
stichting 

mathematisch 

centrum 

AFDELING MATHEMATISCHE STATISTIEK SW 94/83 MAART 
(DEPARTMENT OF MATHEMATICAL STATISTICS) 

K.O. DZHAPARIDZE 

ON ITERATIVE PROCEDURES OF ASYMPTOTIC INFERENCE 

Preprint 

~ 
MC 

kruislaan 413 1098 SJ amsterdam 



Printed at the Mathematical Centre, Kruislaan 413, Amsterdam, 'The Netherlands. 

'The Mathematical Centre, founded 11 February 1946, is a non-profit institution for the promotion 
of pure and applied mathematics and computer science. It is sponsored by the Netherlands 
Government through the Netherlands Organization for the Advancement of Pure Research 
(Z.W.O.). 

1980 Mathematics subject classification: 65VOS, 62F12, 62A10 

Copyright© 1983, Mathematisch Centrum, Amsterdam 



On iterative procedures of asymptotic inference*) 

by 

K.O. Dzhaparidze 

ABSTRACT 

An informal discussion is given on performing unconstrained maximization 

or solving non-linear equations of statistics by iterative methods with 

quadratic termination property. It is shown that if a maximized function, 

e.g. likelihood, is asymptotically quadratic, then for asymptotic efficient 

inference finitely many iterations are needed. 

KEY WORDS & PHRASES: methods of Newton-Raphson, scoring, quasi-Newton, 

Davidon-Ftetcher-Poweii, conjugate gradient; 

quadratic termination; asyrnptoticaiiy differentiabte; 

asyrnptoticatiy quadratic 

*) This report will be submitted for publication in Statistica Neerlandica. 





In this paper we briefly discuss some applications of modern iteration 

methods of numerical analysis to the problems of mathematical statistics. 

Certain applications of the most basic iteration method of Newton

Raphson (or its stochastic modification - the scoring method) are well-known 

since Fisher, and nowadays they are included in many statistical textbooks 

(see, e.g., KendallandStuart (1961), Section 18.31; Rao (1965), Section 5g; 

Zacks (1971), Section 5.2). 

Although the Newton-Raphson method is theoretically very attractive, it 

may turn out to be highly unsuitable in practice, especially when the number 

of unknown parameters, involved in the statistical model under study, is 

large. 

In order to mitigate some of the computational difficulties, unavoid

able in the Newton-Raphson methocj,, various developments of this method are 

intensively discussed in the literature on numerical analysis. The most im

portant are the so-called quasi-Newton methods, and their alternatives, the 

conjugate gradient methods. 

We intend to demonstrate here that the application of certain stochas

tic modifications of this kind of methods will, in general, lead to a 

statistical inference which is at least as efficient as that of the Newton 

method. It should be noted, however, that the considerations presented 

below are highly informal, as they are in fact aimed at shw•ing why the 

above conjecture whould be true, rather then at proving strict mathematical 

results (te be found, in principle, in the enclosed references). 

Returning to Fisher's ideas let us recall that he has applied the 

Newton-Raphson method to the classical problem of estimating the unknown 

parameter 8 involved in the distribution F8 , when a sample 

(I) 

is drawn from a population specified by this distribution function F8 • 

Assuming that the population is of the continuous type and f 8 is the 

density of F8 , Fisher (1925) used the Newton-Raphson method for maximizing 

the likelihood function 

n 
(2) L (x1, ••• ,x ;e) = I log f 8(x.). 

n n i=l i 
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Attractiveness and universality of the maximum likelihood method is 

justifiable by the existence, under fairly wide conditions, of the value of 

8 that renders the likelihood (2) as large as possible, at least when the 

sample size n is sufficiently large. Conditions under which the maximizing 

value of e - the maximtnn likelihood estimator 8 - is In- consistent are 
n 

also fairly broad. 

