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Asymptotic analysis of a singular Sturm-Liouville boundary value problem*) 

by 

. **) E.J.M. Vel1ng 

ABSTRACT 

Asymptotic expansions are given for the eigenvalues A and eigenfuncn 
tions u of the following singular Sturm-Liouville problem with indefinite n 
weight: 

- :x ((1-x2) ! u) = AXU 

limlxl+l u(x) finite. 

on (-1,1), 

This eigenvalue problem arises if one separates variables in a partial dif

ferential equation which describes electron scattering in a one-dimensional 

slab configuration. 

Asymptotic expansions of the normalization constants of the eigenfunc

tions are also given. The constants in these asymptotic expansions involve 

complete elliptic integrals. The asymptotic results are compared with the 

results of numerical calculations. 

The results presented in this paper provide necessary information for 

the operator - theoretic analysis of certain types of boundary value prob

lems in electron transport theory. 
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1. INTRODUCTION 

When electrons move through a metal strip, they carry 

mass, momentum and energy from one point of the strip to another. 

The equation which describes the electron density in phase space 

as a function of time is called a transport equation. In the case 

of a stationary transport process, the transport equation is simp

ly a balance equation which balances the effect of the free 

streaming of the electrons against the effect of collisions. A 

simple model of a stationary transport equation is obtained when 

the strip is modeled as~ homogeneous isotropic slab of finite 

thickness,, which is infinite in both transverse directions, and 
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all electrons are assumed to have the same speed (i.e., magnitude 

of the velocity vector). Then the phase space is two-dimensional; 

the relevant coordinates are x, the position inside the slab, and 

µ, the cosine of the angle between the velocity vector and the 

unit vector in the direction of increasing x, with O ~ x ~ T and 

-1 ~ µ ~ 1. The following transport equation was first given by 

BOTHE [6] and, later, by BETHE, ROSE & SMITH [3]: 

( 1.1) a a 2 a - 8X µ¢(X,µ) = - ~ ((1-µ ) ~ ¢(x,µ)), (x,µ)E ~xJ, 

where~= (0,T), J = (-1,1) and¢ is the electron density func

tion. The left member represents the net effect of the free 

streaming of the electrons, it is the divergence of the electron 

curr~nt density; the right member represents the net effect of 

the collisions or interactions between the electrons and the 

atoms of the host medium. 

The differential equation (1.1) is supplemented by 

boundary conditions of the following type: 

( 1. 2) 

( 1. 3) 

lim µ¢(x,µ) = g+(µ), 
x-1-0 

lim µ¢(x,µ) = g_(µ), 
.XtT 

0 ~ µ ~ 1, 

-1 ~ µ ~ o, 

where g, g are given functions. Positive (negative) values of 
+ -

µ indicate motion towards increasing (decreasing) values of x, so 

equation (:1.2) prescribes the incoming flux at the left endpoint 

of~, (1.3) at the right endpoint of~- The outgoing fluxes, both 

left and right, will be part of the solution of the problem. 

BETHE et al. [3] found a solution by a formal expansion method. 

BEALS [2] proved the existence and uniqueness of a solution in a 

weak formulation. KAPER, LEKKERKERKER & ZETTL [12] constructed 

the general solution of ( 1 .1) using opera tor - theoretic tech

niques. In this paper we follow the notation of [12] whenever we 

refer to this operator - theoretic setting of the problem. 

In section 2 we summarize part of the results of [12] 

and explain the motivation for the asymptotic analysis given in 

this paper. 
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In section 3 we study the singular Sturm-Liouville eigen

value problem: 

( 1. 4) 

( 1. 5) 

- ddx ((1-x 2 )ddu (x)) = ;._ xu (x), -1< x< 1, nE JN+u JN-, 
x n n n 

= 1, JN + n E , 1, nEJN, 

+ unbounded on (-1,1), n E JN u ]'J 

We give ·representations of the eigenfunctions un as a sum of Le

gendre polynomials, in which the coefficients in the expansion 

depend on the eigenvalue An· Making the transformation x' = -x, 

we observe that, for every eigenfunction u and eigenvalue;._ , n n 
the function u , with u (x) = u (-x), satisfies (1.4), (1.5) at • -n -n n 
the eigenvalue;._ = -;._ • We show that the first eigenvalues can 

-n n 
be approximated by a continued fraction expansion. However, the 

expansions do not provide any information about the behaviour of 

;._ as In I • 00 • n 
In section 4 we construct asymptotic expansions for the 

eigenfunctions (1.4), (1.5). The interval (-1,1) is subdivided 

into three regions; the matching conditions determine the eigen

values. 

In section 5 we give asymptotic results for the integrals 

(1,un) and (xu ,u ), where(·,·) denotes the inner product in 
n n 

L2(J), J = (-1,1). These inner products play a role in the theo-

ry given by KAPER, LEKKERKERKER & ZETTL [12]. 

In section 6 we compare our asymptotic results with the 

results of numerical calculations of the eigenvalues and coeffi

cients in the Legendre polynomial expansions of the eigenfunc

tions. Even for the first eigenvalue the numerical agreement is 

very good. 

2. OPERATOR-THEORETIC APPROACH 

In this section we summarize the so-called full-range 

theory developed in [12]. Let J = (-1,1), and let H = L2 (J) be 

the Hilbert space of complex-valued square integrable functions 

on J. Define the multiplicative operator T by the expression 
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( 2. 1) Tf(µ) = µf(µ), \J E J, f EH. 

Tis injective, bounded and selfadjoint, its inverse T-1 is un-
2 bounded and defined on the image of T. Let p(µ) = 1-µ , µ E J; 

let N denote the differential expression 

( 2. 2) d d N[f] = - dµ (p(µ) dµ f(µ)), \J E J; 

and let M be the maximal operator associated with N, 

(2.3) V(M) = {f If EH; p(µ)ddµ f(µ) absolutely continuous 
on compact subintervals of J; N[f] EH}, 

( 2 • 4 ) Mf = N[f], f E V(M). 

Since the equation N[f] = 0 is singular at both endpoints, and 

bot~ fundamental solutions (f1 (µ) = 1, f 2(µ) = ln((1+µ)/(1-µ))) 

are elements of V(M), Mis limit-circle at both endpoints. We re

call that a differential equation - (pf')' + qf = Af on an inter

val I= (a,b) with b a singular point, is called limit-ci4cle 
at b if for some complex A (ImA#0) a solution f exists with 

f E L2(I). According to the Weyl theory, all solutions are then 

elements of L2(I) for all real and complex A. The equation is 

limit-point at b if, for some compex A, a solution f exists with 

f £ L2(I). Then all solutions for complex A share this property. 

For real A·at most one of the two independent solutions belongs 

to L2 (I) in that case. See e.g. CHAUDHURI & EVERITT [8]. 

To obtain a selfadjoint realization of M, boundary condi
tions at both endpoints are necessary. We quote from [12] (Theo

rem 2.1) that the following conditions are equivalent: 

(2.5) 

(i) f is bounded on (-1,1), 

(ii) limµt 1 f(µ) and limµ+- 1 f(µ) exist and are 
finite, 

(iii) lfmµti p(µ)f'(µ) = limµ+-i p(µ) f'(µ) = 0, 
(iv) p 2 f 1 (µ) EH. 

See also EVERITT [10] for an extensive discussion of these mat
ters. We remark that another set of boundary conditions, which is 

not equivalent to any of those given in (2.5) can be constructed 

by means of the theory given in DUNFORD & SCHWARTZ ([9], Ch.13, 
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§8). According to this theory the full set of boundary operators 

is 

( 2. 6) 

(2. 7) 

= lim (1-µ)f'(µ), A f = 
µt1 

lim f(µ)+(1-µ)(ln(1-µ))f'(µ), 
µt1 

= lim (1+µ)f 1 (µ), Bf 
µ+-1 

= lim -f(µ)+(1+µ)(ln(1+µ))f'(µ). 
µ+-1 

However, the boundary conditions A_f = B_f = 0 give rise to un

bounded solutions which are still elements of L2(J). These solu

tions are not suitable in a physical sense. It follows from Theo

rem 2.2 of [12] that the operator A defined by-

(2.8) 

( 2. 9) 

V(A) .= {f If E V(M), f satisfies (2.5)(i)}, 

Af = Mf, f E V(A), 

is self adjoint in H, with a discrete spectrum cr (A) = { n( n+1) I 
n = 0,1, ... }. The eigenfunction corresponding to the eigenvalue 

n(n+1) is the Legendre polynomial P . n 
The transport problem (1.1) leads to the study of the 

-1 operator AT . We quote some results from [12]. Let 1J denote the 

function identical 1 on J. 

