matrices in the PMG method is equal to 
-1 4 

T * 3 *WJ, where WJ denotes the computational work of the evaluation of 

Ik - bO .v Jk. 
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Table 4.4a. Results for problem II with hk = 1/24 obtained by 

E[MLA(3,1,I,O)J 2 with the predictor (4.4). 

'[ sd :Ef :EJ ACE 

1/5 4.8 5 5 595N 

1/10 6.08 10 10 1190N 

1/20 7.34 20 20 2380N 

1/40 8.57 40 40 4760N 

Table 4.4b. Results for problem II with hk = 1/24 obtained 

by the SC method. 

'[ sd :Ef :EJ ACE 

1/5 * - - -
1/10 * - - -
1/20 6.10 140 20 1220N 

1/40 7.54 212 40 1930N 

1/80 8.71 400 80 3680N 

In the tables 4.4a and 4.4b numerical results are listed for problem 

II obtained by the PMG and SC method. An asterisk indicates instability. 

In order to produce the same accuracy the SC method requires considerably 

more fk-evaluations. For -r = 1/5 and,= 1/10 the PMG method is ·already 

very accurate, whereas the SC method is unstable. For small ,-values the ad­

ditional computational effort in the SC method is less than in the PMG 

method. 



Table 4.5a. Results for problem III with hk = 1/24 obtained by 

E[MLA(3,l,l,O)J 2 with the predictor (4.4). 

1" sd u EJ ACE 

1 / 10 * - - -
1/15 2. 72 15 15 1785N 

1/20 3.25 20 20 2380N 

1/40 4.3 40 40 4760N 

1/80 5.45 80 80 9520N 

1/160 6.64 160 160 19040N 

Table 4.5b. Results for problem III with hk = 1/24 

obtained by the SC method. 

1" sd u IJ ACE 

:2: 1/40 * - - -
1/80 5.89 390 80 3605N 

1/160 6.89 676 160 6430N 

I 9 

In the: tables 4.5a and 4.5b the numerical results are listed obtained 

by the PMG and SC·method for problem III. For, :2: 1/40 the SC method failed 

because the: Newton process did not converge (indicated by *), whereas the 

PMG method failed only for T = 1/10 because of divergence of the Newton 

process. The SC method requires again considerably more fk-evaluations than 

the PMG method. However, for,= 1/80 and 1/160 the additional computational 

effort in the SC method is considerably less than in the PMG method. If a 

Jacob_ian - vector operation is not cheap in comparison with a fk-evaluation, 

the SC method becomes competitive with the PMG method for small T-values. 

The fourth order behaviour of the PMG method used in this section is 

more or les:s reflected in the sd-values for the problems II and III (on 

halving the integration step the sd-values should increase with 

4 10log2"' 1.2). 
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From the tebles of results we may draw the following conclusions: 

(i) For large integration steps the PMG method is more efficient and ro­

bust than the SC method. Moreover, the SC method is s.ensitive to 

grid refinement (SJ. 

(ii) For small integration steps the SC method becomes competitive to the 

PMG method, if the spectral radius of afk/ayk is not too large and if 

fk 1 ' ' ( 1) . a -eva uation is not extreme y expensive. 

Additional experiments have shown (see [10, Appendix C]) that for the 
a examples I and IV the PMG method is also superior to the SC method. Fur-

thermore, one should also take into account that the SC method requires 15 

arrays of length N for storage, whereas the PMG method requires approxima­

tely 25 arrays of length N for storage (see Section 4.4). 

5. CONCLUDING REMARKS 

The experiments reported in the preceding sections show the superiority 

of the PMG method over the SC method and the PCGC method. The PMG method is 

more robust and is insensitive to grid refinement, whereas the other methods 

loose accuracy if the grid parameter hk is decreased. The PMG method with 

the third order extrapolation formula (4.4) as predictor formula shows its 

fourth order behaviour for realistic integration steps. 

From the experiments reported in [10, Appendix A] it appears that for 

problem lb the ILU-7 relaxation is more efficient than the ILU-5 and ILU-9 

relaxation. For the accuracy smoothing before the coarse grid correction is 

preferable to smoothing after the coarse grid correction. 

