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ABSTRACT 

This paper collects a large deal of what is presently known about 

spherical harmonics on the Heisenberg group and the related functions 

C~a,B). It contains both new results and new approaches to old results. 

First, orthogonality properties and generating functions for C~a,B) are 

discussed. Next a new approach to Koranyi's Kelvin transform on the 

Heisenberg group is given. After a treatment of Heisenberg harmonics, the 

Kelvin transform is applied in order to obtain a new proof of Dunkl's ex­

pansion of the translate of the fundamental solution for L • Finally it 
y 

is shown that, if the Dirichlet problem for 

solvable, then the related functions C (a' B) 
k 

L on the Heisenberg ball is 
y 

form a complete system. 
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berg ball; expansion of translate of fundamental so-

lution for LY; completeness of the functions C~a,B). 
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0. INTRODUCTION 

This article is concerned with the functions a r-+ ~<l,S),(eie}, 

<l,8 E C~ k ·= O, 1,2, ••• and O :;;; a :;;; 1r, defined by the generating function 

(0 .1) 

The impetus for the study of the C~<l,S)_s comes from the Dirichlet 

problem for a class of second order differential operators, L, on the 
y 

}leisenberg group H • H has underlying manifold O:n x E. and the non-abelian 
n n 

multiplication 

(0. 2) (z,t)(z',t') = (z+z',t+t'+2Im z•z'), 

where z = (z 1, ••• ,zn) and z•z' := l.j=l zjij. With this group law the groups 

H form the simplest class of non-commutative nilpotent Lie groups. Define n 

(0 .3) a . - a 
z j : = a z j + 1 z j at' j=i, ... ,n. 

{Z 1, ••• ,zn,zl, •.. ,zn, a\} is a basis for the Lie algebra of left-invariant 

vector fields on H • S.et 

(0 .4) 

n 

L := -½ 
y 

n 
l. (ZJ.ZJ.+ZJ.ZJ.) + i y :t . 

j=l 

L is left-invariant with respect to (0.2) and invariant under the natural 
y 

action of the group U(n) on the z-coordinates. Given R > 0 one introduces 

the dilation R: (z,t) 1+ (Rz,R2t). Then L is homogeneous in the sense that 
2 y 

L (foR) = R (L f)oR for any smooth function f. 
y y 

L is not elliptic. Nevertheless, FOLLAND [SJ (for y=O) and FOLLAND & 
y 

STEIN [6] showed that Lhasa fundamental solution at any u in H : 
Y n 

(0.5) L(u)~ (v- 1u) = ~ H + ~ 2 y ~y u(v)' u,v E n' -Yr n,n+ , ••• , 

where 

(0 .6) 
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for some constant c. 
y 

