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Stability in linear multistep methods for pure delay equations*) 

by 

P.J. van der Houwen & B.P. Sonnneijer 

ABSTRACT 

The stability regions of linear multistep methods for pure delay equa

tions are co1npared with the stability region of the delay equation itself. 

A criterion is derived stating when the numerical stability region contains 

the analytical stability region. This criterion yields an upper bound for 

the integration step (conditional Q-stability). These bounds are computed 

for the Adams-Bashforth, Adams-Moulton and backward differentiation methods 

of orders~ 8. Furthermore, synnnetric Adams methods are considered which 

are shown to be unconditionally Q-stable. Finally, the extended backward 

differentiation methods of Cash are analysed. 

KEY WORDS & PHRASES: Numerical analysis, delay equations., linear multistep 

methods., Q-stability 

*) This report will be submitted for publication, 





I • INTRODUCTION 

Consider the retarded differential equation 

( I. I) y ' ( t) = f ( t , y (t -ti)) ) , w = w ( t , y ( t) ) <". 0 • 

Following CRYER [4], WIEDERHOLT [8] and BARWELL [2] we adopt the scala:r 

equation 

(I. 2) y'(t) = A y(t-w), A and w constant 

as the stability test equation. A linear multistep (LM) method {p,a} with 

(I. 3) 
k 

p(r;) = r 
j=O 

,..k-j a • .,. , 
J 

k 
a(r;) = l b. Ck-j , 

j=O J 

when applied to (I.I) (cf. TAVERNINI [7]), reduces for (I.2) to the relation 

(I. 4) p(E)y - A6t a(E)y = 0, n n-v 
w 

" := 6t ' 

where Eis the forward shift operator and where we will assume that vis a 

(positive) integer. To (1.4) we can associate the characteristic equation 

(I. 5) -v 
p (i;) - z r; a(i;) = 0, z := A6t. 

In analogy with the stability theory for ODEs, one may define (in the com

plex z-plane) the stability region of the LM method {p,a} by the boundary 

locus curve 

(1.6) 
ivljJ p iljJ 

z = e - (e ), - 'ff~ 1jJ ~ 'ff. a 

Following Barwell we compare this region with the stability region of (1.2) 

which can be defined by the analytical boundary locus curve 

(I. 7) 
z = _!_ i<t> •{· <t>- 'ff/2 for 'ff/2 ~ cf> 

v 31T /2 - <f> for 'ff ~ <f> ~ 3'ff /2. 
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BARWELL [2] called the LM method {p,cr} Q-stable if the numerical stability 

region contains the analytical stability region for all v ~ 1 (see figure 

1. 1). 

I 

,/ ,,, 
,/ 

/-rr/2 

Im(z) 

.,.. ... --------- .... ',,,.__--i--- numerical boundary 
,,,,.... locus curve ( I .6) 

-I 

Re(z) 

analytical boundary 
locus curve ( 1. 7) 

Figure I.I. Analytical and numerical stability region 

Q-stability generalizes the concept of DA0-stability introduced by 

CRYER [4], which requires that the interval [-TI/2v,O] is contained into 

the numerical stability region for all v ~ 1. Evidently, Q-stability im

plies DA0-stability. 

Cryer showed that the backward Euler rule and the trapezoidal rule are 

DA0-stable, Barwell proved Q-stability for backward Euler, and ALLEN [I] 

proved Q-stability for the trapezoidal rule and the 4-th order centred dif

ference rule defined by 

(I. 8) 

In this paper we investigate a form of stability which is a slight modifi

cation of DA0 and Q-stability. 

DEFINITION I.I The U1 method will be called Q0(r)-stable if there exists an 

r E 2'Z+ such that the interval (-TI/2v,O) is contained in the numerical 

stability region for all v ~ r. It is called Q(r)-stable if the numerical 

stability region contains the analytical stability region for all v ~ r. 

Evidently, Q0 (1) and Q(l)-stability are equivalent with DA0 and Q

stability, respectively. These modified definitions are justified by the 

fact that many methods are not DA0 or Q-stable but can be proved to be 

Q0(r)-or Q(r)-stable for some r > I. Thus, for v ~ r, i.e. 6t ~; it is 

guaranteed that the numerical stability region encloses the analytical 

stability region. 