If the aspect of storage is as important as the computational effort 

than explicit integration formulas should be considered which are cheaper 

in storage but more expensive in computational .effort than the PMG method. 

The number of arrays for storage can be reduced by choosing a lower order 

BDF formula and other relaxation methods (e.g., ILU-5 relaxation and Point 

Gauss-Seidel iteration) in the PMG method. Then, however the PMG method 

becomes less efficient. 

In the PMG method described in this paper there are several choices 

which are not necessarily the best possible. For instance the 9-point re-
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striction and 9-point prolongation may be replaced by the 7-point restric­

tion and 7-point prolongation (cf. [4,8]) which makes the PMG method slight­

ly more efficient. Futhermore, on the coarsest grid n8 it is also possible 

to solve the linear equations approximately by some iterative method in­

stead of exactly. In order to construct an optimal MLA-algorithm the number 

of levels should also be considered. Mostly one chooses the coarsest grid­

size ho as coarse as possible. 
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APPENDIX 

In this appendix several additional experiments are reported. With the 

exception of appendix A we use only ILU-7 relaxation in the multi-level al­

gorithm. 

In appendix A numerical results of the MLA(k,I,I,1)-algorithm with 
b ILU-5, ILU-7 and ILU-9 relaxation are listed for problem I. 

In appendix B the effect of the predictor formulas (4.3) and (4.4) in 

the PMG method is illustrated by numerical experiments with the examples 

III and IV. 

Finally, in appendix C we give a more detailed discussion of the addi­

tional computational effort in the PMG method and the SC method. For the 
a examples I and IV we give also numerical results obtained by the PMG 

method and SC method. 

For more details concerning the implementation and the notation we 

refer to the preceding sections. 

A. Numerical results obtained by MLA with.three different ILU~relaxations 

Firstly, we consider the computational work of one MI.A-iteration 

(WMLA) when we choose ILU-5 and ILU-9 relaxation as relaxation method in 

MLA. In section 3 WMLA is derived when ILU-7 relaxation is used in MLA. 

For the ILU-5 and ILU-9 relaxation on the grid ~k the number of opera~ 

tions is equal to 13N and 25N, respectively (cf. [9]). 

When the residual ~k - [Ik - b0TvJk] xk is determined by means of the 

matrix Rk (see Remark 2.1) the numbers of operations are: 

using ILU-5 relaxation in MLA 4N 

using ILU-9 relaxation in MLA SN. 

Then, the computational work to perform one MLA(k,p,q,s)-iteration is 

(A. 1) for ILU-5, 

(A. 2) for ILU-9. 
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As in section 3 we assume k > I (more than two grids) and q < 4. 

The number of operations to perform the ILU-5 and ILU-9 decomposition 

on Qk (cf. [9]) is SN and 28N, respectively. Then the computational work of 
l the !LU-decompositions on Q for l = l(l)k (WIDEC) is: 

(A. 3) 

(A. 4) 

WIDEC = IO~N for ILU-5, 

WIDEC = 37~N for ILU-9. 

For the ILU-5, ILU-7 and ILU-9 relaxation the numbers of arrays of 
~l ~P ~l I I length N to store L, u- and R for l = l(l)k are 93, 12 and 173, respec-

tively. 

Table A.I. Results obtained by MLA(k,1,1,1) with ILU-5, ILU-7 and 

ILU-9 relaxation for problem Ibwith -r=¾, m= I-and M=7. 

Method: MLA(k, 1, I, 1) with ILU-5' MLA(k, l ,l, f) with ILU-7 MLA(k, I, 1, I) with ILU-9 

WMLA: 47~N 3 ss.!N 3 85N 

hk k r WO I r WO. I r WO. I av . av av 

1/20 2 0.052 37. IN 0.022 35.2N 0.014 45.SN 

1/24 2 0.05 36.6N 0.021 34.SN 0.014 45.SN 

1/32 3 0.056 38. lN 0.023 35.6N 0.015 46.6N 

1/40 3 0.053 37.4N 0.023 35.6N 0.015 46.6N 

In table A.I the results obtained by MLA(k,I,1,1) with ILU-5, ILU-7 
b k k and ILU-9 relaxation are listed for problem I on Q for a range of h va-

lues. The starting values of the BDF4 arecornputedat t=O,r,2-r,3-r. The results 

in table A.I illustrate that the ILU-7 relaxation is to be preferred in MLA. 

