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ABSTRACT 

The rate of convergence of the distribution function of a synnnetric 

function of N independent and identically distributed random variables to 

its normal limit is investigated. Under appropriate moment conditions the 

rate is shown to be O(N-½). This theorem generalizes many known results 

for special cases and two examples are given. Possible further extensions 

are indicated. 
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I. INTRODUCTION. 

During the past decade a good deal of effort has been devoted to extending 

the theory of Berry-Esseen bounds and Edgeworth expansions to more complicated 

sequences of random variables than normalized sums of independent and identically 

distributed (i.i.d.) random variables or vectors. From a statistical point of 

view, this study of higher order asymptotics for large classes of test statistics 

and estimators has proved extremely fruitful: it has yielded much that is signi­

ficant for statistical theory as well as useful in practical applications. To the 

probabilist, however, most test statistics and estimators occurring in statistical 

theory appear to be strange artefacts, which are neither particularly interesting 

objects for study in themselves nor very promising starting points for developing 

a general probabilistic theory. 

There is, perhaps, one exception which is the class of U - statistics intro­

duced by Hoeffding (1948). Though it is usually studied for its statistical appli­

cations, it surely constitutes a large class of random variables which would 

seem to be a natural extension of sums of i.i.d. random variables. Let x1,x2, ••• 

be i.i.d. random variables and let h: lR.k • JR. be a symmetric function of its 

k arguments. For N 2 k, a U - statistic of degree k is defined as 

I I 
l~i 1<i2< ••. <ik~N 

(I.I) u h (X . , X • , ••• , X . ) 
11 12 lk 

and the idea is to study its asymptotic behavior for a fixed h as N • oo. For 

k we are back in the case of sumsof i.i.d. random variables. As soon as 

k 2 2 , the degree doesn't play an important role any more except, of course, for 

the fact that it stays fixed as N • 00 • Many authors therefore discuss only the 

case of degree two, on the understanding that the case k > 2 is similar. Let us 

follow this tradition for a moment and take 

( I • 2) u h(X. ,X.) 
l J 

where h(x,y) = h(y,x) . Assume that 

( I. 3) 0 , 

and define 

( I. 4) g(x) ¢(x,y) = h(x,y) - g(x) - g(y) , 
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(I. 5) 

Clearly, 

ijl(X. ,X.) 
1 J 

( I. 6) 

N 
(N-1) I 

i=l 
g (X.) , 

1 

a.s. 

ijl(X. ,X.) . 
1 J 

so that the random variables 
,. 

are pairwise uncorrelated and since u = u + ti , 

2 2" 2 2 2 2 cr (U) = cr (U) + cr (ti)= N(N-1) Eg (X 1) + !N(N-l)Eijl (X 1,X2) 

If it is assumed that 

( I. 7) 2 
E g (X 1) > 0 , 

g(X.) 
1 

and 

then cr 2 (U) dominates the right-hand side of (1.6) and U cr- 1(U) is asymptotical­

ly normal (cf. Hoeffding (1948)). 

The speed of convergence to normality was investigated by a number of authors 

who proved in increasing generality that 

(I. 8) 
_I 

O(N 2 ) 

where ~ denotes the standard normal distribution function (d.f.). Suppose that 

(1.3) and (1.7) are satisfied so that asymptotic normality is ensured. Bickel (1974) 

established the Berry-Esseen bound (1.8) under the additional assumption that h 

is bounded. Chan and Wierman (1977) and Callaert and Janssen (1978) successively 

reduced this assumption first to E h4 (x1,x2) < 00 and then to E!h(X1,x2)! 3 < 00 

Helmers and Van Zwet (1982) showed that E!g(X 1)! 3 < 00 suffices. They also proved 
2 that the assumption Eh (X1,x2) < 00 in (1.3) may be relaxed, provided cr(U) is 

replaced by cr(U) in (1.8). This need not concern us here, however, since we shall 

concentrate on the case of finite variance in the present paper. 

Let us consider the more general case of a symmetric statistic. As before, 

let x 1, ... ,XN be i.i.d. and let T : lR.N +lR. be a symmetric function of its 

N arguments. 