2. A NECESSARY CONDITION 

We start with the derivation of necessary conditions for Q0(r)- and 

Q(r)-stability by considering the boundary locus curve in the neighbour

hood of the origin. In this derivation it is convenient to introduce the 

functions 

(2. Ia) 

R(i/J) ·.--f m(:) -

- m(i/J) -
1/J 

•<•) •=l 

7T e (1/J) - -2 

6(1/J) 
7T 

+-
2 

for 1/J > 0 

for 1/J < 0 

for 1/J > 0 

for 1/J < 0 
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where m(i/J) and 0(1/J) are the modulus and argument of the complex function 

p(eii/J)/ cr(eii/J), respectively. It will be convenient to write this function 

in the form 

(2. lb) E.. (e ii/)) = 1/J ( l+R(i/J) )e 
a 

Hf +a(i/J)) 
, Ii/JI :s; 1r. 

It will turn out that R(i/J) and a(i/J) vanish as Ii/JI • 0. Furthermore, we notice 

that R ( 1/J) 2 -- I • 

By deriving the first terms in the Taylor expansions of R(i/J) and a(i/J) about 

1/J = 0 and by eliminating 1/J, a relation between the argument and the modulus 

of the points on the boundary locus is obtained which can be compared with 

(1.7). In this relation the error constants occurring in the truncation er

ror of the LM method play an important role. These constants are defined by 

the equation 

(2.2) d 
[p (E) - cr(E) L'lt dt] y (t) [ ( d )p+ I ( d \p+2 

= cp+I flt dt + cp+2 flt dt} + ••. ]y(t) 

where pis the order of the LM method and y(t) denotes a sufficiently dif

ferentiable function. We always assume p 2: I and cr(I) :/- 0. 
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THEOREM. 2. I (a) A Q0(r)-stable LM method has a p-polynomial which satis

fies the strong root condition (i.e., all zeros are within the unit circle 

except for a simple roots= I). 

(b) A Q(r)-stable LM method satisfies, in addition, the inequality 

I_ p;3 J 
(-1) a(I) C < 0, LxJ denotes the integer part of x. 

p+I 
(2.3) 

(c) A Q(r)-stable LM method of even order satisfies 

(2. 4) 
C n+2 _ a'(I) r > ~ 
cp+ 1 a (I) 

PROOF. (a) If the LM method is q0 (r)-stable the characteristic equation (1.5) 

necessarily has a non-empty negative interval of stability for v ~ r. For 

v = 0 we know from the stability theory for ODEs that then p should satisfy 

the strong root condition. For v ~ r the proof can be given along the same 

lines. 

(b) Evidently, a Q(r)-stable method is also Q0 (r)-stable. In addition 

however, if (~ 1, lzl) and (~ 2 ,lzl) are two points in the upper halfplane on the 

numerical and analytical boundary curves, respectively, we necessarily have 

that the arguments satisfy ~I < ~2 as the modulus Jzl • 0. From (1.6), (1.7) 

and (2. I) it follows that this condition can be written as 

(2.5) as lzl • 0. 

In order to find the behaviour of a(~) and R(~) as~ • O, we use the relation 

(cf.(2.2)) 

p+2 
z + ••• as lzl • 0 

from which we derive the expansion 
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Hence, 

C 
= i •'• + i p+ l p+ l ,,, p+ l 

"' a ( l) "' 

. p + 2 ( C p+ 2 o' ( l ) C p+ 1 \ p+ 2 
+ l. O' ( 1) - 02 ( 1) ) 1/J + • • • • 

where 

If-pis odd we write 

(- 1) 

C +l 
C := ~ 

l o(l) , 

~ 
2 

C +2 '( C 
C ·.= _p_ - a 1) p+l 

2 2 
o(l) a (1) 

Comparison with (2.1) yields 

~ p-1 
R(l/J) ~ (-1) 2 c2 1/J p+l + ~c~ iJJ 2P, a.(1/J) ~ (-1 )-2- c 1 iJJ P as 1/J • 0 (2.6a) 

and substitution into (2.5) yields the necessary condition for Q(r) -stability 

(2.3) for odd values of p. 

If pis even we write 

from which we derive 

p/2 
(2.6b) R(l/J) ~ (-1) , a.(1/J) ~ (-1) as 1/J • 0. 

Substitution into (2.5) leads to the condition 

(2.7) 
p/2 p/2 r J 

-(-1) o(l) C l v < (-1) a' (l) C l -o(l)C 2 • p+ L p+ p+ 

Thus, Q(r)-stability is only possible if the coefficient of vis negative. 

