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Traces to Tricomi in recent work on Special Functions and Asymptotics of 
*) Integrals 

by 

N.M. Tennne 

ABSTRACT 

This tribute to Tricomi contains a selection of examples which refer 

to his work on special functions and asymptotics of integrals. The examples 

include: a class of polynomials introduced by Tricomi and which is used in 

uniform expansions of Laplace integrals; Watson 1 s lemma for loop integrals; 

uniform asymptotic expansions of incomplete gamma functions; computational 

aspects of Tricomi's f function (confluent hypergeometric function). 

KEY WORDS & PHRASES: special functions, Laplace integrals, Tricomi poly

nomials, uniform asymptotic expansions of integrals, 

Watson's lemma, Tricomi's ~ function, inC!omplete gamma 

function 

This paper will be submitted for publication in a volume honoring 
F.G. Tricomi. 
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1. A CLASS OF POLYNOMIALS 

In TRICOMI (1951) a set of polynomials related to Laguerre po

lynomials is introduced, The definition is 

(1. 1) l (x) = (-l)n L(x-n)(x), 
n n n = 0, 1 , 2, ••• , 

where L (a) (z) is the classical orthogonal Laguerre polynomial. Ob-
n 

serve that in (1.1) the parameter a depends on x, giving a polyno-

mial essentially different from the classical case. For instance, 

the degree of l is not n but the greatest integer [n/2] in n/2. 
n 

Tricomi gives a first attempt at a systematic study of the po-

lynomials. The motivation for the investigations is the occurrence 

in several situations. For instance in an expansion of a confluent 

hypergeometric function in terms of Bessel functions, and in an 
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asymptotic expansion of the incomplete gamma functions. In this 

section we mention two later applications in asymptotic expansions 

of Laplace type integrals. 

Before doing so we remark that in an interesting paper by 

GARLITZ (1958) an orthogonality relation is given for polynomials 

related to l (x). Carlitz defined 
n 

which is a polynomial of degree n. He proved 

00 

I 
where ~(x) is a step function with the jump 

i·j-1 -j/'' :2J e J• at the point 

I.I. Uniform asymptotic expansions 

+•-! -J , j = 1,2, •.•• 

The following integral is important in this connection 

00 

( I • 2) I J A-I -t n Pn(A) = f(A) t e (t-).) dt. 

0 

By expanding (t-A)n it easily follows that 

n 
P (A) = I (n) r (A +m) (-).) n-m. 

n m=O m f(A) 

By comparing this with the known representation 

L (a) (x) = 
n 

n m 
\ (n+a) (-x) 
l n-m m! 

m=O 

it follows from (I.I) that 

l (x) = P (-x)/n!, 
n n n=0,1, •.•• 



We have 

PI (A) = 0, 

and there is a recursion 

P +l (1t) = n[P (1t)+AP l (1t) ], n n n- n ~ 0. 

This follows from (1.2) or from a well-known relation for L (a) (x). 
n 

The polynomials P (A) are used by the present author to obtain 
n 

an asymptotic expansion for the Laplace integral 

00 

( 1 • 3) 
1 ( 1t-l -zt 

F"(z) = f(1t) j t e f(t)dt, 

0 

Re z > O, Re A> O, z large, and where" may be large as well. It 

is shown in TEMME (1982a) that an expansion is possible,uniform with 

respect to the parameterµ := A/z, µ ! [0, 00), with extension to com

plex values ofµ. 

The expansion is obtained by expanding f(t) at t =µ,at which 
• A -zt point the dominant part of the integrand of (1.3), that ·is, t e , 

attains its maximal value (considering only real parameters, for the 

moment). We write 

00 
(1 .4) f(t) = I 

s=O 

s 
a (µ) ( t-µ) 

s 

and obtain by substituting this in (1 .3) the formal result 

00 
( I • 5) FA (z) ~ 1 

s=O 
a (µ) p ()..) 

s s 
-s-1t 

z z + 00. 