Define 

(1. 9) 

and assume that 

(I.IO) E T 0 ' E T2 I • 
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We wish to study the asymptotic behavior of T as N + 00 • The difference with 

the previous problem is that then we were dealing with a kernel function h that 

remains fixed as N + 00 , or perhaps with uniformity classes of such functions 

of a fixed degree k. Now the degree of the kernel , equals the sample size N 

and both tend to infinity together. 

Define 

N 
( I. 11) T. = E(TIX.) , 

J J I 
j = I 

T. 
J 

,.. 
then T1 

A 2 2 A 

and (T-T1) are again uncorrelated. It follows that if cr (T) ~ cr (T 1) 

as N + oo and the summands T. satisfy the Lindeberg condition, then T cr- 1 (T) 
J 

is asymptotically normal. 

The aim of this paper is to prove the following theorem of Berry-Esseen type. 

THEOREM I • I • 

Suppose that (1. IO) is satisfied and that positive numbers A and B exist 

such that 

Then 

( I • I 4) suplP(T ~ x) - ~(x)I ~ C(A+B)N-! , 
X 

where C denotes a universal constant. 

Note that although we have formulated the theorem as a uniform error bound for 

a fixed but arbitrary N and T, it is a purely asymptotic result because the 

constant C is not specified. It applies to sequences of symmetric statistics 

TN= 'N(XN,I' •.• ,xN,N) where, for every fixed N, xN, 1, ... ,xN,N are i.i.d. 

with a common d.f. FN, provided (1.10), (1.12) and (1.13) are satisfied for 

every N and fixed values of A and B. 

The theorem will be proved in sections 2 and 3. In section 2 we collect some 

facts concerning 12 - projections and in section 3 we provide a proof of the 

theorem based on these facts. Some examples and possible extensions are discussed 

in sections 4 and 5. 
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2. L2 - PROJECTIONS. 

L2 - projections were introduced in statistics by Hoeffding (1948, 1961) and 

have been used effectively by many authors since then. Most recently Efron and 

Stein (1981) and Karlin and Rinott (1982) have used these o.rthogonal projections 

to establish certain variance inequalities. To indicate decomposition by repeated 

orthogonal projection, these authors have introduced the descriptive term ANOVA -

type decomposition, but we prefer to speak of Hoeffding's decomposition instead. 

What follows are some simple and well-known facts concerning L2 - projections 

written down in an easy notation. 

Let x 1,. ··•¾ be independent random variables and let T = ,(X1, •.. ,XN) 
2 have ET < 00 • Note that at this point we do not assume that x1, ... ,XN are 

identically distributed, that , is symmetric in its N arguments, or that 

ET= 0 and E T2 = 1 • Define n = {1,2, •.. ,N} . For any D c n , let 

(2. 1) E(TID) = E(T!X., i € D) 
l. 

denote the conditional expectation given all x. with indices in D . Define 
l. 

I 
IDI-IAI 

E(T!A) (2.2) TD (-1) 
AcD 

where the sunnnation is over all subsets A of D 
' 

including the empty set, 

I • I denotes the cardinality of a set. Of course T <P = E (T I <P) = .E T a.s. and 

for convenience we shall write 

(2.3) T. = T{ . } = E (TIX.) - E T ' j = 1 ' •.. 'N . 
J J J 

The basic property of TD is that 

(2. 4) E(TDID') = 0 a.s. unless D c D' • 

To see this, write C D n D' and note that, if IDl-lcl = k > 0, 

and 

IDI-IAI 
E(TDID') = I (-1) E(TIAnC) 

AcD 
I E(T!B) I (-1)IDI-IBl-j(~) = 0 

BcC j=O J 
a. s .. 

It follows in particular that E T = 0 
D 

if and that the random variables 

TD , D c {I, ... ,N} are pairwise uncorrelated, i.e. 
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(2.5) if D f. D' • 

Since the order of the two operations in E(TDJD') may be interchanged with 

impunity, we have E(TDJD') [E(TJD')JD. Hence (2.4) also yields that if T 

depends only on X. 
1 

(2.6) 0 a. s. 

for i E D' , then 

unless D c D' . 