THEOREM 1 [12]. (i) The Hilbe4t -0paee H admit-0 a deeom
po-0ition H ~ H0 $ H1 -0ueh that the pai4 {H 0 ,H1} 4eduee-0 the ope4a-

-1 2 to4 AT . In pa4tieulan H0 = sp(T1J,T 1J) and H1 = {f If E H; 

(f,1J) = (f,T1J) = 0}, with pnojeetion openaton-0 P and P0 = 1-P, 

whene 
3 3 2 (2.10) Pf= f - 2 (f,T1J)T1J - 2(f,1J)T 1J' f EH. 

(ii) The ne-0tnietion AT- 1 !H1 i-0 injeetive and (AT- 1 !H 1)- 1 = PTKIH1 
whene K i-0 the integnal openaton 

(2.11) 

(2.12) 

(2.13) 

1 Kf = f_1k(µ,µ')f(µ')dµ 1 +2(1n2-n(f,1J)1J,JJEJ, f EH, 

k(µ,µ 1 ) = -~ ln((1+µ)/(1-~)), µ,µ' E J, 

µ = max(µ,µ'), !!.. = min(µ,µ'), JJ,JJ' E J. 

(iii) K i-0 a eompaet -0el6adjoint openaton in H with -0peetnum 
-1 -1 cr(K) = {(n(n+1)) In= 1,2, ... } and KP = (n(n+1)) P,, n n 

n = 1,2, ... , K1J = 2(ln2-~)1J. Funthenmone, K map-0 H1 into it-0el6 

and 
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(2.14) KAf = f - Hf,1J)1J, f e: V(A), 

(2.15) AKf = f, f e: H, 

(2.16) (Kf,1J) = 2(ln2-n(f,1J), f E: H, 

(2.17) (Kf,T1J) = Hf,T1J), f e: H. 

Let the operator B be defined by 

(2.18) Bf= PTKIH1, f E: H1. 

From this definition we learn that B is compact on H1 . Introduce 
the inner product 

(2.19) (f,g)A = 
l l 

(K 2 f,K 2 g), f ,g E: H. 

We denote by HA the Hilbert space which is obtained as the com
pletion of the inner product space (H,ff•UA), and we define H1 ,A 

similarly. It is possible to extend B to H1 ,A. 
THEOREM 2 [12]. (i) HA= H0 $ Hl,A" 

(ii) The ope4ato4 B i-0 compact -0el6adjoint on H1 ,A. 

(iii) The ope4ato4 B map-0 H1 ,A into H1 . 

(iv) The -0pect4um cr(B) 06 Bon H1 A i-0 -0imple and con-0i-0t-0 06 a 
countably in6inite -0equence 06 4eai eigenvalue-0 {A~1 In= ±1, 
±2, ... } with an accumulation point at the o4igin. 

Let xn denote the eigenfunctions of Bin H1 ,A: 

(2.20) B = ,-1 +1 +2 X A x , n = _ ,- , ••• , n n n 

and define~ = Kx . We normalize the functions x ,~ by the con-n n n n 
dition 

(2.21) (P1J,~n) = 1, n = ±1,±2, ... . 
THEOREM 3 [ 12 J. Fo4 all n = ±1,±2, ... 

( i) Xn,~n E: H1 C L2(J). 

(ii) Xn E: V(AT-1 ) = {f I f E: V(T-1 ); T- 1f E: V(A)}, 

~n e: V(T-1A) = {f I f E: V(A); Af E: V(T- 1 )}. 

(iii) x n, ~ n -0 ati-0 6 tJ 

(2.22) AT-l 
Xn = AnXn' 

(2.23) T-1A ~n = An T- 1PT~n 
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THEOREM 4 [12]. (i) The eigenveeto44 {xn I n = ±1,±2, ... } 

6o4m an o4thogonal ba4f4 in H1 A. , 
(ii) The eigen6unetion expan4ion 

+co -2 
(2.24) f = I (f,xn)A nxnnA Xn' 

n=-co 
f e: H1 A' , 

n;i!O 

eonve4ge4 in the topology 06 HA. 

(iii) The eigenveeto44 {xn} and {$n} 6o4m a bio4thogonal 4y4tem 
in H1 in the 4en4e that (xrn,$n) = O 16 rn ;t n and (xn,$n) ;t O 604 
e v e4 y n = ± 1 , ± 2 , . . . . 
(iv) The eigen6unetion expan4ion (2.24) ean be W4itten a4 

+co 
(2.25) f = I 

n=-co 
n;i!O 

THEOREM 5 [12]. (i) The 4paee H1 A 14 topologieally 140-
2 , 

mo4phie with the 4equenee 4paee l 06 all 4qua4e 4ummable 4equen
a 

ee4 c = [c In= ±1,±2, ... J, c e: t, with 4Upeet to the weight n _1 n 
cr: cr = (x ,$) , n = ±1,±2, .... The4e hold4 a = a . The 140-n n n 2 n -n 
mo4phi4m F whieh map4 H1 ,A onto l 0 and it4 inve44e p-1 a4e given 
by 

(2.26) 

(2.27) 

·Ff = [ ( f , $ n ) I n = ± 1 , ± 2 , • • • J , f e: H 1 , A , 

C E 

n=-co 
n;i!O 

(ii) The t4an4604mation F diagonalize4 the ope4ato4 Bon H1 A: , 
-1 I (2.28) FBf = [)..n (f,$n) n = ±1,±2, ... ], f e: H1 ,A. 

Let A denote the following multiplicative unbounded oper
ator on l2: 

cr 

(2.29) 

(2.30) 

V(A) = {c e: l 2 
cr 

+co 

I 
n=-co 
n;i!O 

2 crl).cl <co}, n n n 

Ac= [Ac In= ±1,±2, ... J, c e: V(A). 
n n 

By this definition (2.28) can be rewritten as 

(2.31) FBf = A-1Ff, f e: H1 A. , 
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Next we solve in H the differential equation (1.1) which 

we write in the form 

(2.32) 1/J'(x) + AT- 11/J(x) = O, x E ( 0 , , ) , ' = ddx , 

where ijJ(x) = T¢(x) for all x E (0,,). Here we assume that ¢,1/J are 

vector-valued functions: [O,,J + H. It is possible to extend this 

equation into one in HA. That means that we have to solve 

(2. 33) (Poi/I)' (x) 
-1 + AT PoijJ(x) = o, 

(2.34) ( PijJ) I ( X) + B-1PijJ(x) = 0. 

We define the decomposition H1 A= H e H where H = 
=-.2.. 1,p 1,m 1,p 

sp{x In= 1,2, ... }, H1 = sp{x In= -1,-2, ... } with the cla-n ,m n 
sure in the A-norm. Then it is evident that cr(BJH1 ) = 

-1° I I -1 'P {\n n = 1,2, ... }, cr(B H1 ) = {-\ J n = 1,2, ... }. Thus this ,m n 
decomposition reduces B to an accretive operator in H1 and a 

,P 
dissipative operator in H1 . Let P1 (P1 ) denote the projec-,m ,P ,m 
tion operator which maps HA onto H1 (H1 ) along H0 ~ H1 ,P ,m ,m 
(H 0~H1 ,P). The representations of P1 ,P and P1 ,m are 

00 

(2.35) p f = I crn(Pf,¢n)xn' f E HA, 1,p n=1 
00 

(2.36) p f = I a (Pf,¢ )x , f E HA. 1, m n=1 n -n -n 

The differential equation (2.34) is then equivalent with the fol-

lowing pair of differential equations 

(2.37) (P 1 1/J)'(x) -1 +B P1 ijJ(x) = o, ,P ,P 
(2.38) (P 1 1/J)'(x) -1 +B P1 ijJ(x) = 0. 

'm , m 

By means of semigroup methods it is possible to solve these 

equations with the following result. 

THEOREM 6 [12]. The gene~al -0olution 06 (2.32) in HA i-0 
given by 

( 2. 39) 1/J ( X) 
-1 -1 = exp((!,-x)AT )P 0h+exp(-xB )P 1 ,Ph + 

-1 
exp((,-x)B )P 1 ,mh, h E HA arbitrary, 

2 where P0h = aT1J + ST 1J, a,S arbitrary and where the exponential 

operators are defined by 
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-1 2 exp((;T-X)AT )Poh = (a+2a(;T-x))T1J + ST 1J, 

exp(-xB-1 )P1 h = F-1e-xAFP 1 h, h E HA, 
,P ,P 

-1 -1 (T-X)A 
exp((T-x)B )P1 ,mh = F e FP1 ,mh, h E HA. 