There is a great deal of similarity between L on H and the usual 
\n 2 2 n y n 

Laplace operator, 6 := lj=l a /axj on :m. (cf. [9]). To deepen the analogy 

we say that f is H-homogenous of degree kif 

(0. 7) 2 k f(Rz,R t) = R f(z,t), 

and that f is L -harmonic if 
y 

(0.8) L f = o. 
y 

R > 0, 

If ±y I n,n+2,n+4, ••• L -harmonics are real-analytic. This follows from the 
y 

analyticity of~ away from the origin. Hence an L -harmonic has a conver-
y y 

gent power series expansion near the origin. In analogy with 6 we consider 

the power series as a sum of H-homogeneous L -harmonic polynomials. Such 
y 

polynomials were first described in [9] where the discussion was restricted 

to H1• DUNKL extended this to H in [3]. The space of L -harmonic H-homo-
n y 

geneous polynomials of degree m uniquely splits as a direct sum of irredu-

cible subspaces under the action of U(n). In spherical coordinates adapted 

to H, the functions in these irreducible subspaces factorize and one o~ the 
n 

factors is a function C~a,B). DJnkl also expanded ~Y(v- 1u) in a series of 

H-homogeneous L -harmonic polynomials in u whose coefficients are functions 
y 

of v, which are H-homogeneous L -harmonic functions near infinity, and 
y 

singular at the origin. This is in complete analogy with such an expansion 

I 1-n+Z 
of the classical Newtonian potential, x-y , in a double series of 

spherical harmonics on :m.n, which are Kelvin transforms of each other. It 

motivated us to introduce an analogue of the Kelvin transform on H1• In­

dependently, KORANYI [ 1 7 J introduced a Kelvin 1:ransform on H , guided by 
n 

group theoretic motivations. Unfortunately, this transform does not operate 

radially, thus there is no obvious way it can be used to solve Dirichlet's 

problem for L in the unit Heisenberg ball {(z,t) EH I lzl 4+t 2 < I}. 
y n 

Using probabilistic methods GAVEAU [8] showed that the Dirichlet 

problem for L0 has a solution in the Heisenberg ball in Hn. An analytic 

proof (also for certain L) was later given by JERISON [12], [13]. Heuris­
y 

tically this result suggests that, by restricting the H-homogeneous L -
y 
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harmonic polynomials to the surface of the unit Heisenberg sphere one ob­

tains a "complete" system of functions. More precisely, introducing spheri­

cal coordinates adapted to H, we are interested in the "completeness" of 
(a a) ie n 

the system {0 1+ Ck ' (e )}k=O, 1, 2, ••• on (O,ir) (see [9]). We note that 

that the. C~a, S) -s on Hn are the analogues of the Gegenbauer polynomials on Rn. 

Finally, a short outline of this article is in order. Section 1 dis-

1 · . f h C(a,S) . 1 . b. cusses ana ytic properties o t e k -s, integra representations, i-

linear generating functions, and orthogonality on [0,2,r], originally found 

by GASPER (see [7 ]) • Section 2 is devoted to a discussion of the Kelvin 

transform on Hn (in a way which is even more group the,oretical and less 

computational than in Koranyi's approach), while in sections 3 and 4 we 

calculate the L -harmonic polynomials and discuss Dirichlet's problem. 
y -1 

Finally, in chapter 5 we expand~ (v u) in a sum of products of harmonics 
y 

near zero and of harmonics near infinity by the use of the Kelvin trans-

form. 'This yields a new proof of Dunkl's expansion. Next, knowing that the 

Poisson kernel in the Heisenberg ball exists for L0, we show that its 

spherical harmonics are dense in the class of continuous functions on the 

surface of the unit Heisenberg ball. 

Acknowled.gement. We want to thank C.F. Dunkl and M.E.H. Ismail for gLving 

us access to unpublished results and permission to use these results in 

our paper. 

1. ANALYTIC PROPERTIES 

1.1. Definition of the functions C~a,a) 

For complex a,a the functions C~a,S) (k = 0,1,2, ••• ) are defined by 

the generating function 

(1. 1.) 

It follows innnediately that 

( 1 • 2) c(a,a) (i;;) = 
k 

k 
I 

j=O 

-1 I z I < Ii;; I • 

I;; E (:, 
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( I • 3) 
(a)k-j(B)j i(2j-k)$ 
(k-j)!j! e , $ E R. 

Here we follow GASPER's [7] notation. GREINER [9], who first introduced 

these functions, denoted them Ly ~,n(a~a:,n,kEll ,k:2:0). On comparing [9, 

(8.7)] with (I.I) we find 

C~-(a-1)/2,n+(a-1)/2)(ei$), n;;::: O, 

( I .4) 

From (1.3) we obtain: 

(1.5) c~a,8)(-ei$) = (-l)kc~a,8)(ei$), 

( 1.6) c~a,8)(ei$) = c~B,a)(e-i$) = c~S,a)(ei$) = c~a,8)(e-i$), 

(I. 7) 

( I .8) c<a,8) (I) = 
k 

Special cases are 

(a)k -ik$ 2i$ 
=k!e 2F1(-k,B,1-a-k;e )(a,'0,-1, ... ,-k+I) 

(B)k ik$ -2i$ 
= k! e 2F1(-k,a;I-B-k;e )(8,'0,-1, .•. ,-k+I), 

a where Ck denotes a Gegenbauer polynomial, 

(I. 10) 

(1.11) 

(a\ -ik$ 
=-,-e , 

k. 