This results into the necessary condition (2.3). 

(c) Furthermore, it follows from (2.7) that r satisfies the inequality (2.4) D 
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The condition (2. 3) will be called the Q(r)-stabiZity condition . ,In 

the next section it will be shown that (2.3) is also necessary for q0 (r)

stability. By means of this necessary condition a large number of LM methods 

can already be dropped as possible Q(r)-stable methods. We also note that 

the strong root condition to be imposed on p(~) excludes methods such as 

the (explicit) Nystrom methods and (implicit) Milne-Simpson methods which 
h () k k-2 . 

ave p ~ = ~ - ~ with roots at,=± I. 

2. I. Adams - Bashforth methods 

These methods have a positive error constant C I and since in all 
k k-1 p+ 

Adams methods p(,) =, - , , they satisfy the strong root condition and 

have 

o ( l) = p'(I) = I, 0 I ( 1) p'(I) +p"(l) = -'---~--'-~ = k - ! 
2 ' 

k ;::: 2. 
2 

It follows from theorem 2.1 that the Adams-Bashforth methods of orders 

p = I, 2; 5, 6; 9, IO, •.. cannot be Q(r)-stable. The methods of orders 

p = 3, 4; 7, 8; will be proved in section 4 to be Q(r)-stable for some 

finite value of r. For p = 4, 8, 12, ••. we already conclude from (2.4) 

that r should satisfy 

(2.8) r > C p+ 2 - o ' ( 1 ) = C p+ 2 - k + ! . 
C p+ I o ( I ) C p+ l 

Although Adams-Bashforth methods also have a positive error constant C 
p+2' 

this lower bound for r was checked to be negative fork= p = 4,8. 

2.2.Adams-,.Moulton methods 

Adams-Moulton methods have C 1 < 0, hence by the Q(r)-stability con-
p+ 

dition (2.3), the methods of orders p = 3,4; 7,8; 11, 12, ••• cannot be 

Q(r)-stable. The other ones will be proved to be Q(r)-stable in section 4. 

For p = 2, 6, 10, ••• the lower bound (2.8) applies which was checked to be 

non-positive for p = k -1 = 2,6. 
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2.3. Backward differentiation methods 

These 1nethods also have negative principal error constants, but satisfy 

only for p ~ 6 the strong root condition. Since cr(I) > 0, only for 

p = 1,2; 5, 6 Q(r)-stability can be expected (see section 4). Furthermore, 

the right-hand side of (2.4) turns out to be negative fork= p = 2,6. 

2.4. Symmetric Adams methods 

A particularly interesting family of LM methods are the syrronetric Adams 

methods defined by 

(2. 9) p (l;;) = 

k-1 
-2-

(l;;-I) cr(l;;) = 

where k is assumed to be odd. We notice that p(l;;) satisfies the strong root 

condition, necessary to obtain Q0 (r)-or Q(r)-stability. By an appropriate 

choice of the coefficients b. the maximal order of accuracy can be shown 
J 

to be p = k + I which is, at the same time, the maximal attainable order 

for all convergent LM methods with odd step number k(cf. e.g. LAMBERT 

[1973, p. 38]). Examples of symmetric Adams methods are the trapezoidal 

rule, the fourth order method defined in (1.8) and the methods of order 

6 and 8 respectively defined by 

(2. IO) 

and 

(2. 11) 

2 
p(l;;) = l;; (l;;-1), cr(l;;) 

1440 

cr(l;;) = ---[-191(l;; 7 +I)+ 1879 (l;; 6 +l;;) -9531(l;;S +l;; 2 ) + 
120960 

The error constants C I of these methods can be proved to alternate in sign; 
p+ 

the first four members of the symmetric Adams family have the principal 
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error constants 

11 I 9 I 
c3 = - TI ' cs = no ' c7 = -

60480 

2497 

3628800 

Since cr(l) = I, the Q(r)-stability condition (2.3) is always satisfied. 

Furthermore, it is easily verified that 

cr(ll) = p'(I) = I, cr'(I) 

and since synnnetric methods satisfy 

C = !k C p• -2 p+I 

p"(I) +p'(I) = ------ = ik, 
2 

if follows that (2.14) reduces tor> 0. Therefore, all members of the 

synnnetric Adams methods are candidates to be Q0 (J) - or Q(l)-stable, and will 

be shown in section 4 to be Q-stable indeed. 