For m = 0,1, .•. ,N, let L denote the linear space of random variables 
m 

with finite variance that is spanned by functions of at most m of the variables 

X1, •.. ,XN, thus 

L 
m 

{Z z 2 
t/J • • (X . , ••• , X . ) , E Z < co} • 
11•···•1m 11 im 

,. ,.. 
We define T to be the L2 - projection of T on L if T E L and 

E(T-T ) 2 
m ,. m m m 

is minimal, or equivalently, if T E L and E(T-T )Z = 0 for m m m m 
Z E L We have m 

N 
(2.7) E T , I 

j=l 
T. 

J 
T . 

,. 
To check this, note that Tm E Lm and that ETD Z = 0 if JDI ~ m+l and 

Z E L by (2.4). Hence we have Hoeffding's decomposition 
m 

(2. 8) T 

and since all terms are pairwise uncorrelated, 

(2. 9) E T2 
D 

If we apply (2.8) to E(TJA) instead of T, (2.6) yields 

(2.10) E(TJA) 

which is the inverse of relation (2.2). 

For m = 0,1, ••. ,N, let us write 

(2. 11 ) w 
m 

all 
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(2. I 2) 
m 

T = I 
j=J 

T. + W + /I:, 
J m m 

Clearly l·m T. + W is the best approximation of T in L2 by a random 
J=l J m 

variable which depends on x1, .•• ,Xm only through a sum of functions of each 

one of these variables separately. We shall need some information concerning 

the error /I:, of this approximation. For r = 0,1, ... ,N, define 
m 

(2. 13) n = {1,2, ... ,r} r 

By (2.10) and (2.8), 

(2. 14) w I TD I m 
Dene 

m 

(2. 15) 0 ' I':, I 

nc 
r n-n r 

m 
I 

{ r+ I , ••• , N} • 

N-m 
I I I T /1:,0 m Dnrl ;tcp 

TD 
k=l l=O Acri Berle AuB 

m k+l~2 m m 
jDj~2 jAj=k I Bj=l 

Now let us assume that x 1 , •.. ,XN are identically distributed, that 

T T(X 1, ••• ,XN) is a symmetric function of these variables and that ET= 0 
2 ET = I , so that we are back in the situation of section I! Then (2.15) and 

(2.5) imply that 

(2. I 6) 

If 

(cf. Karlin and Rinott (1982) who show 

is absolutely monotone). In particular, 

m = 0,1, ..• ,N Also 

(2. 17) 

m = 0,1, ... ,N 

D Ds(E /1:, 2) , then (2. 16) yields 
m 

that E ir2 = I - (N-m) E T2 - E /1:, 2 
~N-m I N-m 

E /1:, 2 is nondecreasing and concave for 
m 

2(1 - E T2 - E w2) - (l-2E T2 
1 I I 



and under the conditions of theorem I. I we therefore 

(2. 18) 0 ~ 2 E ,/ - E /:J.2 = I (!:;)ET~ ~ B N-3 • I 2 r=2 . r 

It follows that 

i 
N 

(N-1) E T2 B N-2 , (2. 19) 0 ~ E = I ~ I r-1 n r=2 r 

~ 
N 

(!)ET~ ~ I B N-I (2.20) 0 ~ E = I 
r=2 r 

(2.21) 0 ~ E /:J.2 ~ m E /:J.2 ~ B m N-2 
m 1 

because of the concavity of E t:J.2 • 
m 

• m = O, ••• ,N, 

7 

have 

So far we have implicitly assumed that the random variable T is real valued, 

but of course everything in this section goes through for complex valued T with 

appropriate modifications. In (2.5), ETD TD'' should be replaced by ETD TD' , 

where TD, denotes the complex conjugate of TD' ; furthermore, in all expecta­

tions of squares such as E T2 , ET~, E w;, E /:J.; etc., the squares should 

be replaced by their moduli EIT2 1 , EITD2 1 , Eiw2 1 , Eit:J.2 1 etc •• Thus in m m 
particular (2.9) becomes 

(2.22) EIT21 = I EIT~I • 
Den 

3 • PROOF OF THEOREM 1 • 1 • 

Let us agree to take C ~ 3 • For 1 ~ N ~ 3 B, we have 

C(A+B)N-½ ~CB N-J ~ C N½/3 ~ 1 , so that (1.14) is trivially satisfied. We 

therefore assume that N > 3B. 