(B)k ik$ 
= k! e • 

Finally, by (1.3) and (1.8) we have: 



(I • 12) ~ c<lal, ISl)(l) = 
k 

1.2. Orthogonality properties 

(lal+IBl)k 

k! 

5 

= O(klal+lsl-1) as 

k • co. 

In this subsection we give a new proof of GASPER's [7] orthogonality 

for the functions C~a,B) and we show that there is some more freedom in 

the choice of the weight function. In the special case 8 =a+ 1 we get an 

orthogonality which was earlier obtained by ASKEY [2]. 

LEMMA I.I. Let a,B Et, Re(a+8) > O, k E {O,1,2, ••• },lE {-k-1,-k+l, ••• , 

k-1 ,k+l}. Then 

7T 

( 1 • 13) f ~a,8)(ei~)ei(l+8-a)~(sin~)a+B-ld~ = 

0 
e½i(-a+B-l)1r1rr(a+8+k) =-----------------0 + 2a+S-lr(S)r(a+k+I) l,-k-1 

e½i(-a+8+l)1r1rr(a+8+k) 

+ 2a+B-lr(a)r(B+k+l) ol,k+t· 

PROOF. Let I denote the left hand side of (1.13). Then, by (1.7): 

I = 2· 
1-a-k;e 1 ~)• 

F (-k 0 ·1-N-k•z)• 
2 I '""' .... ' • 

Substitution of the Rodrigues type formula 

2F I (-k,k+y+o+l ;y+l ;z) zy (1-z) 0 = 
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(cf. [4, 10.8(10), I0.8(16) ]) yields 

(O+) 
I = e H1r(a.+S-2) (-l)k f d k Q k I (dz) [ z -a. (l-z) a.+µ+ - J. 

2a.+Sk~ 

!(k+i-l)d • z z. 

Repeated integration by parts yields I= 0 if£.= -k+l,-k+3, •.• ,k-l. If 

£. = -k-1 then 

(O+) 
e½i1r(a.+S-2)(-l)k f -a.-k-1 a.+S+k-1 

I = ------'------ z (l-z) dz, 
2a.+S 

which can be evaluated by [4,1.6(9), 1.5(5),1.2(6)]. Finally, the case 

£. = k+I follows from (1.13) for£.= k-1 by the transformation of integra­

tion variable$ • 1r-$ and by (1.5), (1.6). D 

PROPOSITION 1.2. For complex c 1,c2,a.,S with Re(a.+S) > 0 Zet the weight 

function w be defined by 

Then, for nonnegative integers k,£.: 

(1.14) 

PROOF. Because of (1.5) it is sufficient to evaluate the integral at the 

left hand side from Oto 1f fork-£. even. This can be done by the use of 

(1.3) and (1.13). 0 

GASPER [7] showed that 

1f 

f C~a.,B)(ei~)ei(l+S-a.)~(sin~)a.+Sd~ = 0 

0 

for£.= -k+2,-k+4, ••• ,k-2, which is implied by our formula (1.13), and next 
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he derived the case c 1 = -c2 of Prop.1.2. 

PROPOSITION 1.3. If Re(a+B) > 0 then 

TI 

(1.15) f eik~c!a,B)(ei~)e-U.~ciB-1,a+l)(e~i~)ei~(B-a-I)(sin~)a+B-ldt = 

0 
e½iTI(-a+B-I)Tif(a+B+k) 

= 2a+B-lr(a+l)f(B)k! ok,l. 

(B-1 a+I) -i~ PROOF. If k ~ l then substitute (1.3) for Cl ' (e ) and apply (1.13). 

If k < l then make the change of integration variable~ 1-+ TI-~ in (1.15), 

substitute (1.3) for Ck and again apply (1.13). D 

COROLLARY 1.4. If a>-½ then 

n 

(1.16) I eik~c~a,a+l)(ei~)eu~cia,a+l)(ei~)(sin~)2a d~ 

0 Tif(2a+k+l) 

PROOF. (1.15) with 8 = a+l. 0 

Formulas (1.15), (1.16) were given by ASKEY in [2] and [I], resp~ctive­

ly. Note that (1.15) and (1.16) give a biorthogonality respectively orthog­

onality for the functions~ tt- eik~C~a,B)(ei~) o~ (0,TI) and that (1.14) gives 

an orthogonality for the functions~ 1+ C~a,B)(e1 ~) on (0,2i). However, what 

would be needed for the applications we have in mind and what is unfor­

tunately unknown is a (bi)orthogonality for the latter functions on (0,TI). 