In this paper we study the eigenvalue problem (2.20) in 
the form 

(2.43) 

so we identify Xn = Tvn. 
LEMMA 1. The veeto4~ x ~ and v a4e-4elated th4ough n'"'n n 

(2.44) Xn = Tv = A Tcj> + PnT13 , n n n 

(2.45) -1 -1 
;1J 

-1 
P3, <l>n = An T Xn - = An V -n 

(2.46) -1 
;An1J" V = T X = A n<l>n + n n 

PROOF. From (2.21) we obtain the identity 

(2.47) 1 (P1 3 ,<t>n) 3 = = (13 ,<t>n) - 2 (13 ,T13 )(T13 ,<1>n) -
3 2 
2 (13 ,13 )(T 13 ,<t>n). 

= An<t>n + !An1J, 
1 since (T<f>n,T1 3 ) = - 3, and (T<f>n,1J) = 0 because <f>n E H1 . If one 

applies the operator Ton (2.48) and inserts cf> = Kx , one finds, 
n n 

using (2.15), (2.44). The relations (2.45), (2.46) are equivalent 

with ( 2. 4 4). • 
Since it appears impossible to determine the functions 

vn explicitly, we have studied their asymptotic behaviour for 

lnl + 00 • We have also studied the asymptotic behaviour of A and 
-1 n 

on= (x ,<I> ) for lnl + 00 • It turns out that these asymptotic n n 
results are very good approximations compared with numerical re-
sults. 

We end this section with the following regularity result. 
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LEMMA 2. The nunetion4 vn a4e element4 on C~([-1,1]) no4 
n = ±1,±2, .... 

PROOF. This result follows from the standard theory of 

differential equations with C~-coefficients. Since we select, by 

the boundary condition (2.5)(ii) that solution which is analytic 

in a neighborhood ofµ= -1, the solution is certainly an element 

of C~([-1,1)). The regular singularity atµ= 1 determines the 

radius of convergence of its expansion. Because of the boundary 

condition atµ= 1, the expansion can be continued up toµ= 1. • 
3. EXPANSION OF THE EIGENFUNCTIONS IN LEGENDRE POLYNOMIALS 

In this section and the next we study the eigenvalue 

problem 

(3.1) 
+ -unbounded on (-1,1), n E JN u JN , 

with the normalization 

( 3- 2) u (1) = 1, n n E 

In the notation of sectiron 

( 3. 3) T- 1Av = A V , n n n 

on which 

(3.4) vn(µ) = C u (x), n n 

JN+ , 

2, problem ( 3. 1) is 

V € V(T-1A), n 

µ = x. 

-1 < X < 1, 

n E 

written as 

In section 2 the eigenfunctions vn were normalized by (2.21); 

however, (3.2) turns out to be a more practical normalization. 

Problem (3.1) is a singular Sturm-Liouville eigenvalue 

problem with an indefinite weight function. Both endpoints 

x = -1 and x = 1 are regular singularities, the midpoint x = 0 

is a turning-point. Problem (3.1) admits the solution u 0(x) = 1 

with AO= 0. In addition, it follows from Theorem 2 that (3.1) 

admits a countable number of eigenvalues {A I n = ±1,±2, ... }. 
n 

The corresponding eigenfunctions are elements of H1 . 

LEMMA 3. The eigennunetion4 un, n = ±1,±2, ... 4ati4nY 
the nollowing o4thogonality 4elation: 

1 -2 
(3.5) J_ 1 xun(x)um(x)dx = onm en An(xn,$n). 
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PROOF. Note that 

1 
(3.6) f_ 1 xun(x)dx = 0, 

by direct integration of (3.1) and by (2.5) (iii). Using the re

lation (3.4) and (2.46), we find that the left-hand side of (3.5) 

is equal to 

( 3. 7) 

The last term in the right-hand side of (3.7) is zero, by (2.44) 

and (3.6); hence, (3.7) is equivalent with (3.5), because of the 

biorthogonality of x and• (Theorem 4). • n n 
Since u e C00 ([-1.1]), we can write n 

00 

( 3 . 8 ) u ( x) = I ak Pk ( x) , n = ± 1 , ± 2 , ... 
n k=0 ,n 

If one inserts (3.8) into (3.1) and (3.2), and uses two well-

known properties of the Legendre polynomials, viz., 

( 3. 9) 

(3.10) 

2 
- ( ( 1-x ) Pk) ' = k ( k + 1) Pk, k 2 0, 

(2k+1)xPk = (k+1)Pk+l + kPk-l' k 2 1, 

one finds the following identities for n = ±1,±2, ... : 

(3.11) a = O, 1,n 

(3.12) (k+1) k 
(2k+3) >..ak+1,n - k(k+l)ak,n + (2k-1) >..ak-1,n = O, k 2 l, 

subject to the normalization condition 

(3.13) 

Explicitly, 

(3.14) 

00 

a 0 + I a = 1, 
,n k= 2 k,n 

n = 1,2, ... 

a = 2,n 
35 

a3,n = - T aO,n' n = ±1,±2, ... 

It follow~, from the symmetry re lat ion u ( x) = u ( -x) that -n n 
k 

(3 . 15 ) ak = ( -1 ) ak , n = 1 , 2 , . . . . ,-n ,n 

The unknown>.. is still involved in the recurrence relation (3.12). 

Only for discrete values of>.. is it possible to satisfy (3.13), 

as the following argument shows. The two independent solutions of 
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any recurrence relation of the type 

(3.16) Yk+1 + Akyk + Bkyk-1 = o, k ~ 1, 

with Ak ~ aka, Bk ~ bk8 , b -+ 00, 2a > 8, ab 'f o, exhibit the fol-

lowing asymptotic behaviour: 

(3.17) 
+ + aka Yk+1/yk , k -+ 00 

(3.18) Y~+1/y~ (b/a)kB-a, k -+ 00, 

see GAUTSCHI [11]. The general solution of (3.16) can be repre

sented in the form 

(3.19) 

where the constants C and D depend on the initial values y 0 ,y1 . 

The -particular solution {y:} is called dominant, {y~} Jte.ee..6.6ive.. 
Applying these results to (3.12), we obtain 

(3.20) a+ /a+ (2/A)k 2 , k-+ 00, 
k+1,n k,n 

(3.21) a- /a- ~ (A/2)k- 2 , k-+ 00. 

k+1,n k,n 

A solution of (3.12) for which (3.13) holds, must be recessive, 

so C(a0 ,n,a1 ,n) = CA (a0 ,n,O) = 0. This equation depends only on A; 

the value a 0 serves as a normalization constant. It is not pos-,n 
sible to obtain an explicit expression for C,(a0 ,O); however, 

' A ,n 
it is possible to obtain _approximations for the first few eigen-

values by means of a continued fraction expansion. The transfor

mation 

(3.22) 
bk,n = 2k-1(2k+1)r(k)r(k+~) ak,n' 

k ~ 1, 

transforms the relation (3.12) into 

(3.23) b - b k+1,n k,n 

with starting values b 1,n 
b = b . We define 'k 3,n 2,n 
'k satisfies 

(3.24) 'k-1 

A2 
-~--~-- b = 0, 
(4k2-1)(k2-1) k-1,n 

k ~ 2, 

-1 2 - 1 = o, b2 = -3 A TI 2 ao n· Further, ,n . , 
= bk+i/bk, omitting the index n. Then 

1 r-:-:r-, 
k 

k ~ 3, , 2 = 1. 

Since we look for the recessive solution ak- of (3.12), we ,n 
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conclude from (3.21) and (3.22) that Tk = O(k- 4 ), k • 00 • Hence, 

in order to find successive approximations of\, we put Tl= 0 

for some l, calculate ;;l) and solve ;;l) = T2 = 1 for\. The 

successive approximations become 

l = 3, 
-(3) 
T2 = \ 2 /280, 

l = 4, -(4) 
T2 = \ 2 /(280(1-\ 2 /945)), 

l = 5, 
-(5) 
T2 = \ 2 /(280(1-\ 2 /(945-\ 2 /2376))), 

l = 6, -(6) 
T,2 = \ 2 /(280(1-\ 2 /(945-\ 2 /(2376-\ 2 /5~05)))), 

and the corresponding eqations -(l) 
T2 = 1 become 

(3.25) 
2 280 0 \(3) ±16,733, \ = ~ = ±1 

(3.26) 
2 216 0 

. ( 4) 
±14.697, \ = ~ \±1 = 

( 3. 27) 
4 

3369 2 + 665280 = 0 =:> \(5) 14.536, \ = ± ±1 
\(5) = ± 56.113, ±2 

(3.28) 7\4 - 15136\ 2 + 2882880 = 0 ~ \(6) = ±14.5282, ±1 
A ( 6) 

±2 = ±44.174. 

The values of\ can be compared with the values obtained from 

numerical calculations in section 5. There we find 

\± 1 = ±14.5280, \± 2 = ±42.049, so \~i) and\~~) give already good 

approximations. However, this approach does not give any insight 

into the location of the eigenvalues. 