2.5. Extended backward differentiation methods 

Finally, we consider the family of extended backward differentiation 

methods proposed by CASH [3], which have characteristic polynomials of the 

form 

p (i:_;) = 
k 

I 
j=O 

a. sk-j , cr(s) = 
J 

These methods are of particular interest in case of retarded differential 

equations. The error constants C I turn out to be positive, as in the case 
p+ 

of the Adams-Bashforth methods, and the strong root condition on p is satis-

fied. Again cr(I) > 0, so that the methods of orders p = 3, 4; 7,8; 

are possibly Q(r)-stable, the others are not. 

3. Q0 (r)-STABILITY 

In this section we give a sufficient condition for Q0 (r) - stability 

with r < 00 and a relatively simple formula for computing numerically the 



minimal value of r. 

THEOREM 3. I. (a) Let the LM method be such that: 

(i) p(s) satisfies the strong root condition 

(ii) C I satisfies the Q(r)-stability condition (2.3) 
p+ 

Then there exists a finite r for which the method is Q0(r)-stable. 

(b) The minimal value of r is given by 

(3. I) I + lmax { O, _max (sup 
,ll r . = f,e_(i/i) JJJ min 

l-0, I,. . • 1¥ t 
1¥+ 

,e_ := { 1/1 II 1/1 I ::; 1r; F,e_(i/i) ;::, o}' 
where 

(3. 2) for 1/1 ~ 0 , 
±(U+l)1r -8(1/1) := 

1/1 

(3.3) F ,e_ ( 1/1) : = 2m ( 1/1) - f ,e_ ( 1/1) , 

with m(i/i) and 8(1/1) defined by-; (eii/i) = m(i/i) ei 8 (1/i)_ D 
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PROOF. Since p(s) satisfies the strong root condition we are sure that there 

is a non-empty negative interval of stability with O as its right end-point. 

Hence, we can find the length of this interval by looking for the points 

where the numerical boundary locus curve intersects the negative axis. If we 

find such a point in the interval (-1r/2v,O) for v ~ r, then there is no 

Q0 (r)-stability. Thus, the situation where there are values of v ~ r such 

that (cf. (2. I)) 

(3.4) O < I 1/1 ( I + R ( 1/1) ) I < ~ , vijJ + 2'...2 + a ( 1/1) = 
2v 

{-U.1r for 1/1 < o, l = 
= 1r + 2l 1r for 1/1 > 0, l = 

0, I, 2, ••. 
O, I, 2, ••• 

simultaneously hold, should be avoided. Geometrically, this means that in 

the (ijJ,v) -plane the curves v = f,e_(i/i), with f,e_(i/i) defined by 
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(3 • 2 I) 
± < u + D ir -a.< 1/J) 

1/J 
> for 1/J < O, l = O, 1, ••• 

should not enter the domain defined by (see the shaded region in figure 3.1) 

(3.5) 1T \) =:;------ v ;,: r. 
211/J(l+R(l/J)) I 

\) 

Figure 3.1. Determination of the minimal value of r for which Q0(r)

stability is obtained. 

We observe that the function ,r/211/J(l+R(l/J))I is an even function that is 

bounded in [-ir,ir] except for the point 1/J = 0 (by virtue of.the strong root 

condition on p). The curves v = fl(l/J) also have an asymptote at 1/J = 0 and 

v ++mas 1/J + 0. Thus, we can always find a finite value of r such that 

v = fl(l/J) does not enter (3.5) if the difference functions 

(3.3') 
1T 

Fl(l/J) := ----- - fl(l/J) , l = o, 1, 2, ••• 
211/JO+R(l/J)) I 

satisfy the condition 

as I 1/J I + 0, l = 0 , 1 , 2 , • • • • 
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Since 

F (ip) ~ ± (4-l+R(ijl)) 1r + 2 a (ip) 
l 2ip 

as ip-+ +O, l = O, I, 2, ••• , 

we derive from (2.6) that Fi.(ijl) does assume negative values in the neigh

bourhood of the origin if the Q(r)-stability condition (2.3) is satisfied. 