Under In- consistency of e we mean that the sequence of the distribu
n 

tions 

(3) L{/n(e -8)}, n = 1,2, ... 
n 

converges to a non-degenerate distribution. 

Moreover, some additional conditions guarantee that the limit of (3) 

is Gaussian with zero mean and variance, being the reciprocal of Fisher's 

information amount r8 per single observation, that is 

(4) ./ 
A -1 

L{ n(8n-8)} => N(O,r8 ). 

After Fisher, we can therefore call 

These and some further theoretical 

attraction them. l. estimates seem 

8 asymptotically (as n-+oo) efficient. 
n 

properties determine "a quasi-hypnotic 

to exert" [L~Cam (1960), p.94]. 

However in practice complications may arise when one starts to maximize 

the likelihood (2) by, for instance, looking for roots of the corresponding 

likelihood equation 

(5) (3/38)1 (X 1, ••• ,X ;8) = 0 
n n 

(if there is any for fixed n), especially if this equation turns out to be 

highly non-linear (as it frequently happens in practice). 

The additional task of choosing an appropriate root among several of 

them is also difficult. 

Of course, these problems (as well as Newton's method for the iterative 

solution of nonlinear equations) were familiar to Fisher. So he has suggested 

to apply Newton's iterative procedure to the equation (5): 
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(6) i=0,1, ••• , 

or, observing that 

1 a2Ln 
(7) -- • 

n aa 2 
I 0 in probabilistic sense, 

the asymptotically equivalent procedure of scoring 

i=l ai 1 (I;t) i 
oL 

(8) 0 = + - ( at\~ i = 0, 1 , ••• n n n 
, 

an 

He also pointed out that if the starting value a0 is any In- consistent 
n 

estimator for 0 (for instance, constructedbyusing the method of moments), 

then the result of the very first iteration, 0 1, is an estimator for 0 as 
n 

fine asymptotically as the maximum likelihood estimator e. 
n 

Indeed, Fisher did not worry about the mathematical accuracy of his 

statements. The first careful treatment of the subject (provided with the 

further study of asymptotic properties of the estimator 01) is due to LeCam n ' 
(1956). 

Later, LeCam (1960) extended his studies to a considerably more general 
*) . class of experiments. than .. those generated by independent identically· dis.;.. 

tributed (i. i. d.) observations: the function L (X 1, ••. 1 X· ; i) was' treated as a 
. n ; n 

general loglikelihood function and not necessarily that of the i.i.d. ob-

servations (as in (2)). He observed that for a sufficiently large n Taylor's 

expansion of L involves terms which are related to the first and second n 
order derivatives of L only, because all other terms become asymptotically 

n 
negligible when n-+<x>. That is, 

(9) 

*) Deviating from the i.i.d, case,,one often encounters situations in which 
the formulae (9 )- ( 11) hold with some differential on> 0 such that on+ 0, 
different from I/In, and this is taken into account in the later works of 
LeCam (1969,1974). 
It should be noted also, that in the case of a vector-valued parameter 0 the 
normalization of each component by In (to be discussed below) often fails: 
these componentsevenmay have different rates of convergence, and then the 
normalization by some positive definite matrix with a vanishing (as n-+<x>) 
norm is needed (see Ibragimov and Has'minskii (1981) where an excellent 
treatment of estimating problems can be found, in the spirit akin to that 
of LeCam). 
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where 

(10) 
(0) 1 oL ) 

A = - ~en+ a term asymptotically uegligible* , 
n ✓n o 

and r0 is the stochastic limit of the second derivative of Ln with opposite 

sign (recall (7)). 

Further under fairly wide conditions the random variable A (0) is 
n 

asymptotically normal: 

and asymptotically differentiable in the sense, that if e0 is any ✓n- con
n 

sistent estimator fore, then 

(here, as in (9) or anywhere below, the omitted terms are asymptotically 

negligible in the sense that they tend to O stochastically as~). 