In view of (2.12) and (2.20), 

(3. I) 

and hence, under the conditions of the theorem, 

(3.2) -1 3/2 ~ (-56)3/2 • ~(1-½BN) 
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Let 

(3. 3) 

be the 

for all 

(3 .4) 

(3. 5) 

Let 

(3.6) 

eit T 1 y(t) = E 

characteristic function of 

2 
< .!_ B N-2 IYCt) I - ~NI - - 4 

It I 
-I 1 

:', H = ½ A N2 For 

2 
0 < I -~:-:; 

3N lyCt)I :-:; I 

t/J(t) = E 

t2 
2N :-:; I 

it T 
e 

- 1/ct) I 

Tl . By (3. I) and (1.12), 

t2 +¼A N-3/21tl3 
2 

t 
:-:; 6N 

It I :-:; H • we have t2 :', (6/5) 3 N/4 :', ½ N and 

t2 t2 
- - < exp{ - -} , 3N - 3N 

4t2 
:-:; 3N . 

denote the characteristic function of T. According to Esseen's smoothing lemma 

(cf. Feller (1971), p. 538) 

H -lt2 
suplP(T :-:; x) - Hx)I 

I I I t/J(t)~e 2 I dt + i :', -
X 7f H" 

-H 

Define h = min(2 N114 , H) and let c1,c2 , •.. denote universal constants 

throughout the proof. From (1.12), (3.1) and the proof of the classical Berry­

Esseen theorem we conclude that 

Because of (3.2) 

I 2 I le-;t I 

ltl~h 

I -1 -1 
dt :-:; - 2 N 2 :-:; AN 2 

2e 

and combining these results we find 

(3. 7) 

h 

suplP(T 5 x) - ~(x)I :-:; _!_ I 
X 7f 

-h 

+¾ f 11/l~t)ldt+C2AN-½ 

h:-:; It I :-:;H 
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To analyze ~(t) for ltl 5 h, we employ decomposition (2.10) for m = N, 
A 

i.e. T = T I + LiN, to obtain 
A A 

it T N it Tl 
(3 .8) ~(t) = E e I ( I + it ~) + ¾ = y (t) + it E e ~+¾, 

(3.9) l¾I < ! t2 
E~ 

. Bt 2 
<-- 2 - 4N 

in view of (2.20). Similarly, 

(3. I 0) 
it TI 2 1 ! -1 

It E e ~ I 5 It I {E LiN} 2 5 (!B) 2 It I N 2 

A more delicate analysis starts with noting that 
A A 

it Tl N it Tl 
E e Li = I t E e TD 

N k=2 JD =k 

N (!) /-r (t) E 
r it T. 

= I TS"lr II e J 

r=2 j = I 

it T. 
(e J - y(t)) 

where the final step follows from (2.4). For 2 5 r 5 N, 

2 

( N) 5 6(N-2)(N+2) 
r r-2 r+2 

and since 

(3.11) 
it T. 2 2 

El e J - y(t) I = I - Ir (t) I , 

repeated application of Schwarz's inequality yields 
A 

it Tl 
IE e LiN I 5 

1 N ( )½ 1 6 2 l N-2 (E T2 ) 2 • 

r=2 r-Z S1 r 
! 

( N+2)2i/(t)l½(N-r)(I - i/(t)J)½r 5 
r+2, 

[ I (N+2)1 2(t)I N-r(I 
r=2 \r+2 y 

I N ! 

6 2 [ \ (N-2) 2 ] 2 
2 • l 2 E TS"l 

1-Jy (t) I r=2 ,r- r 

6i f ¥ 
1-1/<t) I r=2 

I 

( N-2) E T2 ]2 . 
r-2 n 

r 
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Invoking (2. 18) and (3.5), we see that for !ti <: H 
,. 