To investigate the nature of this expansion we suppose that f is 

holomorphic in a connected domain n of the complex plane with the 

following conditions satisfied: 

(i) the boundary an is bounded away from [O,00); 

3 
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(ii) n contains a sector S 0 , with vertex at t = 0, defined by 
a,µ 

S = {t Et I - a< phase (t) < S}, 
a,S 

where a and Sare positive numbers; 

(iii) f(t) = O(tp) as t • 00 in S , where pis a real number. 
a,S 

The uniformity of the expansion (1.5) holds with respect to µ in a 

closed sector, with vertex at t = O, properly inside S O and con
a,µ 

taining t = 0 as a boundary point. This is proved in TEMME (1982a). 

Moreover, error bounds for the remainders are given. 

A simple example is f(t) = 1/(l+t), in which event (1.3) is an 
s s+l exponential integral and a(µ) = (-1) /(!+µ) • The sector S O is s a,µ 

defined with a= S = n-€ (€ small). We have 

( l • 6) I 
s=0 (z+>-.) s+l 

where EA(z) is the well-known exponential integral. 

Expansion (1.5) is very useful when, apart from large values 

of z, also large values of A are used. In fact it is useful too, 

when A+ oo, uniformly with respect to z, z ~ z0 > 0. The example 

(1.6) shows quite well why the uniformity in A (or inµ) holds. The 

degree of the Tricomi polynomial P (>-.) is [s/2], which is amply 
s 

absorbed by the denominator. 

An important feature of the uniform expansion (1.5) is that 

it modifies Watson's lemma for Laplace integrals in which f is ex

panded at t = 0, giving 

FA (z) 

00 

'i' (0) r(),+s) 
l as r (>-.) 

s=0 

-s-:>
z 

This expansion is useless when A is large, say A= O(z). The con

ditions on fin Watson's lemma are less restrictive, however, than 

for the uniform case. 

The relation between the polynomials P (>-.) in (1.2) and (1.5) 
n 

and the l (x) introduced by Tricomi was kindly brought to my 
n 



attention by Prof. E. Riekstin~ (Riga, Russia). 

1.2. Expansions and estimations for remainders 1n asymptotic series 

The polynomials l (x) of (I .1) or P (A) are used for so called 
n n 

converging factors in asymptotic expansions. In this technique the 

remainder of an expansion is re-expanded. For information on this 

point, with some historical details, we refer to OLVER (1974, 

Ch.14). The use of the polynomials {P} is pointed out by BERG 
n 

(1977) and quite recently by RIEKSTIN~ (1982). 

To describe the idea, we follow the latter paper and consider 

We suppose 

00 

FA (z) = f 
0 

that there 

n-1 
f(t) = I 

s=O 

tA-le -ztf(t)dt. 

is an expansion 

A A 
at s + R (t)t n, 

s n 

which approximates fat t = O. That is, R (t) = 0(1) as t + 0, 
n 

Re As+l > Re As. Furthermore it 1s asstnned that Re(A+A 0) > 0. Then 

n-1 
I 

s=O 
00 

a 
s 

f(A+A ) 
___ s_ + E (z), 

;\+;\s n 
z 

n -zt J 
A+;\ -1 

En(z) = t e Rn(t)dt. 

0 

We suppose that the integrals FA (z) and En(z) are defined when Re z 

1s large enough. Re-expanding R (t) as in (1.4) withµ= (;\+;\ )/z 
n n 

gives again an expansion involving the polynomials P (A). 
n 

Riekstin~' expansion is somewhat different; he takesµ= I and sup-

poses A+ A - z ~ 0 (when A,A and z are real), assuming that there 
n n 

exists certain relation between z and the index n of the remainder. 

As an example the confluent hypergeometric function of the second 

kind (also called Tricomi's ~ function) is treated. 