The next lemma gives the representations of xn and ~n· 

LEMMA 4. In te~m-0 06 the expan-0ion (3.8) the 6unetion-0 

Xn,~n have the 6ollowing ~ep~e-0entation-0: 
00 

(3. 29) Xn (ii) C 
-1 I k(k+1)ak,nPk(ii), = A n n k=2 

(3.30) -1 
00 

~n (ii) = C A I ak,nPk(ii). n n k=2 

The no~malization eondition (P1J,~n) = 1 take-0 the 6o~m 

(3.31) a 2 = - 5 \ c- 1 
,n If n n 

The inne~ p~oduet (x ,~ ) beeame-0 n n 
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(3,32) 2 c2 <xn,</>n) = II xnll K = n 
-2 

An 

-1 

co 

}: 
k=2 

co 

2k(k+1) a2 
(2k+1) k,n 

c2 = An }: n k=2 (2k+1)(2k+3) ak,nak+1,n 

' PROOF. The representation (3.29) follows from (2.44) if 

4(k+1) 

one uses (3.10) and (3.12). The representation (3,30) follows 
-1 from the identities <1> = Kx and KP = (n(n+1)) P, n = 1,2, ... n n n n 

Since P1J(µ) = -2P2(µ), the condition (P1J,</>n) = 1 is equivalent 

with (-2P2 ,CnA~1a 2 ,nP2 ) = 1. Relation (3,31) follows then by the 

property (Pk,Pk) = 2/(2k+1), k = 0,1, ... The flrst few coeffi

cients become by (3.31) 
-1 

(3.33) a 0 ,n = en An/2, 

(3.34) a = 0, 1,n 

(3.35) a 2 ,n = -(5/4)c~1An' 

(3.36) a 3 ,n = -(35/2)c~1 . 

The identity (3.32) is found by taking the inner product, using 

(3.29), (3.30) and the property (Pk,Pk) = 2/(2k+1), k = 0,1, ... 

The second identity in (3.32) follows from (3.12). O 

(3,37) 

REMARK. From (3,33) it follows that 

. 51 -1 
C = A ( 1 u .( x) dx) , n n - n 

4. ASYMPTOTIC EXPANSIONS OF EIGENFUNCTIONS AND EIGEN
VALUES 

In this section we construct asymptotic expansions for 

the eigenfunctions of (3,1), (3.2). Since we want to use the ex

pansion theorems of OLVER [13], we write (3.1) into a form with-

out first derivative. 

LEMMA 5. The 6allawing baundall.y value pll.ablem-6 all.e 
equivalent: 

AnX 
( 4. 1) " 2x u' o, -1 1, u - -- + -~ u = < X < n 1 2 n n -x 1-x 

un(1) = 1, n > o, u ( -1) = 1, n < o, n 



( 4. 2) 
rA X 

(1-~2)2] 
w" + ..:E.._+ w = o, -1 < X < 1, n . . 2 n L1-X 

2 -1 
lim (1-x) 2w ( x) = 1, n > o, 
xt1 n 

2 -1 
lim (1-x) 2w n(x) = 1, n < o, 
x,1,-1 

( 4. 3) g" "- ( tgh 
2 + z/cosh z)g = o, - 00 < z < 00, n n n 

lim g ( z) = 1, n > o, lim gn(z) = 1, n < o, n z+00 z+-00 

( 4. 4) k" n + cotg e k' + n An cos e kn = O, - 0 < e < 1f , 

kn ( O ) = 1 , n > 0 , kn ( 1r ) = 1 , n < O , 

( 4. 5) r 1 · 2 l l" + A cos e + +sin e l = o, o < e 
n l n 4 . 2eJ n sin 

< 1f. 

-1 
lim (sine) 2 l (e) = 1, n > o, 
e,1,0 n 

-1 
lim (sine) 2ln(e) = 1, n > 0. 
et1r 

The ~olution~ u,w,g,k and l a4e 4elated by the identitie~ 
2 1 

(4.6) w(x) = (1-x ) 2 u(x), 

(4.7) 

( 4. 8) 

( 4. 9) 

g(z) = cosh z w(tgh z) = u(tgh z). 

k ( e ) = u ( cos e ') , 
1 

l(e) = (sine) 2 u(cose). 

PROOF. Straight-forward calculation. D 
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REMARK. In the original formulation of the electron scat

tering problem equation (4.4) was derived, see BOTHE [6]. 
As we mentioned in section 2, two independent solutions 

of the Legendre differential equation N[f] = O (see (2.2)) are 

f 1(x) = 1 and f 2 (x) = ln((1+x)/(1-x)). In general, the equation 

N[f] = )..f admits a solution f 1 which is bounded near x = 1 and 

another solution which is unbounded near x = 1. If one continues 

these solutions to the other singular endpoint x = -1, f 1 remains 
bounded for A= n(n+1), n E JN, only. For these values of;\., 

f 1(x) = Pn(x). In the case under consideration the situation near 
x = 1 is qualitatively bhe same. However, when crossing the 
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turning point x = 0, the character of the solutions f 1 and f 2 
changes drastically. The solutions u have the symmetry property: n 

(4.10) U ( X) = U ( -x) , -n n >.. = >.. -n - n' 

Thus it is sufficient to treat only positive eigenvalues>.. . We 
n 

assume that >..n > 0 if n > 0. 

We handle the eigenvalue problem in the form (4.2). This 

is the form for which OLVER ([13], Ch.10,11 & 12) summarized the 

so-called Liouville-Green approximation technique for Sturm

Liouville equations on a domain Jin the complex plane: 

d 2 2 2 (4.11) ~ - (u f(z)+g(z))w = O, for u + oo. 

dz 

In his notation we have 

(4.12) u 2 = >.., f(z) = -z/(1-z 2 ), g(z) = -1/(1-z 2 ) 2 . 

T~an~ition point~ are those points where f vanishes or where 

either for g becomes singular. We distinguish three cases: 

case I: J is free from transition points, 

case II: J has one transition point z 0 where f vanishes and g is 

analytic, 

case III: J has one transition point z 0 where f has a simple pole 
. 2 

and (z-z 0 ) g is analytic. 

Restricting ourselves to real values of the independent variable, 

we consider (4.2) on J = [-1,1]. If we split J into three parts: 

J 1 = [q,1], J 2 = [p,qJ, J 3 = [-1,p] where p and q are arbitrary 

points with -1 < p < O, 0 < q < 1, then we are dealing with case 

III on J 1 and J 3 and with case II on J 2 . The Liouville-Green ap

proximation consists of two transformations on wand z: 

(4.13) W(!;) = (dz)-! w(z), I;= !;(z). 
d I; 

Then (4.11) becomes 

(4.14) d 2W {u2 (dd~) 2 f(z) + ~(i;)}W = •, 
d/;2 - .., 

z = z(1;), 

with 

(4.15) ~ ( I; ) [ (dz\-!] 
\di;_} , z = z(!;). 



The transformations= E(z) is chosen in such a way that 

(i) sand z are analytic functions of each other, and 
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(ii) the solutions of the differential equation (4.14) are ap

proximated by the solutions of the same equation with 

¢Cs) = 0 (or part of it). The choices of s are: 

c~:) 2f(z) 
1 

case I = 1, s = I f 2 (z)dz, 

(~~/f(z) 
2 s3;2 Iz 1 

( 4. 16) case II = s, 3 = f 2 (z)dz, 
zo 

c~:) 2f(z) 
-1 1 z 1 

case III: = s , 2s 2 = J f 2 (z)dz. 
zo -

Thus, (4.14) reduces to the standard form 

(4.17) d2W {u2sm+¢(E)}W = 0, 
ds 2 -

with m = 0 (case I), m = 1 (case II), m = -1 (case III). In cases 

I and II¢ becomes a holomorphic function; in case III, ¢ has a 

single or double pole at s = 0 if g does. The approximating equa

tion is 

(4.18) d 2W {u2~m -2 - s - cs }w = o, 
ds 2 

with mas above; c = 0 for the cases I and II, and for the case 

III if¢ has no double pole; ct 0 for case III if¢ has a double 

pole. The theory given in, OLVER [13] also supplies bounds for the 

error terms. 