Further, the ILU-5 relaxation is more efficient than the ILU-9 relaxation 

in MLA. 

j 
' I 
I 
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B. The predictor formula in the PMG·method 

In this section the effect of the predictor formulas (4.3) and (4.4) 

in the PMG method is illustrated by numerical experiments with the examples 

III and IV. The starting values of the BDF4 are computed at t = -3T, -2r, 

-T, 0 for problem III and at t = O, T, 2T, 3T for problem IV. Notice that 

for problem IV the exact solution does not allow to choose the starting 

values at t = -3T, -2T, -T, O. 

Table B.l. Results for problem III with hk = 1/24 and T = 1/20 

obtained by [E{MLA(3,p,1,s)}M]m with (4.3) and (4.4). 

Predictor m M p=s=l p= 1, s=O p = o, s = 1 

{ 1 1 .57 .57 .57 
(4. 3) 

2 2 * * * 
(4.4) { 1 1 3.23 3.06 3.01 

2 2 3.24 3.24 3.24 

Table B.2. Results for problem IV with hk = 1/24 and T = 1/10 

obtained by [E{MLA(3,p;l,s)}M]m with (4.3) and (4.4). 

Predictor m M p=s=l p= I, s=O p=O, s= I 

l 
I I 2.89 2.95 2.80 

2 2.87 2.87 2.87 
(4.3) 

2 I 3.79 3.84 3.69 

2 3. 77 3. 77 3. 77 

l 
I I 5.43 4.20 4.03 

2 5.50 5.49 5.48 
(4.4) 2 I 6.63 6.17 6.08 

2 6.73 6.73 6. 72 
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In the tables B.l and B.2 the results are listed obtained by the PMG 

method for the examples III and IV, respectively. An asterisk indicates in­

stability. From the tables of results the following conclusions can be 

drawn: 

(i) The third order predictor formula (4.4) is to be preferred in the 

PMG method. 

(ii) For the accuracy smoothing before the coarse grid correction is pre­

ferable to smoothing after the coarse grid correction. 

C. The additional computational effort in the PMG method and the SC method. 

Here we give a more detailed discussion of the additional computational 

effort of the PMG method (in {E[MLA(3,l,l,O)]M}m mode with the predictor 
a formula (4.4)) and the SC method. For the examples I and IV numerical re-

sults are also shown obtained by the PMG method and the SC method. 

The additional computational effort (ACE) of the PMG method is given 

by the total number of operations in the PMG method on the grid r/- (l=O(l)k) 

required for the decompositions, the MLA-iterations, the calculations of 

the predictor (4.4) and the evaluations of (¢k)(j-l) with the exception of 

the fk-evaluations (see also section 3). The number of operations to com­

pute I: given by (4.2) (Wr) and the predictor formula (4.4) (WPRED) is 7N 

and SN, respectively. The number of operations in one MLA(3,l,l,O)-iteration 

(WMLA) is 35~N and the number of operations to perform the ILU-7 decomposi~ 

tions on Q,e for l = l(l)k (WIDEC) is 22~N. Then for a nonlinear problem the 

value of ACE of the PMG method described in Section 4.5 is given by 

(C.l) ACE 

Choosing m = 

1 
=-* 

T 
[m * M * 35~ + m * 20 + 27~]N. 

and M = 2 we obtain ACE= - * 119N. 
T 

For a linear problem ACE is given by 

(C. 2) ACE = [¾ * (M*35~ + 25) + 22~]N, 

because the ILU-decompositions are required once and m = 1 in the PMG method. 