(3. 12) 
itT 1 1 -l -1 

I t E e i',N I ' S:: (24B) 2 1 t I N 2 • 

Combining (3.8), (3.9), (3.10) and (3.12) and then using (3.2), we arrive at 

h N 

o. 13) f 1wCt)7 Ct) I dt <: 
l -1 -1 

(B + 8B 2 ) N 2 s 6(A+B) N 2 

-h 

It remains to consider w(t) for h s Jtl <, H 1n order to bound the second 

integral in (3.7). For any fixed !ti in this interval we take 

(3. 14) m = [3 N l~g N] 
t 

where Ix i denotes the integer part of x . For j t j ::: h , we have O s m <, N , 

and using decomposition (2. 12) for this value of rn, we obtain 

(3. 15) ljJ(t) 

(3. 16) 

m 
E exp{it( L 

j=l 
T. + W )}•(! + it 11) + R 

J m m m 

because of (2.21). Since It! <, H, (3.4) and (3.2) imply 

m 
IE exp{it( I T. 

j=l J 
(3. 17) 

<: exp{ - log N + 

+ w ) } I 
m 

2 
_!=_} 
3N 

<: N 

<'. 

-1 

2 
ly(t) Im s exp{ - !fljf,j} <, 

I 2A exp{-----} s 
12 A2 N 

Let us define the complex valued random variable Z = exp{it W} which 
m 

depends on Xrn+I ,···•~ only. By (2.15) and two applications of (2.4), 

(3. 1 8) 

m 
E exp{it( I 

j=I 
T.+W)}i', 

J m m 

m N-m 
ym-k(t) I I I I 

k=I .f=O AcQ BcfJ,c 
k+.f:>2 m m 

IAl=k IBl=.e. 
m N-m 

ym-k (t) I I I I C 
k= 1 .f=O Acri Bcf/, 

k+b:2 m m 

IAl=k IBl=.e. 

E[TAuB 

it 'f. 

E(Z!B)] . II e J 

jEA 

E[TA11B 

it T. 

zB] 
. IT (e J - y(t)) 

jEA 
. 
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It follows from (2.22) and (2.6) that 

(3.19) 

m 

By Schwarz's inequality and (3.1 I), 

it T. ? 1 2 1 j j 1 

EIT n (e J - y(t))Z I<: (ET~ ) 2 (1-Jy (t)j) 2 A (Ejz 2 p 2 
AuB . A B AuB B 

JE 

for every Ac Q and B cs{ Another application of Schwarz's inequality to 
m m 

the terms in (3. 18) with k = I and k 2 2 separately, followed by the use of 

(2. 18) and (2. 19) yields 

(3. 20) 

m m- I 2 1 
jE exp{it ( Y. T. + W )} t,, I< mjy(t)J (I - )y (t)l) 2 • 

j=I J m m 

[ 
m 

Y. Y. 
k=2 AcQ 

m 
jAj=k 

! 

E T2 ]2 
Sl.f+ I 

rN-m 
\' \ 

l {, L c 
f=I B<Q 

m 
IBl=l 

1 m N-m ! 
Ejz21l\l, r' '_!<_(_k_-_I)ET2 ]2 

"B J l L L. L c m (m- I) . AuB 
=2 l=O A, 11. B<-Q 

m m 
IA I =k I Bl=( 

I 

Ejz!j r < 

rN-m+I ( \ 11 I 2 1 N-m 2 2 
<: m I y ( t ) I m- ( I - I y ( t ) I ) 2 ' \ E T + l L \ r- I) Sl J 

r=2 r 

+ 6H ~ (N-2) E T2 1½ r ~ (m+2\1 2(t)lm-k(I I 2( )i/l! < 

lr:2 r-2 QrJ Lk:2 \k+2) Y - Y t J 

< B½ [~ jy(t)jm-l(I - j/(t)j)½ + 6! N- 312 (1 - j/(t)l)- 1]. 

Hence, by (3. 4) , (3. 5) , (3. I 4) and (3. 2) , 

m 

I t E exp {it ( Y. T. + W ) } t,, I :S 
• J m m 
J=I 

(3.21) 
1 [ -3/2 2t2 

(3B) 2 2 N log N exp{- 3N} + 2 N 2 t < 3/2 - 1 , ,-IJ 

for h s jtj :SH. Combining (3. 15) - (3.17) and (3.21) and again using (3.2), 

we arrive at 
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(3. 22) 

1-tjJ_(_t) I dt s 
t 

-1 
< 7(A + B) N 2 • 

2 l 2 
3 B(_log N)_ + _A_ __ l_?J;__N + 5 B2 (log N) 

4N N - 2 N3/2 

Together (3.7), (3.13) and (3.22) establish theorem I. I. 