(3 .1), 

(4.19) 

(4.20) 

(4.21) 

LEMMA 6. The a~ymptotic expan~ion 06 the ~olution 06 

(3.2), on J 1 = [q,1J i~ given by 

2 1 d ,. , , , 
u(x) = (1-x )- 2 (d~(x))- 2 W1 (A 2,(-t(x)) 2), 

( - d x) ) ~ = f 1 / _t _' d t 
X 1-t2 , 

0 < X s 1, s so, 

1 1 1 1 1 1 -1 
W1(A2,(-?;)2) = (-?;)2JO(A2(-?;)2)[22+A1(~)A J + 

-(-?;)A-!J 1 (A~(-?;)~)B0 (?;) + O(A- 3 / 2 ), 

uni6okmlif 66~ s E J 1 = [?;(q),0J, A • 00 , 
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(4.22) 

(4.23) 

(4.24) 

Bo(t) = 2a(-t)a I~ ip(i)(-v)-adv, 

A1(d = 2j[-iji(t) +J~ i/l(t')(-t')-j{J~,i/l(v)(-v)-jdv}dt'J 

+ jBO ( t), 

iji(t{x)) = 1 + (3x2-5)(x2+1) 
16t(x) 3 2 64x (x -1) 

The de4ivative ~~ i4 given by the de4ivative o0 (4.19) with 4e-
4pect to x. The e44o4 te4m become4 O(A- 1 ), A •~. 

PROOF. For the proof we refer to OLVER ([13], Ch.12 
Theorem 4.1 and section 5.2). D 

Observe that t = 4~, t defined in (4.20), ~ defined in 
(4.16), case III. By this transformation the interval [q,1] is 

mapped onto [t(q),OJ, t(q) < 0. In terms of the original functions 
we have 

(4.25) 

and 

(4.26) 

i/1( dx)) = 1 + ~ + 4f(x)f"(x)-5(f'(x)) 2 
16t(x) 4f(x) 64f3(x) 

cdt(x))-a = 2-!(-~(x))-ix-kc1-x2)t, 0 < x ~ 1. 
dx 

It is possible to give an infinite asymptotic series 

with the coefficients A, B defined recursively. However, the - n n 
information given by (4.19), (4.20), (4.21), (4.22) and (4.23) is 

sufficient. For the actual calculation of B0(t) and A1 (t) one 

needs to transform the variable of integration to x, since it is 

not possible to give an explicit expression for x = x(t) other 

than in the form of the inverse of an incomplete elliptic inte

gral. For x t 1, the behaviour of (-t(x)) is given by 

(4.27) (-t(x)) ~ 2(1-x), X t 1. 

The approximating equation (see (4.18)) becomes 
2 

(4.28) d ~ - {A(4t)-1 - (4t 2)-1 }W = O. 
dt 

1 1 1 

Independent solutions of (4.28) are (-t) 2 J 0 (A 2 (-t) 2 ) and 
1 1 1 

C-t) 2 Y0 (A 2 (-t) 2 ); Y0 the other Bessel function of zero order. The 

solution (4.19) uses only the former, because 1Y0 does not have the 
right boundary behaviour. The constant A0 = 2 2 has been chosen to 
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satisfy the requirement un(1) = 1. 

LEMMA 7- The a4ymptotic expan4ion 06 the 40lution 06 
(3.1), (3.2) on J 3 = [-1,pJ i4 given by 

(4.29) u(x) = (1-x2 )-~(~~(x))-~w3(A~,(i(x))~), 

whe4e, with r0 ,r1 the modi6ied Be44el 6unction4 06 o4de4 ze4o and 
one, 

(4.30) 

( 4. 31) 

- 1 (z:;(x))2 = fx1 /-t2' dt, 
- 1-t 

-1 :S X < 0, 

= ~~I 0 (A~~~)[A 0+A 1 (z.;)A- 1 J + 

~A-~I 1 (A~i~)B 0 (~) + o(A- 312 ). 

uni6o4mly 604 z.; E J 3 = [O,~(p)J, A+ 00 , 

(4.32) B0(i) = A0i-~ J~ ~(v)v-~dv, 

(4.33) A1 (~) = A0[-;(~)+J~ ;(~ 1 )i 1 -~{f~ 1 i(v)v-~dv}d~'+~B 0(~), 
2 2 

(4.34) ;(~(x)) = 1 + (3x -5)(x +1) 
Io$TxT 64x 3(x 2-1) 

The de4ivative ddu i4 given by the de4ivative o, (4.29) with 4e-
x -1 

4pect to x. The e44o4 te4m become4 O(A ), A+ 00 • 

PROOF. For the proof we refer to OLVER ([13}, Ch.12, 

Theorem 3.1 and section 5.2). • 
Observe that, again, i = 4~, i defined in (4.30), ~ de

fined in (4.16), case III. The factor in front of w3 is 

(4.35) (~~(x))-~ = 2-~(2(x))-t(-x)-t(1-x2)t, -1 s; x < o, 

and the approximating equation (see (4.18)) is 
2 

(4.36) d-~ - {A(4~)-1-(4, 2 )-1}W = 0. 
dz.; -1 1-1 _1 1_1 

Independent solutions of (4.36) are z.; 2I 0 (A 2 z.; 2) and z.; 2 K0( A2z.; 2 ); 

K0 the other modified Bessel function of zero order. The solution 

(4.29) uses only the former, because K0 does not have the right 

boundary behaviour. The constant A0 has to be determined by 

matching th: solution in J 1 to J 3 across J 2 . For x + -1, the be

haviour of z.;(x) is given by 

(4.37) i(x) ~ 2(1+x), x + -1. 
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LEMMA 8. The a-0ympto:Ue expan-0ion-0 06 two independent 
-0olution-0 06 (3.1) on J 2 = [p,qJ is given by 

2 -1 d~ 1 1 
(4.38) u.(x) = (1-x) 2 (-d (x)) 2 w2 .(A 2 ,~), i = 1,2, 

l X ,l 

whe4e, with Ai, Bi the Ai4y 6une:Uon-0, 

(4.39) ~(~(x)) 312 = f~ /_ t 2 dt, 0 S X < 1, ~ ~ 0, 
1-t 

~(-~(x)) 312 = f~ /1=: 2 dt, -1 < x s 0, ~ s 0, 

(4.40) w2 , 1(A!,~) = Ai(A 113 (-~))[A 0+K 1(-~)_A-1 J + 

(4.41) 

uni6o4mly 

(4.42) 

(4.43) 

(4.44) 

A-2/3Ai'(A1/3(-~))B1(-~) + O(A-3/2), 

[~(p),~(q)J, A • oo, 

Bi(A 113 (-~))CA0+A 1 (-~)A- 1 J + 

A- 213Bi'(A113 (-~))B (-s) + O(A-312 ), 
1 

604 ~ E J 2 = [~(p),~(q)J, A • oo, 

B0 (~) = A02-1~-! f3 $(v)v-~dv, ~ > o, 

B0(~) = A02- 1(-~)-~ f~ $(v)(-v)-~dv, ~ < o, 

A1(s) = A0C-¾$(~)~- 1+½~-312 f~ $(v)v-~dv + 

¾ f3 ~(~')~,-~{ J~ 1 $(v)v-!dv}d~'J, s > 0, 

- - 1-' -1 1 - 312 f 0 - - 1 
A1 (~) = A0[-4w(~)(-s) -E(-s) ~w(v)(-v) 2 dv + 

¾ f~ ~(~')(-~')-~{J~ 1 $(v)(-v)-!dv}ds'J,s < o, 
2 2 

$(~(x)) = 5 + ~(x) (3x -5)(x +1) 
16~ 2(x) 16x3(x 2-1) 

The de4ivative ~~ i-0 given by the de4ivative 06 (4.38) with 4e
-0peet to x. The e44o4 te4m beeome-0 O(A- 716 ), A • oo. 

PROOF. For the proof we refer to OLVER ([13], Ch.12, 
Theorem 7.1 and section 7.4). D 

The transformation x • ~maps the interval [p,q] onto 

[~(p),~(q)J, with ~(p) < 0, ~(q) > 0. In terms of the original 
functions we have 

(4.45) 
1 2 -1 

= (~(x)) 4 (1-x) 4 , X > 0, 

X < 0. 



The approximating equation (see (4.18)) is 

d2W (4.46) - 2 + AsW = 0. 
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ds 
Independent solutions of (4.46) are Ai(A 113 C-s)) and Bi(A 113 (-s)). 

The function w2 2 can be deleted, because of the matching condi-, 
tion between J 2 and J 3 (see Lemma 13). Both functions are oscil-

latory for s > 0, while Ai(A 113 (-s)) is exponentially decreasing 

and Bi(A 113 (-s)) exponentially increasing for s < o. The constant 

A0 has to be determined by matching the solutions in J 1 and J 2 . 

For x • o, the behaviour of s(x) is given by 

(4.47) sCx) ~ x, X • 0. 

The following relations exist between the transformations 

~,~,t defined in (4.20), (4.30) and (4.39): 

(4.48) (-~(x)); = L - 3Cs(x)) 312 , X > o, 

(4.49) (~(x)); = L - 3C-s(x)) 312 , X < o, 

where 

( 4. 50) 1 ~ 
L = f O ✓~--2 dt. 