An important aspect 1n Riekstin~' approach is that an exact 

error bound is given for the remainder in the expansion for 

5 



6 

the original remainder E (z). 
n 

2. LOOP INTEGRALS FOR SPECIAL FUNCTIONS 

In TRICOMI & ERDELYI (1951) an expansion is given for a ratio 

of gamma functions. The asymptotic expansion is 

( 2. I) r(z+a) 
r(z+S) 

0:, 

I 
j=O 

(-I)Jr(S-a+j) (a-S+l) a-S-j 
r(S-a)j~ Bj (a)z ' 

as z + "", Jarg(z+a) J < n, and the B~µ)(z) are the generalised 
J 

Bernoulli polynomials defined by 

ezt(t/(et-l))µ = ; tJ (µ) ( ) l -----r- B. z , 
j=O J. J 

It I < 2n. 

The proof is based on a loop integral for the Beta function, 

viz. 

( 2. 2) 

r(z+a) 
r(z+S) 

(O+) 

= r(a+l-S) f 
2ni 

--00 

vz e f(v)dv, 

f( ) av( v l)s-a-1 v = e e - • 

+ 
The notation f(O) is a loop integral where the path of integration 

--00 

starts at t = --oo (arg t = -n), encircles the origin once in the 

counterclockwise direction, and returns to --oo (arg t = n). 

FIELDS (1966) has shown that a shift of z in the inte3ral (2.2) 

produces an expansion in negative powers of (z+½(a+S-1)) 2, this ex

pansion essentially being an even one. This is interesting from 

a computational viewpoint. 

These results are summarized in LUKE (1969). OLVER (1974) has 

generalized the analysis leading to (2.1) into a useful result 

known as Watson's Zerrma for loop integrals, by considering (2.2) with 

more general function f. In this section we point out that for 

several special functions a loop integral representation exist, 



which is in some sense reciprocal to a Laplace type integral for a 

related function. 

A beautiful example l.S the pair 

00 

r(z) I -t z-1 = e t dt, Re z > 0 

0 
(2.3) 

(O+) 

f t -z 
I/ r ( z) = e t d t, 27Ti Z E (C. 

The second integral 1.s known as Hankel's loop integral for the re

ciprocal of the gamma function. TRICOMI & ERDELYI (1951) used it for 

(2.1) by expanding f of (2.2) in powers of v. OLVER (1974, p.120) 

used it for the general case. Observe that the second of (2.3) has 

no restriction with respect to z; in this way it is more powerful 

than the first one. 

Another example is the pair representing Riemann's zeta func

tion 

00 

r(z) = I I [et-I J-1 z-ld 
? r(z) t t, Re z > I 

0 
(2.4) 

-z -t -I 
t [e -!] dt, z "f o. 

-00 

The contour does not enclose the poles at t = ±2mri, n E JN • The 

restriction z f O in the second integral 1.s due to the pole of r(z) 

at z = O; all remaining singularities at z = -n, n E JN, are re

moved by the integral. The relation between the integrals is now 

given by the functional equation 

z-1 z;(z) = 2(21r) sin(½,rz)r(l-z)z;(l-z). 

For the ratio of Gamma functions we have the pair 

7 
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00 

r (z) 
f(z+A) = 

r(~) f e-zt(l-e-t)A-ldt, 

0 
(2.5) r) r (z+A) 

= f(A) e zt (1-e-t) ->,_dt 
r (z+ l) 2'!Ti 

-0, 

where the second one is the same as (2.2). 

For modified Bessel functions we have 

00 

- 1 -v z.. I I -zt >i.-1 
'IT 2 (½z) e1\(z) = r(>i.) e [t(t+2)] dt, 

(2.6) 0 
(0 +) 

1 v-1 -z r(>i.) J zt ->,. 
'1T 2 (!z) e Iv_ 1(z) = 2ni e [t(t+2)] dt, 

where v =>,_+½.The reciprocity between the integrals is now re

flected in the Wronskian relation 

( 2. 7) 