4. EXAMPLES. 

• 

In this section we apply theorem I. I to two special cases - U-statistics and 

linear functions of order statistics - to see whether we can obtain results 

comparable to the best available ones for these well-studied special cases. 

Let x1, •.. ,XN be i.i.d. random variables and let h be a function of 

k(~ N) variables satisfying 

(4. I) 0 , 

Define the U-statistic U by (I. I), the function g by 

( 4. 2) x) 

and suppose that 

(4. 3) 
2 

E g (XI) > 0 , 

We shall show that theorem I. I implies 

COROLLARY 4. I . 

'J'hc'r'e cxi:~t.c; a univer'.'1,z/, (~o;wLan/; C nrwh lhuL 

[ 
Elg(Xl)l3 

s C - - - -- - - -- - - - - -

{Eicx1)} 312 

1,1/zc ne lh' r· s ks N and provided (4.1) and (4.3) ar•c r:al?'.r:fied. 

For k = 2 this is the best result known for the case where 

-1 
N 2 

as was pointed out 1n section I. Since the assumption of finite variance is a 

natural limitation of the results in this paper, we conclude that theorem I.I 

00 , 
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performs as well as might be expected for this special case. This is not really 

surprising, as theorem I.I and its proof are modeled after the earlier work on 

U-statistics. 

To prove the corollary, we begin by noting that (2.6) implies that 

(4. 4) U = 0 
D 

if ID I :-: k + I • 

For r = 0,1, ... ,k, define 

(4.5) 

In particular, 

that 

0 and g as defined 1n (4.2). It follows from (2.9) 

(4.6) 
k 

2 = r (kr\ 2 Eh (x,, ... ,Xk) L } E g (x,, ... ,x) 
r=O r r 

Obviously, for r = 0,1, ... ,k, 

(4. 7) 

and because of (2.7), (4.4) and (4.6) we have 

(4.8) 

(4. 9) 

(4. 10) 

E 1/ 
I 

13 _ (N- I\ 3 
J 3 EIUI - k-1) E g(Xl) I ' 

~ (N-2\ 2 k (N-2) (N-r\2 
L r-2) Eu~ = l r-2 k-r} 

r=2 r r=2 ' 

= (\Nk) t r(r-1) (N-r\. (k) E 
r: 2 N(N-1) k-r/ \r 

2 
E g (x 1, ••• ,x) = 

r r 

Define 2 T = U/o(U) , so that ET = I • Take 

(4.11) A 
Ejg(Xl)J3 

{Ei(xl)}3/2 , 

By ( 4. 8) - ( 4. IO), 

B 

2 
2 Eh (X 1 , ... ,~) 

4 (k-1 ) - - - - · · - - · - - - - -
2 Eg (X 1) 

A N-3/2 
' 
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( N-2)2 2 
N (N-2) 2 <k-2 Eh (X1•·· .,Xk) < -3 L 2 ET - 2 -BN • 

r=2 ,r- ~r E U 1 
(4. 12) 

Note that the results of these computations are correct also for k = I . In view 

of (2. 17) and (2. 18), it follows that assumptions (1. 12) and (1.13) of theorem 1.1 

are satisfied with A and Bas in (4.1 I). The corollary follows. 

We now turn to our second example. Let x1,x2, .•. ,~ be i.i.d. random 

variables with a common distribution function F, which is not assumed to be 

continuous. Let . . . s; denote the corresponding order statistics. 

For real numbers c 1,c2 , .•. ,cN, we consider a normed linear function of order 

statistics 

(4. 13) L 

Suppose that 

-1 N 2 

(4. 14) EIX) 13 < CX) ' 

and let 

(4. I 5) max I c-1 = 
Js;f,::N J 

Theorem I.I implies 

COROLLARY 4.2. 

ri(L) > 0 
' 

a ' N max J cj-cj-11 = b . 
2:s:j s:N 

There exists a universal constant C such that 

3 3 2 2 
C [a EIX1 I + b {EJX1 I} ] 

cr3 (L) cr 2 (L) 

whenever (4. 14) and (4.15) are satisfied. 