1-t 
In the sequel we shall need the values of some integrals; we list 
them in the lemma below. We recall the definition of the complete 

elliptic integrals E and f: ~ 
(4.51) E(;,½n) 

1 1-2x 
E = = Io 2 dx, 

1-x 

( 4. 52) K F(f,½h) f~ 
1 dx. = = /i 2 1 2' (1-x )(1--x) 2 

LEMMA 9. The o allowing iden.:Ue-6 hold: 

(4.53) L L1 f~ / x 2. dx 2312 (E-;K) 2 
-1 -1 

= = = = 2 ,r K , 
1-x 

(4.54) L2 = f~ 
/_ 1 dx = 211 ~K, 2 x(1-x) 

(4.55) L3 = f~ 
/_ 1+X I 

x{1-x) dx = 23/2E , 

f~ I 1-x 
I 

2312 (K-E). (4.56) L4 = x(1+x) dx = 

PROOF. The identies follow from BYRD & FRIEDMAN ([7], 
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235.06 & 318.02; 235.00; 235.05 & 315.02; 235.07 & 320.02). The 

second identity in (4.53) follows from the Legendre relation 

2EK-K 2 = TI/2 (see [7], 110.10). • 
LEMMA 10. The in:tegJz,a..l.1., in Lemma. 9 c.a.n a..l.1.,0 be expJz,e,1.,1.,ed 

in :teJz,mJ., On :the c.on.1.,:ta.n:t C = r(l): 

( 4. 57) 

(4.58) 

( 4. 59) 

(4.60) 

L1 

L2 

L3 

L4 

= 

= 

= 

= 

23/2 3/2 -2 TI C , 

-3/2 -1/2 2 2 TI C , 

23/2 3/2( -2 2-3 -2 2) TI C - TI C , 

23/2(2-3 -1/2 2 3/2 -2) TI C -TI C . 

PROOF. From ABRAMOWITZ & STEGUN ([1], 17.3.9,17.3.10) or 

BYRD & FRIEDMAN ([13],118.02) we conclude that 

(4.61) 

(4.62) 

If we evaluate E and K by means of [1] (15.1.24,15.1.25) we find 

(4.63) E = TI3/2(c-2+2-2r-2(¾)) = TI3/2(c-2+2-3TI-2c2), 

(4.64) K = 2-1TI3/2r-2(¾) = 2-2TI-1/2c2. 

U . t 1 t· ( 3 ) 2112 - 1 . R f . F 1 sing he re a ion r l = TIC , i.e. the election ormu a 

for r-funct·ions ([1], 6.1.17), we find (4.57), ... ,(4.60) and the 

second identities in (4.63), (4.64). • 

(4.22), 

(4.65) 

Observe 

(4.66) 

(4.67) 

In the sequel we shall also need the functions B0 (~), 

and B0 (~), (4.42), for~> 0. Define 

Q( ) _ fs (3x 2-5)(x 2+1) j~ d O 1 r,s - r 3 2 2 x, < r, s < • 
32x (x -1) 1-x 

that the integrand becomes singular for r + 0, st 1. 

LEMMA 11. The n o.l.lowing Jz,e.la.:tio n.1., ho.td: 
~ 1 -1 -1 

BO ( d x) ) = i c'.[ 'E ( - d x) ) + ( - d x) ) 2 1 im { Q ( x, 1- e: 2 ) -
e:2+0 

1 -! 
r;:;_,E 2 } ] , 

8v'2 
{Q(e:1,x) -

5 -3/2} J 
~e:1 . 
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PROOF. Since lime 1+0 ~(1-e 1 )/(-2e 1 ) = 1 by (4.27), B0(~) 
can be written as 

1 1 ~(1-e 1)/2 1 

B0(~(x)) = lim 2 2(-~(x)) 2 J~(x) w(v)(-v)- 2 dv. 
e1+0 

(4.68) 

Using (4.24) and performing the integration, we find 
1 -1 1 -1 -1 

(4.69) B0(~(x)) = lim [H(-~(x)) ~H(-~(x)) 2(-~(1-e 1)/2) 2+ 
e 1 +0 

-1 
(-~(x)) 2Q(x,1-e 1)J, 

from which (4.66) follows. The proof for (4.67) proceeds along 

the same lines. • 
LEMMA 12. The oollowing identity hold~: 

1 - 1 5 -3/2 lim {Q(e 1 ,1-e 2)- 8 t::::t2 e22 - 1f8" e1 } = 
e 1 ,e 2 +0 ,;e:. 

(4.70 

1 14 - 5 ~ 5 - 1 2 32[)L2+L3+L4J - 24 v2K = 95 ✓2~ 2c , 

whe~e the Li, i = 2,3,4, a~e deoined in Lemma 9 and Ki~ deoined 
in (4.52). 

(4.71) 1 

/ X ( 1 -x ) ( 1 + X )1 

Using [13] (230.03), we evaluate (4.71) in terms of the Li, 

i = 2,3,4: 

(4.72) = 1 5 10 -3/2 ✓ -; Q(e1,1-e2) 32[3L2+3L2+L3+L4+3e1 +2 2e2 + 
1 1 

O(e 1)+0(e 2)J, e1 ,e 2 + O. 

dx. 

Inserting (4.72) into the left-hand side of (4.70) and taking the 

limits, we obtain the first identity. The second identity follows 

from (4.54), (4.55) and (4.56); the third identity from (4.64). • 
The next step in the procedure for finding the asymptotic 

representations of the eigenfunctions consists of a matching of 

the three representations obtained above. We take arbitrary points 

in the intervals (-1,0) and (0,1) to match (4.29) with (4.40) and 

(4.41), and (4.19) with (4.40) and (4.41) respectively. The match

ing is performed by putting the Wronskian {u,v} = uv'-u'v equal 
to zero and by using the asymptotic expansions of the Bessel and 
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Airy functions. Let K = x - *' n = Jc-x) 312 + *' µ = !x312 , 
2 3/2 v = 3(-x) . Then, 

fi 1 -2 
(4.73) Jo(x) = v*{cos K + Bx sin K + O(x )}, x + 00 , 

'2_ 3 -1 
(4.74) J1(x) = - Jo(x) = v-;=x{sin K + 8x cos K + O(x )},x+oo, 

(4.75) J 1(x) = lfx. {cos K - ix. sin K + O(x- 2)}, x + 00 , 

(4.76) I 0 (x) = ;;_, {1 + -Jx. + O(x- 2 )}, x + oo, 
1'21rx 

(4.77) 

(4.78) 

(4.80) 

( 4. 81) 

( 4. 82) 

( 4. 83) 

( 4. 84) 

( 4. 85) 

(4.86) 

I1( :i.) 

I 1(x) 

Ai(x) 

Ai(x) 

Ai I ( X) 

Ai I ( X) 

Bi(x) 

Bi(x) 

Bi'(x) 

Bi I ( X) 

= I 0(x) = 

X 
= _e_ {1 

/21rx 1 

X e ---
/21rx1 

7 - "Bx 

{1 - ½ + O(x-~)}, x + 00 , 

-2 +O(x )}, x+oo 

= 2-11r-!X-ie-µ{1- :;2 µ- 1 + 0(µ- 2)}, X + 00 , 

-1 -1 
= 1r 2 (-x) 4 {sin n ?2 V - 1 COS n + 0( V - 2 )} ,X + _.,,,, 

= -2- 11r-!xie-µ{1 + 72 µ- 1 + 0(µ- 2 )}, X + 00 , 

-1 1 7 -1 . -2 
= -1r 2 (-x) 4 {cos n - 72 v sin n +O(v )}, x+ - 00 , 

1 1 5 1 -2 = 1r- 2 x- 4 eµ{1+ 72 µ- + O(µ )}, x + 00 

-1 -1 5 -1 . -2 
= 1f 2 (-x) 4 {cos n - 72 V sin n + O(v )}, x+- 00 , 

X + oo, 

-1 1 
= 1r 2 (-x) 4 {sin n 

-1 
V COS n + 0 ( V - 2 ) } , X + -oo. 

See ABRAMOWITZ & STEGUN ([1], Ch.9 & 10). Since the asymptotic 
2 -1 

expressions for u(x) share the common factor (x(1-x )) 4 , x > O, 
2 -1 

or ((-x)(1-x )) 4 , x < O, we omit this factor in the calculation 

of the Wronskian. It is also possible to differentiate all for

mulas with respect to~, using the relations (4.48) and (4.49), 

because the common factor~! does not influence the equation 

{u,v} = 0. The relevant representations are: 

on J 1 : 

on J 2 : 

on J 3 : 

see (4.21), 

see (4.40), (4.41), 

see (4.31). 