A simple geometrical consideration reveals that the minimal value of r 

is given by (3.1), where we have expressed fi.(ip) and Fi.(ip) in terms of 

S(ijl) and m(ijl) instead of a(ij,) and R(ij,) (see 2.la)). D 

It should be remarked that in (3.1) only a finite number of functions 

fi.(ip) are involved. In other words, the set,; is empty for sufficiently 

large values of i.. This follows from the relation 

which shows that eventually Fi.(ip) becomes negative in the interval [-1r,1r] 

as l increases, with the possible exception of points ijl in the neighbour

hood of the origin where Fi.(ij,) tends to infinity. However, as shown in the 

proof of the theorem, Fi.(ij,)-+ - 00 as lipl-+ 0 provided that the conditions 

of the theorem are satisfied. Thus, we may conclude that there exists a 

finite i.0 such that,; is empty if i. ~ i.0 . 

In table 3.1 we have listed the values of r obtained from (3.1) for 

the families of LM methods of orders p ~ 8 discussed in the preceding sec

tions (r = 00 indicates Q0(r)- instability). 

Table 3. l Q0 (r) - stable LM methods 

method p = l p = 2 p = 3 p ·= 4 p = 5 p = 6 p = 7 p = 8 

Adams-Bas hf orth 

Adams-Moulton 

Backward differentiation 

Symmetric Adams 

Extended backw. diff. 

00 00 

00 

4 5 

00 00 

00 00 

00 

4 

6 

00 

00 

2 

2 

00 

34 65 

00 00 

00 00 

6 2 
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4. Q(r) - STABILITY 

The analogue of theorem 3.1 reads: 

THEOREM 4.1. Let the LM method be such that 

(i) 

(ii) 

Then 

p (t;) satisfies the strong root condition 

C I satisfies the Q(r)-stability condition (2.3) p+ 
there exists a finite r for which the method is Q(r)-stable 

(b) Let 

( 4. I) 
C +2 cr'(l) 

v ·= ~ - cr(I) for p even, v0 := O for p odd. 
o· cp+I 

Then the minimal value of r is given by 

(4.2) 

where 

(4.3) 

(4.4) 

r . 
mLn 

= I+ l I. (sup go(w)\ll max1o,v0 , _max \ + ~ }f , 
.t-0,1, ••• fl -

fl : = { $ 11 $ I ~ 1r; G .t ( $) 2: 0} , 

go($):= 28($) + (4l+3) 1r for$< 0 , ($)·= 28(1/J) - (4l+1)1T 
~ 2(m($) -$) g.t • 2(m($)-$) 

for$ > 0 

1T 
G.t(w):=--- g.t($). 0 

2m($) 

PROOF. (a) First of all we remark that the conditions of this theorem imply 

that the necessary conditions stated in theorem 2.1 are satisfied if r > v0 • 

Restricting our considerations to the upper half plane, we conclude from 

theorem 2. I that we have Q(r)-stability iff for v 2: r the analytical and 

numerical boundary locus curves do not intersect except for the trivial 

point of intersection at z = 0 and possibly z = - 1r/2v. Thus, we should 

avoid the situation where there are values of v 2: r such that 
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(4.5) lljJ(l+R(ljJ))I 
cf>-,r/2 1T 

=-·---for - <cf>< 1T 
V 2 ' 

= {ct> -(U+I) n for 1jJ < o, .e. = o, I , 2, .•. ,r 
vlj) +2·+ a.(ljJ) 

ct> + U'IT for 1jJ > o, .e. = o, I , 2, ••• 

simultaneously hold. Elimination of cf> yields (cf.(3.4)) 

(4.5') 0 < lljJ(l+R(ljJ))I < 2:, 

_ {- ( U + I ) 1T - vlj) (I+ R ( 1jJ) ) for 1jJ < 0, .f. = 0, I , ••• 

vlj)+a. (ijJ) - 2.f.ir+vljJ(l+R(ijJ)) for 1jJ > O, .f.= O, 1, ••• 

From this we conclude that the curves v = g.e_(lj)) with 

(4.3') a.(ljJ)+ (2l+l )TI g o ( 1jJ) :. = - ___,...;._----"----,....,.....- for 1jJ < 0 , 
-l- 21jJ+ljJR(ljJ) 

l = O, I, ••• 

g ( 1/J) : ::; CY, ( 1jJ) - u 'IT f ,I, > Q ,• t 1jJ R(lj)) or .,, 

should not enter the region defined by (3.5). This is true for a finite value 

of r if the difference functions 

(4.4 1 ) l = 0, l, 2, ••• , 

either satisfy 

(4.6a) G.e_ (ijJ) < 0 as llj)I • 0, l = O, I, 2, ••• 

or simultaneously satisfy 

(4.6b) G l ( 1jJ) > 0 , g l ( 1jJ) < 00 as I 1jJ I « 1 ; .f. = O, I , 2, • • • • 

For llj)I • 0 we may write 

a.(lj))-2.f.'IT 

ljJR(ljJ) 
as 1jJ -l- 0 
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and 

(1-2l)1rR(iµ) + 2a(iµ) + 4l1r , g (!/J) 

41/J '.t 

2l+I 
~ - -- 1r as l/J t O. 