I 1 (z)K (z) + I (z)K 1(z) = 1/z. v- \) \) v-

A pair of parabolic cylinder functions satisfies 

2 
-v !z 

z e D ( z) -v 

In the second integral the contour cuts the real t-axis at a posi

tive t-value. A relation between the functions is again given by 

a Wronskian determinant 

D (z)D' (-z) - D (z)D' (-z) -v -v -v -v 

Finally we mention the pair 



'¥(a;b;z) 
-zt a-I b-a-1 e t (l+t) dt 

(2.8) 

b-1 -x.. 
x e M(a;b;z) 

-oo 

for Tricomi's \\' function and the other confluent hypergeometric 

function (Kununer's function). Again there is a Wronskian relation 

'¥(a;b;z)M' (a;b;z) - ll''(a;b;z)M(a;b;z) 

As in TRICOMI & ERDELYI (1951), asymptotic expansions for the 

loop integrals in (2.6), (2.7) and (2.8) follow by expanding part 

of the integrand at t = 0 (for (2.7) an elementary transformation 

is needed before doing so). This leads to well-known asymptotic 

expansions of the special functions concerned. 

3. INCOMPLETE GAMMA FUNCTIONS 

TRICOMI (1950) opens his paper on incomplete gamma funcions 

with the remark that, for some time past, he used to call the in

complete gamma function y(a,x) as the Cinderella of special func

tions. In that paper he gives interesting results for the asympto

tic behaviour of y(a,x), for instance when a and x are both large 

and of the same order. He found, among others, 

(3. I) 

l 
y(a+l,a+y(2a) 2 ) __ 

½ r(a+l) 

2 
l 2 -y -I 

erfc(-y)-l/3(2/aTI) 2 (1+y )e +O(a ), 

y,a real, a++ 00 ; the expansion is uniformly valid in yon compact 

intervals of lR. The function erfc is the complementary error func

tion defined by 

00 

(3. 2) erfc(x) = 2rr-½ I e-t2dt. 

X 

Some results of Tricomi are corrected and used by KOLBIG (1972) for 

9 
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the construction of the zeros of the incomplete gamma functions. 

DINGLE (1973) has generalized the results of Tricomi, but the same 

restrictions on y must hold as in (3.1). 

Tricomi used ad-hoc methods to derive results as (3.1). Later 

on, important general methods were introduced to derive uniform 

asymptotic expansions of integrals, from which his results follow 

as special cases. In fact by the new methods more powerful results 

were obtained than by the method of Tricomi. 

In TEMME (1975) we used a loop integral for y(a,x) where a 

saddle point coincides with a pole in the 11 transition11 case a = x. 

The method of VAN DER WAERDEN (1951) was used to give an expansion 

of y(a,Aa) for a • w, which holds uniformly in A~ 0 (here we con

sider real parameters). When comparing this with (3.1) we observe 
l 

that A= I+ y(2/a) 2 • Since y ranges in a compact set we infer that 

in Tricomi's expansion A ranges in an interval around unity of 

length O(a-½). In TEMME (1982b) we used a different method, which 

yielded error bounds for the remainders and in which complex vari

ables can be used. We shall give a short description of the last 

method, which can be used for many more probability functions. 

It is convenient to consider the normalized function 

X 

P (a,x) y(a,x) 1 f a-1 -t 
:= -r(-a_)_ = r(a) j t e dt. 

0 

A simple transformation gives (we consider a> O, x > O) 

x/a 
-a a j e a 

P(a,x) = r(a) 
-a(t-1-lnt) -I 

e t dt. 

0 

Next we define the mappings 

1 r 2 -- 0 2.,, t-1-,c..nt, sign r,; = sign(t-1) 

(3 .3) 

1,,, 2 -- 0 2,, >..-l""'l...n>.., sign ri = sign(A-1), A = x/a. 