LEMMA 13. The ma-t.c.hing 06 ;t,he, 1te.p1tue.n;t.a;t,ion (4.29) 601t 
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u on J 3 with the 4ep4ehentation (4.38) 604 au1+su 2 on J 2 , x < 0, 
implieh tha~ 8 = O. 

PROOF. Performing the calculations with the asymptotic 

expansions for the Bessel and Airy functions and omitting the 
common factors 2-;n-;z-1ezl 1 A 1 and 2-1n-;z-¼I 113 we ob-

z=A2~2 Z=A (-~) 
tain the leading term -28~!(-~)~evA¼. This implies that 8 = 0. 

The remaining terms cancel out, which implies that the represen

tation given for u on J 3 matches with that given for u1 on J 2 , 
X < 0. 0 

(4.87) 

wheh.e 

(4.88) 

(4.89) 

with o = 

THEOREM 7. The eigenvalue An ih ahymptotieally given by 

n + "", 

A= L- 2n2 = 2-3n- 1c4 (= 6.87518581), 

B = 2oL- 1 = -5(96)-1TI- 2c 4(= -0.91184984), 

~ ✓2 K,c = r(t)(= 3,62560991). 

PROOF. Performing the calculations with the asymptotic 

expansions for the Bessel and Airy functions and omitting the 
1 _ 1 _ 1 _1 

common factors 2 2 TI 2 zl 1 1 and TI 2 (-z) ~I 113 , we ob-
z=A2(-~)2 z=A (-~) 

tain the 1-eading term (-.~)t~~ cos(A;L)A;; the next term is 0(1). 

The first approximation for A is therefore equal to 
-2 2 2 n 1 _ 1 

A ~ L TI (n+n , n • 00 • Taking A2 L = (n+nTI+ oA 2 as the second n , , 
approximation, which implies cos(A 2 L) = (-1)n sin(-oA- 2 ) = 

= (-1)n+ 1oA-;+o(A- 312 ), A+"", we calculate the second order term 

(0(1)) of the Wronskian. After some tedious calculations, using 

Lemmas 11 and 12, we find that this term equals 

(4.90) (-1)n+ 1 (-d;~~[o+ irf nKJ, 

from which we conclude that o = - irf 12K. After some manipulation 

of these results we finally find (4.87). • 
REMARK. BETHE, ROSE & SMITH [3] gave the result A+ ~ 

2 _n 
± 6.88(n+;) without a further specification of the constant. 

REMARK. The result (4.87) refines a statement in BIRMAN 

& SOLOMYAK ([4], formula (16)), from which a general formula for 
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only the.coefficient A for this type of eigenvalue problems can 

be calculated. · 

REMARK. The eigenvalue problem (3.1), (3.2) is the most 

simple example of an equation with one turning point and two 

regular signularities. The full asymptotic behaviour of the eigen

values for such cases is still an area of research, see [4]. 

Having found the asymptotic expression for the eigen

values An' we can now give the full representation of the eigen

functions un by determining the constants A0 and A0 . 

THEOREM 8. The a-0ymptotic 4ep4e-0enta~ion 06 the eigen-

6unction un(x) 06 (3.1),(3.2) i-0 given by (4.19) 604 x E J 1 = 

= [q,1], 

X E .J 3 = 

whe4e A 

by (4.38), i = 1 604 x E J 2 = [p,qJ and by (4.29) 604 

[-1,pJ, with p,q a4bit4a4y, -1 < p < o, 0 < q < 1, and 

= A i-0 given by (4.87) and n 

(4.91) 

(4.92) 

A = (-1)n21A- 116 (1+o(n- 113 )) n + 00 

0, n n ' 

-A 0,n 

-dL 
= ( -1) n 2 ~ e n ( 1 +o ( e -nL) ) , - n + 00 • 

A-0ymptotic 4ep4e-0entation-0 06 the eigen6unction-0 un and 

value-0 An with n < O 6ollow 64om the -0ymmet4y 4elation-0 

u_n(x) = u (-x), A =-A. n -n n 
PROOF. The leading term of (4.19) equals 

(4.93) u(x) 

eig en-

n + oo, 

by virtue of (4.73), while the leading term of (4.38), i = 1, 

equals 

(4.94) u1(x) = Aox- 1 c1-x 2 )-1TI-!A~1 sin(!A~(~(x)) 312 + *) 
.(1+o(A~1 / 12 )), n + oo, 

by virtue of (4.80). The identity (4.48) and the relation 
1 - 1 

A2 L = (n+l)TI+o(A 2 ) n + oo, imply the result (4.91). The relation 
n 2 n ' 

(4.92) is found in a similar way. • 
5. ASYMPTOTIC EXPRESSION FOR crn 

In this section we give asymptotic 

the inner products (1,u) and (xu ,u ), the 
_ 2 n n n 

weight cr = Hx HK. n n 

representations of 
2 

norm HxnHK and the 
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We shall confine ourselves to first-order approximations, just as 

we have confined ourselves to first-order approximations for the 

constants A0 and A0 (see (4.91) and (4.92)). We therefore con

sider only the first term of each of the expansions for un in Ji, 

i = 1,2,3. The first inner product is evaluated by the theory 

summarized in BLEISTEIN & HANDELSMAN [SJ. These authors treat in

tegrals of the form 

( 5. 1) A + oo. 

Under some restrictions on¢ and the kernel h,_asymptotic expan

sions are constructed which use the Mellin transform of h. The 

treatment depends on whether his oscillatory or monotone (ex

pone~tially increasing or decreasing). We shall encounter both 

cases. Since the character of the eigenfunction un is different 

on each domain, it is not possible to handle the three integrals 

in a uniform manner. Therefore it is necessary to treat each 

domain in its own specific way. 

( 5. 2) 

LEMMA 14. The oollowing 
1 

(1,un) = f _1 un(x)dx = 

'1.ela:tio n hold'-': 

(-1)n2!1>- 1-~(1+0(1>- I-!)), 
n n 

I "n I + 00. 

PROOF. Denote the contributions of the three domains J. 
l 

by Ii, i = 1,2,3. The endpoints of the domain J 2 : p,q,- 1 < p < O, 

O < q < 1, are arbitrary. According to the theory in [SJ, it is 

necessary to treat the neighbourhood of the upper endpoint of the 

domain of integration separately from that of the lower endpoint 

by the technique of neutralization. We denote the contributions 

from these neighbourhoods by I~, i = 1,2,3, where the plus-sign 
l 

refers to the upper, the minus-sign to the lower endpoint. Since 

we restrict ourselves to the first order, we have for n > 0 

(5.3) 1 1 = f~ x-i(1-x 2)-t(-s(x))iJ0 (>.~(-s(x))!)dx. 
-1 2 -1 l 

In the notation of [SJ, f(x) = x 4 (1-x) 4 (-s(x)) 4 , h = J 0 , 
1 1 

¢ = (-s) 2 , >- = >. 2 • Performing the calculations, we find n 
+ -1 (5.4) 1 1 = O(>. ), >- + 00 , ([5], 6.3.34), n n 
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( 5. 5) 

A -+ oo, n ([5], 6.3.28). 

On J 2 the integral becomes for n > 0 

(5.6) r 2 = A0 f~ x-i(1-x 2)-il~(x) Ii Ai(A~13 (-~(x)))dx. 

Since ~(x) = ~(x), and~ becomes zero for x = 0, it is necessary 

to treat the contribution from the integrand around x = 0 sepa

rately. Therefore we split r 2 into integrals over (p,0) and (0,q), 

denoting these integrals by r 2 _ and r 2 + respectively. Perform-, , 
ing the calculations, we find 

+ 1 1 -2 2 -1 l 2 3/2 7T -2 -2 
(5.7) r 2 ,+ = 2 2 ,r 2 q ·4 (1-q) 4 sin(A~ 3(~(q)) -4 )An 4 (1+oOn 4)), 

A -+ 00 , ([5], 6.3.14), n 

(5.8) r;,+ = (-1)n2 312 3-1A~;(1+o(A~;)), An+ 00 ([5J, 6.3.11), 

(5.9) An-+ 00 ,([5], 5.3.5), 

(5.10) r 2 _ = o(A-s), A -+ 00 , for everv s > 0, ([5], 5.2.11). 
, n n '1 

-A ~L 
Finally, it is easily seen that r 3 = O(e n ), An-+ 00 , so summing 

up all contributions 

(5.11) 

Note that the contributions (5.5) and (5.7) cancel, because of 

(4.48). In view of the sym~etry relation u (x) = u (-x), the -n n 
result (5.2) follows. D 

LEMMA 15. The 6ollowing ~elation hold~: 

(5.12) 
1 2 -1 -1 -1 

(xu ,u) = f 1 xu (x)dx = L,r IA I 2 (1+o(IA I 2 )),IAnl-+ 00 • n n - n n n 

PROOF. Denote the contributions of the three domains Ji 

by M., i = 1,2,3. The remaining notation is the same as in Lemma 
l 

14. Since we restrict ourselves to the first order, we have for 
1 1 

n > 0 by the transformation t(x) = A~(-~(x)) 2 

1 1 2 - 1 1 2 1 1 
(5.13) M1 = fq x 2 (1-x) 2 (-~(x)) 2 J 0 (A~(-~(x)) 2 )dx 

= A-1 ft(q)tJ 2(t)dt 
n O 0 

= A-1[lt2{J2(t)+J2(t)}J1t=t(q) 
n 2 0 1 t=0 



"- + oo, n 

29 

by the asymptotic relations (4.73), (4.74) for J 0 , J 1 . Further, 

for n > O, by (4.91) and the transformation s(x) = "- 113 E(x) n 

(5.14) M2,+ = A~ f6 x1(1-x 2)-;(E(x))1Ai 2 ("-~/ 3(-E(x)))dx 

= 2A~1 f~(q)s Ai 2(-s)ds. 