21/J 

If l/J t Owe have that gl(l/J)-+ + 00 , hence we should require Gl(l/J) < 0 as l/J t O. 

For l ~ l this is obvious. For l = 0 we find by virtue of (2.6) that 

p-1 C 

H-1) 2 a~7~ l/J p-l , p odd 

G0 (l/!)~ asiµtO. 

C p-1 
¼ 1f ( _ 1 ) P / 2 ~ l/J , p even 

cr (I) 

It is easily verified that G0 (iµ) < 0 as l/J t O iff condition (2.3) is satis

fied. If l/J + 0 we find for l ~ I that gl(l/J) and Gl(l/!) have opposite sign, 

so that either (4.6a) or (4.6b) is trivially satisfied. For l = 0 we derive 

-a ( I ) C 2 I 
, p = 

½c;+ cr'(I) c2-cr(J)c3 7 

-cr(l)C I I 
GO (l/!) ~ 

p+ , p odd, -/: I as l/J + 0 
l/!2 

p 
cr'(l)C I -cr(l)C 2 p+ p+ 

1f 

2iµ ,p even 

and 

as 1jJ + O. 

cp+2 _ a' (I) 
cp+I cr(I) 

, p even 

It is easily verified that the condition (4.6a) or (4.6b) is satisfied by 

g0 (iµ) and c0 (iµ) if the Q(r)-stability condition (2.3) holds. This completes 

the proof of part (a) of the theorem. 

(b) The minimal value of r given by (4.2) follows from a geometrical argument 

and takes into account the necessary condition (2.4) D 
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In this case of Q(r)-stability it is slightly more complicated to show 

that only a finite number of gl($) functions are involved in the expression 

(4.2). From the relation 

= Gl($) ± 21r 
m($)-$ 

> 
for$< 0 

it follows that Gl($) decreases as l increases for all$< 0 where Gl($) 

has no singularities, and therefore in these points it will become negative 

for sufficiently large l. In the singular points of Gl($) we have gl($) + ± ~. 

Since 1r/2m($) is only singular at$= 0 this implies that the singular 

points of G0 _($) do not affect the value of r .• For $ > 0 we distinguish 
-<.. min 

the cases$< m($) and$> m($). If$< m($) then gl($) < 0 so that the 

value of rmin will not increase in (4.2). If$> m ($) the values of Gl($) 

again decreases as l increases and will eventually become negative. Thus, 

the set fl is empty for l sufficiently large. 

We have computed the values of r defined by (4.2) for all methods lis

ted in table 3.1 and found identical values. However, we did not succeed in 

proving our conjecture: any Q0(p)-stable method is also Q(p)-stable foP the 

same value of P. 

REFERENCES 

[l] ALLEN, The numePical solution of delay-diffePential equations, Thesis, 

Oxford, 1980. 

[2] BARWELL, V.K., Special stability pPoblems foP functional diffePential 

equations, BIT 15 (1975), 130-135. 

[3] CASH, J.R., On the integPation of stiff systems of ODEs using extended 

backiuaPd diffePentiation formulae, Numer. Math. 34 (1980), 

235-246. 

[4] CRYER, C.W., Highly stable multistep methods foP PetaPded diffePential 

equations, SIAM J. Numer. Anal. 11 (1974), 788-797. 



16 

[5] VAN DER HOUWEN, P.J. & B.P. SOMMEIJER, Improved absolute stability of 

predictor-corrector methods for retarded differential equations, 

In: Differential-Difference Equations, (Ed. L. Collatz, 

G. Meinardus, W. Wetterling), ISNM 62, Birkhauser Verlag, 1983. 

[6] LAMBERT, J.D., Computational methods in ordinary differential equations, 

John Wiley & Sons, London, 1973. 

[7] TAVERNINI, L., Linear multistep methods for the numerical solution of 

Volterra functional differential equations, Applic. Anal. I 

(1973), 169-185. 

[8] WIEDERHOLT, L.F., Stability of multistep methods for delay differential 

equations, Math. of Comp. 30(1976), 283-290. 