Note that in the case of i.i.d. observations (11) is a simple conse

quence of the central limit theorem and the well-known fact that 

(But in general this last equation holds only when n-+<x>). 

Equation (12) also has a natural interpretation in terms of the deriv

atives of L. n 
The equations (11) and (12) have a very important conseq~ence. 

PROPOSITION 1. If (11) and (12) hold, the estimator 

(13) 
1 0 1 -1 0 

e = e + - r O A (e) 
n n ✓n e 1 n n 

*) Gene~ally the explicit expression of (o/o0)Ln involves certain terms 
which are negligible as n-+<x> in comparison with other-principal-ones retained 
in An(e). Indeed, the latter quantity has to be chosen among asymptotically 
equivalent candidates as plain and smooth as possible to ensure, in partic
ular, asymptotic relations of type (12). 
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is aswnptotically normal 

(14) 
I - I 

L(ln(en-0)) =>N(0,10 ). 

Note the similarity of (13) and (8) with i = O, and also the coincidence 

of the right-hand sides of (5) and (14). 

PROOF. is very simple: By (12) and (13), 

ln(e 1 - e) = 
n 

0 -1 0 
ln(e - 0) + I O [L'. (0) - I ln(e - 0)] + a term asymp-

n e n e n 
n 

totically negligible. 

0 -1 
If we now replace e in I o by e ( this is justifiable if 18 1.s continu-

ous in 0), then 
n en 

ln(e 1 - e) = 
n 

I-l t:,. (0) + 
e n 

Hence (14) 1.s the immediate consequence of (II). 

According to this propos1.t1.on the estimator 8 has the same asymptotic 
n 

properties as the maximum likelihood estimator. In other words, instead of 

looking for the maximum likelihood estimators 8 one can use, without loss 
n 

of efficiency at least for samples of large size n, the following two step*) 

procedure: 

(i) 

(ii) 

construct a rough estimator e0 of 0 satisfying In-consistency, and then, 
n 

defining for the particular problem under study t:,.n(e) and r0 from a 

corresponding likelihood function L (0), construct e 1 as indicated 
n n 

in (13). 

It should be noted that, in principle, this alternative procedure 

"applies also to cases that certain authors may deem pathological - cases 

in which m. l. estimates do not behave or do not exist. This is somewhat 

*) Obviously, this procedure can be used iteratively by continuing as in 
(8). That is why Fisher called the method of estimation by formula (8) the 
scoring method (the word scoring is used here to stress that the procedure 
scores iteratively the corrections). Considerations as simple as those used 
in proving Proposition 1 lead to the conclusion that in general the 
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irrelevant. What is relevant is that statistical life is plagued with situa

tions involving dependent variables or- other more or less complicated situa

tions in which it seems to be a waste of time to try to prove that m.l. 

estimates do behave. Even in cases in which the m.l. estimates are asymp

toticaUy weU behaved it may be preferable not so use them" [LeCam (1960), 

Appendix II]. 

That is why the just cited "author is firmly convinced that a recourse 

to ma,:x;imwn likelihood is justifiable only when one is dealing with families 

of distributions that are extremely regular. The cases in which m.l. esti

mates are easily obtainable and have been proved to have good properties are 

extremely restricted. One of the purposes of this paper [LeCam (1960)] is 

precisely to deemphasize the role of m.l. estimates". 

"The cJ:raawback in having a liberal amount of flexibility in the choice 

of the estimates is that one is likely to have to choose between radically 

different formulas which all lead to the same asymptotic properties. From 

a practical point of view, it should be emphasized that a purely asymptotic 

theory does not say anything about a particular problem. The standard 

practice of letting a parameter tend to infinity is a mathematical device 

which leads to fairly simple theorems . .. " 
The reason for such an extensive quotation should become clear below, 

for we shall now follow "the standard practice of letting the sample size n 

tend to infinity", and define alternative procedures of estimation which 

lead to the same asymptotic properties as that of m.l. or Newton-Raphson 

(scoring). 