Now we us~ the relation Ai(-s) = % s 1{J113 (w)+J_ 113 (w)}, 

w = J s 31 c([1J, 10.4.15). Then relation (5.14) becomes 

_ -1 -1 f w ( q) 2 . ( - ) ( ) 2 J ) . _ (5.15) M2 ,+ - 3 "n O w{J 113 (w)+2J113 w J_113 w +J-:1/Sw }dw. 

An explicit expression for this integral follows from [1] (11.4.2, 

11.3.31): 

( 5. 16) 

2 
+ 2J1/3(w)J_1/3(w)+2J4/3(w)J2/3(w)+J_1/3(w)-

2 jw=w(q) 
J_1;3Cw)-J_4;3Cw)J2;3Cw)J} w=O · 

Finally, we use the asymptotic relation ([1], 9.2.1) 

(5.17) J (x) = n COS(x-!vn- ~)(1+0(x- 1)), X + 00 

V TIX 4 

to obtain t_he expression 

(5.18) M2 ,+ = n- 1 JC((q)) 312 "-~!(1+0()._~!)), "n + 00 • 

Furthermore, for n > O, by (4.91), and the transformations 

r(x) = "-~13 (-E(x)), v = J r 312 

(5.19) M2,-

by the relation 

Finally 

(5.20) 

-2 = AO fo 
p x ! (1-x 2 ) - ! ( -E ( x) ) ! Ai 2 (A 113 ( -E ( x) ) ) dx 

n 

= -2)._-1 
n 

fr(p)r Ai 2(r)dr 
0 

-1 -2 fv(p) 2 = -)._n n O vK 113 (v)dv 

= 0(1<~1), "n + "', 

Ai(r) = n- 13-!r 1K113 c3r 312 ), 

A n 

r > 0 ([1], 10.4.14). 
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The last relation is proved with the same type of transformations 
as for (5.13), working with the Bessel functions I 0 ,I1 instead of 

J 0 ,J1 . Summing up all contributions we find 

(5.21) M = L1r- 1"~~(1+o(A~~)), "n • CX). 

Finally, (5.12) follows from the usual symmetry relation. D 

:the 
THEOREM 9. The oollowing a~ymp:to:tie 4elation hold~ 004 

weigh:t~ a = Hx uK-2 : n n 

(5.22) an= 2L-11rl"n1-3/2(1+o(l"n1-3/2)), lnl • CX), 

= 2L 21r-2( lnl+n- 3(1+0( lnl-3)), lnl • (X), 

where Lis defined in (4.53). 
PROOF. Since a = Ox UK- 2 , the first relation follows n n · 

from (3.5), (3.37), and the Lemmas 14 and 15, and the second one 
from ( 4. 87 ) . D 

6. COMPARISON OF ASYMPTOTIC AND NUMERICAL RESULTS 

In this section we compare the asymptotic formulas (4.87), 

(5.2) and (5.13) with the results of numerical calculations. 

Using the procedures F01AEF and F01AFF of the NAG-library (Numeri

cal Algorithms Group, Oxford) for generalized eigenvalue problems 

of the form Ax= µBx, where A is a real matrix and Ba real sym

metrix positive - definite matrix, we calculated the coefficients 

ak (see (3.8))andthe eigenvalues" = µ-1 . Table 1 gives the ,n n n 
eigenvalues calculated from the asymptotic expression (4.87), 

(6.1) "~sym = A(n+~) 2 + B, 

( 6. 2) A = 6.87518581, B = -0.91184984, 

and the calculated eigenvalues "~um, for n = 1,2, ... ,33. The nu

merical calculations were based on a 100-dimensional matrix ap

proximation, which yields" and" n for n = 1,2, ... ,50. Because n -
th~ error in the calculated eigenvalues and coefficients grows 

with increasing index n for this matrix approximation, we compare 

"n only for n = 1,2, ... ,33. In Table 2 we compare the asymptotic 

expression for (1,un), 

(6.3) (1,un)asym = (-1)n 2~l"~syml-~, 
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. (1,u )num 4 (3 35) with the calculated expression n = - ; a 2 ,n, see . 

and (3.37), for n = 1, ... ,15. In Table 3 we compare the asymptotic 

expression for (xu ,u ), 
n n 

( 6. 4) ( ) asym _ L -1 1 ,asyml-~ 
xun,un - ~ An , 

( 6. 5) 

with the expression 

( 6. 6) 

which is an approximation of (xu ,u ), see (3.'5) and (3.32), for n n 
n = 1, ... ,15. The calculations for Table 2 and 3 were based on a 

50-dimensional matrix approximation; we list only the first 15 

entries. 

Figure 1 gives the graphs of the eigenfunctions u , 
n 

n = 1,2, ... ,5, based on the results of the calculations for Table 

2 and 3. Notice that the oscillatory behaviour is in agreement 

with a theorem of KWONG (see [12], Theorem 5.3): u (n>0) has 
n 

precisely n zeros, and all zeros lie in the interval ( 0, 1). 

-, 1 
i 
i 

·-1 

-1 -o.s 0 o.s 

Figure 1 .. The eigenfunctions un(x), n = 1,2, ... ,s 

1 
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;\asym ;\num n ;\asym ;\num 
n n n n n 
1 14.55732 14.52800 18 2352.12049 2352.12033 
2 42.05806 42.04855 19 2613.37756 2613.37741 
3 83.30918 83.30444 20 2888.38499 2888.38486 
4 138.31066 138.30782 21 3177.14279 3177.14267 
5 207.06252 207.06063 22 3479.65097 3479.65086 
6 289.56475 289. 56334 23 3795.90951 3795-90942 
7 38').81735 385.81634 24 4125.91843 4125.91834 
8 495.82033 495.81954 25 4469.67772 4469.67764 
9 619.57367 619.57304 26 4827.18739 4827.18731 

10 757.07739 757.07687 27 5198.44742 5198.44735 
11 908.33147 908.33105 28 5583.45783 5583.45776 
12 1073. 33593 1073.33557 29 5982.21860 ')982.21854 
13 1252.09076 1252.09045 30 6394.72975 6394.72970 
14 1444.59597 1444.59570 31 6820.99127 6820.99122 
15 1650.85154 1650.85131 32 7261.00316 7261.00312 
16 1870.85749 1870.85728 33 7714. 76543 7714.76539 
17 2104.61381 2104.61362 

Table 1. 

-

n ( l, u ) asym ( l, u ) num n ( l, u ) asym ( l, u ) num 
n n n n 

1 -0.3707 -0.3710 9 -0 .05682 -0.05682 
2 0.2181 0.2181 10 0.05140 0.05140 

3 -0.1549 -0.1550 11 -0.04692 -0.04692 
4 0.1203 0.1202 12 0.04317 0.04317 
5 -0.09828 -0.09832 13 -0.03997 -0.03997 
6 0.08311 0.08312 14 0.03721 0.03721 
7 -0.07200 -0.07200 15 -0.03481 -0.03481 
8 0. 063')1 0.06351 

Table 2. 

n (xu u )as.vm 
n' n 

( xu u ) num 
n' n 

( ) asym num n xu 11 ,u 11 (xu 11 ,u 11 ) 

1 0.09996 0.09675 9 0 .01532 0.01531 
2 0.05881 0.05817 10 0 .013861 0.013852 

3 0.04178 0.04155 11 0.012654 0.012649 
4 0.03243 0.03232 12 0.011641 0.011636 
5 0.02650 0.02645 13 0.010778 0.010774 
6 0.02241 0.02238 14 0.010034 0.010031 

7 0.01942 0.01939 15 0.009387 0.009385 
8 0.01713 0.01711 

Table 3. 
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