-1 N 2 

If cr2(L) is bounded below and a and bare bounded above as 
-1 

N + "' ' then corollary 4.2 provides a Berry-Esseen bound of order N 2 • In view 

of (4. IS) we are then dealing with the case of smooth weights c 1, .•. ,cN, but 

not necessarily smooth underlying distribution function F . For this case, the best 

result to date has been obtained by Helmers (1981; 1982) and this result is 

essentially equivalent to corollary 4.2. Thus once again, theorem I.I appea?S to 

perform in a satisfactory manner. 



To prove corollary 4.2 we adopt some additional notation. For n $ N, 

Xl:n $ XZ:n $ ••• $ Xn:n will denote the order statistics corresponding to 
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x1,x2, ••. ,Xn; we take x0 = - oo, :n 
X = + 00 • We shall find it convenient n+l :n 

to introduce i.i.d. random variables u1,u2 , ••• ,UN with a common uniform distri-

x. = F-I (U.) for i 1, ... ,N. Clearly this bution on (0,1) and pretend that 
1 1 

does not affect the distribution of L The rank of Ui among u1 , ... ,UN will 

be denoted by 

R. 
1 

and we define 

(4. 16) K1 

R. • 
1 

¾-J A¾ • 

where x A y = min(x,y) 

the beta density 

and xv y = max(x,y) . Furthermore we let b. N be 
J' 

N! . I N . 
b (y) - ~-..,..-,---,---a~ yJ- ( 1-y) -J , 0 < y < I 
j,N - (j-J)!(N-j)! ' 

and we define the function G, H and M by 

(4. 17) G(x) = Jx F(y)dy, H(x) r (1-F(y))dy M(x) = rx F(y)(I-F(y))dy. 
J 

-oo X 

Obviously G H and M are monotone and by (4.14), M is bounded. Finally 

we introduce the random variable 

and note that 

Straightforward but somewhat tedious computations show that with probability 

(4.20) 
I N 

N2 E(LjUI) = - l c. 
N . I J J= 

-I 
(1-y)}b. N(y)dF (y) 

J. 
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I 

N2 Z 

(4. 2 I) 

N-1 
I (c. 1-c.) (M(XJ.:N-2) - M(Xj-I:N-2)) + 

j=I J+ J 

Kl 
- I (c. -c.) 

. I J+l J J= 

N 
+ I (c.-c._ 1) (H(XJ.+l:N) - H(Xj:N)). 

j=K J J 
2 

By (4.15), Ile. lb. N(y) s a N and hence 
J J, 

UI 

N!IL 1 I s a { I ydF-I (y) + J (1-y)dF-I (y)} s 

(4.22) 0 I u1 

s a {IF-I (U 1)1 + J IF- 1(y~dy} a{lx 1 I + EIX1 I} 

0 

Because of (4. 15) and the monotonicity of M, G and H, 

Define T = L/cr(L) . Combining (4.14), (4.22) and (4.23) we find after 

elementary calculations 

(4.24) EITI I 3 $ 

4a3 EIXI 13 -3/2 
N 

cr3 (L) 

E z2 25 b2{EIX1 I }2 
-3 

(4.25) --< N . 
i(L) - i(L) 

Corollary 4.2 follows from (4.19), (4.24), (4.25) and theorem I .I. 

We should perhaps point out that (4.20) and (4.21) are valid under the sole 

assumption that EIX 1 I < 00 and can therefore be used to treat other cases than 

f h . h A f . . h El Tl 13 -- O(N-312 ) the one o smoot weig ts. ny set o assumptions ensuring tat 

and E z2/cr2 (L) = O(N-3) as N • 00 , will produce a Berry-Esseen bound of order 
-1 

N 2 • Smoothness of the underlying distribution function F can clearly replace 

smoothness of the weights c. 
J 

and intermediate versions are also possible. 
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5. POSSIBLE EXTENSIONS. 