With the r,; and n transformations the integral is 



(3 .4) P(a,x) 

-00 

a standard form for the integrals considered in TEMME (1982b). The 

function f (?;) is given by 
a 

(3 .5) 
-a a ½ 

f () = e a (2n/a) 
a s r (a) cp (?;), cp ( ?;) = t: 1 • 

The asymptotic problem is to give for the integral in (3.4) an asymp

totic expansion for a+ w, which is uniformly valid with respect to 

n, For fixed values of n, the integral has three different asympto

tic expansions, according whether n < 0, n = O, n > 0. It is pos

sible to combine these three expansions into one, in which the er

ror function (3.2) describes the transition. An integration by 

parts procedure is used by taking into account the contributions 

in the integral (3.4) at?;= 0 (the saddle point) and at?;= n (end 

point of integration.) Since cp(O) = I we write 

n 

(~)½ f 2TI 
-w 

-lar2 
<j>(?;)e 2 "' d?; = 

! erfc(-n/a/2) - (2na)-! j 

-w 

with <1> 1(,) = d/d?;[{<j>(?;)-1}/?;]. Repeating this process we obtain 

(3.6) P(a,x) 

2 

-e_-½_a_n_ [n~l 
= ½ erfc(-n(a/2)½) + l 

hna1 s=O 

Bs(n) B (a,n)) 
---+ n 

s n 
a a 

1 
B (n) = - - -o n ).-1' 

B() 1 + 1 + 1 1 
1 n = O,-l)3 0,,-1)2 12(:>.-1) - n3' 

-For the remainder B bounds are available. In (3.6) the variable n 
n 

is defined in (3,3). In terms of the original variables x and a we 

can say that (3.6) is a uniform expansion for a+ oo, holding uni

formly with respect to x, x ~ 0, especially for x ~a.An interesting 

I I 
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point is that for the other incomplete gannna function Q(a,x) := 

r(a,x)/r(a) a similar expansion exists, viz. 

(3. 7) Q(a,x) 

2 
- 1an rn-1 ~ e 2 \' 

= ! erf(nv'a/2) - ; 2;ra, 1 l 
Ls=O 

B8 :n) + B0 (a:n) ] 
a a 

where the B (n) are the same as in (3.6). Hence the addition rule 
s 

P(a,x) + Q(a,x) = I is reflected in the expansion for both func-

tions, since erfc(z) + erfc(-z) = 2. 

4. COMPUTATIONAL ASPECTS OF TRICOMI' s 11' FUNCTION 

The '!'-function can be defined by 

<X> 

(4. I) 1 j a-1 -zt b-a-1 'l'(a;b;z) = r(a) t e (l+t) dt, 

0 

this representation being valid for Re a> 0, Re z > O, b E ~- In 

general, i.e., for general a and b, 'l'(a;b;z) is singular at z = 0. 

With respect to a and b, 'l'(a;b;z) is an entire function. For 

a= 0,-1,-2, ... , it can be written in terms of Laguerre polynomials 

4' (-n;a.+ 1; z) = (-l)nn~ L (a.) (z) 
n ' 

hence Tricomi's polynomial (I.I) is a special case of Tricomi's 11' 

function. If b-a-1 = n, n = 0, 1,2, ... , it also reduces to an elemen

tary function. It easily follows from (4.1) that 

11'(a;a+n+1 ;z) = 

where (a)k = r(a+k)/r(a), k = 0,1,2, ... 

Information about the 4' function can be found in TRICOMI (1954), 

BUCHHOLZ (1953) and SLATER (1960). Computational aspects are con

sidered by FIELDS & WIMP (1970), WIMP (1974), LUKE (1969) and 

TEMME (1983). In the latter a computer program is given for compu-
K ting a set of functions {4'(a+k;b;z)}k=O' for b E JR, z > O, a 2c'. O. 



In the publications of Fields, Wimp and Luke the emphasis is on ex

pansions of the~ function, which enable computation for a wide 

range of the parameters. An interesting result is 

00 

(wz)a~(a;b;wz) = l 
n=O 

* C (z)T (1/w) 
n n 

where r*(x) is a shifted Chebyshev polynomial and in which the con 
efficients C (z) easily follow from a four-term recurrence relation. n 
The expansion is given in LUKE (1969), together with a device for 

computing C (z) (a Miller algorithm). 
n 
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