The additional computational effort of the SC method is given by the 
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total number of operations in the SC method on the grid Qk required for the 

decomposition of tridiagonal matrices, the solution of tridiagonal systems, 

the Chebyshev iterations, the calculations of the predictor formula (4.4) 

and the right-hand side of (1.2) (Ek). In the SC method the evaluation of 
n 

the spectral radius of the Jacobian matrix dfk/dyk and all initial work for 

estimating the iteration parameters are neglected. Furthermore, in the 

Jacobi iteration only the fk-evaluation is taken into account and in the 

splitting process only the fk-evaluations, solution of tridiagonal systems 

and the decomposition of tridiagonal matrices are taken into account. The 

number of operations to perform a LU-decomposition of a tridiagonal matrix 

and the number of operations to solve a tridiagonal system of linear equa­

tions is 3N and SN, respectively. The number of operations required for the 

Chebyshev iterations is [5 * EICHEB - ~]N, where EICHEB denotes the total 

number of Chebyshev iterations. Then for a nonlinear problem the value of 

ACE of the SC method is given by 

(C. 3) ACE= [~6 + 15 * EICHEB]N. 

For a linear problem ACE is given by 

(C.4) ACE= [~O + 6 + 15 * EICHEB]N, 

because the LU-decompositions of the tridiagonal matrices are required once. 

Table C.Ia. Results for problem Ia with hk = 1/24 obtained 

by E[MLA(3,l,l,O)JM with (4.4). 

T M sd H ACE 

1/5 I 3.84 5 326N 

2 4.94 5 504½N 

1/10 I 5.24 10 629½N 

2 6.24 10 986N 

1/20 I 6.45 20 1236N 

2 7.51 20 1949½N 

1/40 I 7.70 40 2449½N 

2 8.78 40 3876N 
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Table C.lb. Results for problem Ia with hk = 1/24 obtained 

by the SC method 

----·--·- - ··------ ---- - - -··--- -~-· 
T IICHEB sd H ACE 

1/5 20 4.0 45 356N 

1/10 40 5. 13 90 706N 

1/20 60 6.3 140 1106N 

1/40 120 7.43 280 2206N 

1/80 160 , 8.73 400 3206N 
---- _____ l_ -~-· 

In the tables C.la and C.lb numerical results for the linear example 

Ia are listed obtained by the PMG method and the SC method. The starting 

values for BDF4 are computed at t = -3T, -2T, -T, 0. Notice that in both 

methods the Jacobians are determined once. The SC method requires consider­

ably more fk-evaluations than the PMG method. For the same value of T the 

PMG method in E[MLA(3,l,l,0)] mode produces more or less the same accuracy 

as the SC method. In this case for T = 1/5 and T = 1/10 the additional com­

putational effort in the PMG method is even less than in the SC method. Two 

MLA(3,l,l,0)-iterations in the PMG method is to be preferred. 

Table C.2. Results for problem IV with hk = 1/24 obtained 

by E[MLA(3,1,1,0)] 2 with (4.4). 

T sd H IJ ACE 

1/10 5.89 10 10 1190N 

1/20 7.29 20 20 2380N 

1/40 7.49 40 40 4760N 

In table C.2 numerical results for problem IV are listed obtained by 

the PMG method. For example IV the estimate of the spectral radius of 

3fk/3yk used in the SC method is given by 64(1+t)/(hk) 2• For T = 1/10, 1/20 

and 1/40 the SC method was unstable. For T = 1/80 we obtained by the SC 



29 

method the following results: 

sd = 7.52, Ef = 720, EJ = 80 and ACE= 6080N. 

The starting values of the BDF4 are computed at t = O, T, 2T, 3T for the 

same reason as explained in appendix B. Although in the numerical experi­

ments with the PMG method and the SC method the number of integration steps 

is (T- 1-3) for this example, we assume for convenience that in the compari-
-1 son of both methods the number of integration steps is T • For this example 

the PMG method is superior to the SC method. The number of Chebyshev itera­

tions (EICHEB=320) in the SC method is considerably even for T = 1/80. This 

is due to the large value of the spectral radius. As a consequence the SC 

method is rather expensive for this example. 

The results in table C.2 indicate that the asymptotic order 4 of the 

PMG method is not shown. The explanation is the effect of the space dis­

cretization error. 