Formula (1.13) implies yet another orthogonality: 

PROPOSITION 1.5. Let Re(a+B) > I. Then, for l,m E {0,1, ••• ,k}: 

(1.17) 

TI I (sin~)l~~;l,B+i)(ei~)(sin~)mC~~,B+m)(ei~) • 

0 
( . ~)a+B-2 i(B-a)~ d~ • sino/ e o/ = 

= 
e½iTI(B-a)(a+s+U)k-lTif(a+B+U-1) 

2a+B+U-Z(k-l)!r(a+l)r(B+l) 
0 l,m 
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PROOF. In the case l ~ m apply (1.13). In the case l = m (1.13) can also be 

used in order to rewrite the left hand side of (1.17) as 

1T 

c~~;l,S+l)(l) f c~~;t,e+l)(ei~)(sin~)a+8+U.-2ei(S-a-k+l)~d~ • 

0 

By (1.7), (1.8) and [4,1 .5(29)] this becomes 

e½i~(S-a)(a+8+2l)k-l(8-tl)k-lirr(a+8+U.-1~ 

2a+e+U.-2(k-l)!(k-l)!r(a+l)r(a+l) 

• 2F1(-k+l,-S-l+l;-S-k+l;l). 

Finally apply [4,2.8(46)]. 0 

b · · 11 . ( . )l (a+l,e+l) The a ove proposition te s us that the functions~ 1+ sin~ Ck-l 

(ei~) (l = O,1, ••• ,k) form an orthogonal basis on [O,ir] for the space of 

trigonometric polynomials f of degrees k satisfying f(~+,r) = (-1)kf(~). 

1.3. Integral representations 

ISMAIL [11] derived the following Laplace type integral representation: 

(1.18) 
c<a,8) (I) 

k 

1T 

r(a+S) f ( . . )k 
= r(a)r(e) cos~+isin~cosw • 

0 

2a-l 28-1 
• (sin½$) (cos½$) d$, Re a> 0, Re 8 > 0. 

For the proof note that 

( . . ) k ( i~ 21 -i~ . 21 )k cos~+isin~cos$ = e cos 2$+e sin 2$ , 

write down the binomial expansion of the right hand side, use the beta in­

tegral and apply (1.3). 

More generally we have 

( 1.19) r (a+S) 
r<a)r(e) 

1T 

f ( . . )k p~a-1,8-l)(cos•'·) cos~+isin~cosw ~ o/ • 

0 
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k!(a)o(S)o o ( o o) • 
.{, .{, (2" . ,1,).(, C a,+.{,,S+.{, ( 1.cp) == ------ 1.s1.n'I' 0 e Re a > O, Re f3 > O, 

l!(a+S)k+l k-.{_ ' 

where Pia-l,S-l) is a Jacobi polynomial. For the proof substitute the 

Rodrigues type formula for the Jacobi polynomial into the left hand side of 

(1.19), perform integration by parts and reduce to (1.18). 

From (1.19) we obtain the Jacobi series expansion 

( 1. 20) (. . . )k cos4>+1.s1.n4>cosijJ = 

k (U+a+S-l)k! (a+f3) o O ( o 0 ) • ( ) 
f _______ .{, ( 2 .. ,1,).{,C a~,S+.{, ( 1.cp)P a-1,S-I ( J,) 

-- L. (o O I)( 0 ) 1.s1.nlf' k-o e O _cos\f'. l~O .{,+a+µ- a+µ k+l .{, .{, 

For a = f3 tl,,ese three formulas reduce to well-known formulas for Gegenbauer 

polynomials. 