Theorem I.I provides a Berry-Esseen bound for a symmetric function T of i.i.d. 

random variables x1, ••• ,~ under the relatively simple moment assumptions (1.12) 

and (I. 13). For a particular case it may be laborious to check these assumptions, 

but the work involved is basically straightforward. The technical intricacies of 

the proof of a Berry-Esseen-type result have been dispensed with and what remains 

can be done by brute force. Of course this only makes sense up to a point: if too 

much brute force is needed, one may prefer to tackle the intricacies directly 

instead. 

It would seem that this might be the deciding factor in judging how far the 

present result can usefully be generalized. There doesn't seem to be a reason, 

a priori, why one should need the symmetry of T or the fact that x 1, .•• ,¾ are 

identically distributed. Hoeffding's decomposition (2.9) works without these as­

sumptions and it should be possible to adapt the remainder of the proof. In short, 

one should be able to generalize theorem I.I to arbitrary functions of independent 

random variables. Of course the assumptions needed to replace (1.12) and (I. 13) 

will not look nearly as pleasant; worse still, they will probably be almost im­

possible to check in most nontrivial cases. 

One would guess, however, that there is one slight but significant generalization 

that would still be feasible. This is the k - sample situation, where the inde­

pendent random variables x1 , ••• ,XN are split into a fixed number (k) of groups. 

Within each group the variables are i. i.d. and T is a symmetric function of the 

variables in such a group. 

Another possible type of extension is to relax the moment assumptions 

E T2 < oo and EIN½ T1 13 < 00 by the following standard argument. Let T = T + R • 

If we have a Berry-Esseen bound for T, 

(5. I) suplP(T ~ x) - ~(x)I 
X 

and R satisfies 

(5. 2) 

then we have a Berry-Esseen bound for T, 

(5. 3) suplP(T ~ x) - ~(x)I 
X 

-l 
~(a+ b + c)N 2 
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In principle, no moments of R - and therefore of T - are needed, but we note 

that (5.2) is often established with the aid of a moment of low order and the 

Markov inequality. We have not incorporated this idea in theorem I.I because it 

is well-known and may be applied ad hoc whenever needed. 

The above argument may be used for other purposes than merely to relax the 

moment assumptions. As we have noted before (cf. (2.17) and (2.18)), assumption 

(1.13) of theorem I.I is equivalent to 

(5.4) 

However, if we require that for some positive integer N' ~ N, 

(5. 5) 

then 

and by (5.3) and (3.2) the conclusion of theorem I.I will hold for T if it holds 

for TN, . But for TN' instead of T, assumption (5.4) reduces to 

N' 

J2 (:=D (5.6) 

because of (2.7), (2.6) and (2.4). It follows that (5.5) and (5.6) together may 

replace assumption (1.13) in theorem I.I. 

We may even go one step further and replace assumption (5.6) in its turn by 

the requirement that for some N" with ~ N" ~ N' 
' 

N' 
(N-1) T2 -2 (5. 7) I E ~ B(N log N) 

' r=N"+I ,r-1, S] 
r 

(5. 8) 
N" 

I (:=;) 
r=2 

To see this, we go over the proof of theorem I. I and find that the full force of 

assumption (5.4) (or (2. 18)), as opposed to (2.19), is used only in (3.12) and 

(3.20). In both places, a strengthened version of (2.19), viz. 
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(5. 9) 
N 

I (:=~)ET~ ~ B(N log N)-2 
r=2 r 

would also have been sufficient. Alternatively, we could have required a mixture 

of (5.4) and (5.9), such as (5.8) combined with 

N 
(5.10) I (:=:)ET~ ~ B(N log N)-2 , 

r=N"+I r 

and the proof would still have gone through with minor modifications. Applying 
,. 

(5.10) to TN' instead of T, we obtain (5.7). 

Thus we have shown that (5.5), (5.7) and (5.8) together may replace assumption 

(1. 13) in theorem I.I. These conditions may be substantially weaker than (1.13), 

especially if N' and N" are taken to be of the order of N! (log N) -z and 

(log N) 2 respectively. In general, however, these assumptions will be hard to 

check. 
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