Observe meanwhile that the considerations which are followed above 

can be easily extended to the s vector-valued parameter case when ~n(e) is an 

s vector-valued random variable and I 9 is a positive definite (sxs)-matrix 

In this case the application of fomula (13) (or the iterative procedures 

of type (6) abd (8) requires the inversion o~ (sxs)-matrices. This may be 

difficult, when the number of unknown parameters, s, is large. 

Naturally, the question arises on trying other methods for unconstrained 

repetition of the procedure should draw the result somewhat nearer to the 
m. 1. estimator 8 , since nK/2(e; - Sn)-+ 0 in probabilistic sense, provided 
that K + 1th order differential of Ln is sufficiently smooth in 9, and that 
this differential .divided by n is stochastically bounded. 



maximization (or solving essentially nonlinear system; of corresponding 

equations) provided by modern numerical analysis. 
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The justification of nearly all such methods is based on the presumption 

that the maximized quantity, in a neighborhood of a maximum point, can be 

well approximated by a quadratic function. Thus a number of methods are 

advanced in numerical analysis which efficiently maximize quadratic functions, 

in the hope that they do perform on more general functions at least in a 

neighborhood of a maximum point. This motivation leads in the first place 

to the derivation of Newton's method which gives the maximum of a quadratic 

f ' *) bT l TAx f h f' ' ' l A-lb unction , c + x - 2x say, a ter t every 1rst 1terat1on, x = , 
0 for any initial value x. 

Also, the developments of the classical Newton method mentioned in the 

beginning of this paper, such as the quasi-Newton methods and conjugate 

gradient methods, possess a special property with respect to quadratic 

functions: the maximum is found in at mosts iterations wheres is the 

number of unknowns. Therefore, it is often said that these methods possess 

the property of quadratic termination. 

On the other hand, in view of the asymptotic relation (9) the function 

L can be regarded as "asyrrrptoticaUy quadratic". 
n 

Basically, this determines the fine asymptotic properties of the first 

iteration in (6) (or (8)) as an estimator of e. Realizing these facts one 

should come to the conjecture that the quadratic termination property of a 

utilized method ought to guarantee the same asymptotic properties for the 

result of at mosts iterations treated as the estimator fore. 

An attempt in this direction is made in Beinicke and Dzhaparidze 

(1982), where our conjecture is confirmed for a couple of methods. The first 

one is the Davidon-FZetcher-PoweZZ (DFP) method, which is one of a family 

of quasi-Newton methods. 

The concept of a quasi-Newton method for the solution of the system 

(5) with (a/ae) to be understood now as the gradient vector (or for the 

*) As for the maximization of a general function, the nice feature of 
Newton's method consists in the fact that when the iterations do converge, 
the rate of convergence is quadratic. However, Newton's iterations often 
fail to converge - when the results are far from a maximum point difficul
ties may arise. Nevertheless, the attraction of the quadratic convergence, 
in a neighborhood of a maximum, keeps all methods as close to Newton's 
iterations as possible, only introducing modifications to gain more 
reliability. 
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maximization of L (0)), consists of an algorithm which proceeds as follows. 
n-

Choosing the initial value (any In - consistent estimator for e) e0 before-
. . . . . • • 0 . n 0 

hand, along with a synnnetric positive definite matrix H (for instance, H n n 
can be chosen as the sxs unit matrix), at iteration i, define 

(15) 

where aj is determined by an exaat "line seai:>ah, that is, it is chosen as 
n 

the value a that maximizes the function 

• 1 • • 
L (eJ + - a HJ 6 (eJ)). 

n n In n n n 

Neglecting again the omitted terms in (9) and replacing I · by a con
eJ 

* sistent estimator I 
n 

(16) 

for r0 (by Io, say), we get 
en 

T (6 denotes the traspose of 6 ). 
n . n 

n 

As for the matrices HJ, j = 1,2, .•• in (15) and (16), they have to 
n 

possess the property 

(17) 

where rj = In (ej+l - ej) qj = 
n n n ' n 

The following specific choice of the matrices H~, j = 1,2, ••• , satis

fying (17) determines the DFP method (see, e.g. Ortega and Rheinholdt (1970)); 

(18) 

The assertion of Theorem 1 below shows the ability of such stochastic 

modification of the DFP method to perform asymptotically efficient estima

tion~ 
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THEOREM I. If (II) and (12) are met, then the estimator e: defined by (15), 

(16) and (18) (s being the nwnber of unknowns) is asyrrrptotically normal, 

specifically 

(19) 
s -1 L(/n(en - e)) => NlO,I8 ). 

Besides Hs is a consistent estimator for the inverse of Fisher's information 
n 

matrix r 8 per single observation. 

PROOF of this result can be found in Beinicke and Dzhaparidze (1982). Note 

that the considerations of this paper are based on the definition (18) of 

the matrices H., j = 1,2, ... , while, in general, results of Dixon (1972) 
J 

allow extensions on the full Broyden family (see, e.g. Brodlie (1977)). 

Following considerations similar to those of Beinicke and Dzhaparidze 

(1982), the former author has shown in his Ph.D. thesis at Tbilisi State 

University (1979) that the conjugate gradient method, appropriately modified, 

leads to an analoguous result. Specifically, the following theorem holds. 

THEOREM 2. Define the stochastic modification of the conjugate gradient 

iterations: 

where 

i a = n 

0 i+l 
= t:,. (8 ), pn n n 

Then under the conditions of Theorem 1 the estimator es has property (19). 
n 

In conclusion, a couple of brief remarks on further statistical applica

tions. 

The first of it is concerned with certain situations in which a recourse 

to the likelihood methods is unjustifiable for that or another reason like 
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quoted above. Moreover, in many applications statistical models under study 

are not (or rather cannot be) fully defined. 

Aiming, under these circumstances, at solving, specifically, estimation 

problems, one has to look for a suitable criterion function (in place of the 

undefined likelihood L (0)) which is, essentially, free from any kind of 
n 

nuisance quantities and thus depends only on 0 (and on observations). Of 

course, this function, say U (0) = U (X1, ••• ,X ;0), has to be chosen so as n n n 
to prove the sensibility of the estimator for 0 defined as the value of 0 

that maximizes (or minimizes) U (0). As an illustrative example of such kind n 
of practice, the atilization in various settings of the Zeast squares method 

should be mentioned.*) 

The demands on U (0) made above are usually met with the requirement of n 
its asymptotiaai differentiabiZity in the sense that for the difference 

U (0+h//n)-U (0) there exists a (multivariate) relation analoguous to (9) n n 
with some (s vector-valued) random variable~ (0) and positive definite 

n 
matrix I 0• Besides, these quantities are usually related as in (12). Often 

the asymptotic normality of~ (0) can also be provided, although the covari
n 

ance matrix, say w0, appearing in the limiting distribution, may, in general, 

differ from I 0• 

It might be clear now that under these circumstances the considerations 

followed above remain, in general, valid for U (0) in place of the likeli-
n 

hood function L (0), although in the conclusions (namely in (14) and (19)) 
n 

I; 1 has to be replaced by w; 1I 0w; 1 (Beinicke and Dzhaparidze (1982)). 

Observe, finally, that the result H: ~ I;1 (stochastically), claimed 

in Theorem 1, can be used, for example, in constructing test statistics for 

certain tests-of-fit based on x2-distribution. For, structurally, these kind 

of test statistics are describable as quadratic forms in random variables, 

generated by the inverse of their covariance matrix. Under condition (11), 

for instance, the statistics 

can be used for testing the hypothesis: 0 = a0 • 

*) See, e.g., Jennrich (1969) on non-linear regression, or Kohn (1978), 
Dzhaparidze and Yaglom (1982) on time series analysis. 
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