Because of Prop.1.5, the right hand side of formula (1.20) can be viewed 

as a double orthogonal expansion of the left hand side, with respect to the 

measure (sincp)a+f3-2ei(S-a)cpdcp on (O,n) in the cp-variable and with respect 
2a-1 2S~•1 

to the measure (sin!i/J) (cos!i/J) dijJ on (O,rr) in the ijJ·-variable. Hence, 

by (1.17) the following formula is also an integrated form of (1.20): 

(1.21) 
2a+f3-2r (a)r (S) TIJ ( . . )k 

-Tin coscp+1.s1.ncpcosijJ . 
e 2 (S-a)nr(a+S-1) 0 

• C~~;l,S+l)(eicp)(sincp)a+f3+l-2ei(S-a)cpdcp = 

(-k).e__(a+S-1).e__ (a-I S-l) 
l P.e__ ' (cosijJ). 

(2i) Ca).e__(S).e__ 

A Mehle,r-Dirichlet type integral representation 

( I • 22) 
f3 I Ck( a , f3) ( e H) 

1 i(S-a)cp (sin,1,)a+ -
e2 ---=-'l''-"--~-

r (a+S) c<a,S) (I) 
k 

-1 (sin(cp-e))a-I (sine)S-l ei(k+Ha+S)) (28-cp) de, 
r(a) r(S) 

0 

0 < cp < TI, Re a> O, Re f3 > O, 

can be derived from (1.18) as follows. First make the substitution 
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z = coscf>+isincf>cosij, in (1. 18), next deform the contour to an arc from eicf> to 
-ict> -ict> 2ie e and finally put z = e e • Note that, in a sense, (1.22) is dual to 

(1.3): the role of k and cf> is interchanged. Reduction to the case a= B 

again gives a familiar formula for Gegenbauer pulynomials. 

1.4. Bilinear generating functions 

Appell's hypergeometric function F 1 is defined by the double power 

series 

( I • 23) 
00 

F1(a,B,B',y;x,y) := l 
m,n=O 

which converges for lxl, lyl <I.By the integral representation [4,5.8(5)], 

valid for Re a> 0, Re(y-a) > O, the function F1(a,B,B',y,.,.) has an ana­

lytic continuation to a one-valued function on {(x,y) E c21x,y l [l,00)}. 

LEMMA 1.6. If Rey> O, z Et, lzl < I then 

(1.24) 
00 (i)k 2k (a,B) ict> 
L (y+½)k z c 2k (e ) = 

k=O 

PROOF. We prove (1.24) for z = r with O < r < 1. Then the general case 

lzl < 1 follows by analytic continuation in view of (1.11). An easy calcu­

lation yields 

(1.25) = 
r( +) 

r(y)r( ) 

r 
rl-2y f 

-r 

( 2 2)y-l 2kd r -p P p. 

Thus, again in view of (1.11), the left hand side of (1.24) equals 

r 
1-2y I r (y+½)r 

r(y)r(!) 
-r 

( 2 2)y-1 r -p 

00 
r 2kc(a,B)( ict>)d 
l p 2k e p, 

k=O 

which, by the use of (I.I), can be written as 

r 
r(y+1 )rl-Zy I 2 2 I ·~ ·~ B 2 (r -p )y- (l+pe-i~)-a(l+pei~)- dp. 
r(y)rCI) 

-r 



r-p By making the change of integration variable t = -- this equals 2r 

2 2y- } ( I ) • ,i- • 

r y+2 (l+re-io/)-a(l+reicj>)-B • 
r(y)r(!) 

1 • I ( -icj> -a( 
• (t(I-t))y-\ 1-t ~re -i) 1 1-t 

\ t +re cl> 1 \ 

0 

2reicj> \-B 

l+reict>) dt. 

Now (1.24) follows by the use of [4,5.8(5)] and [4,1.2(15)]. 0 

Because of [4,5.10(1)], formula (1.24) can be simplified in the case 

Y = Ha+B): 

( I . 26) 

Re (a+ B) > 0 , z E 0: , I z I < I. 

Next we derive a bilinear generating function involving C~a,B) and 

the Gegenbauer polynomial C~. 

THEOREM 1.7. If Rey> O, z EC, lzl < I then 

( I • 27) 

2 . -ie . ize sincj> 
-i (0+cj>) ' 1-ze 

C~(coscj>) 

C~(I) 

= Fi( y , a , B , 2y ; 

2izei6 sinct>\(l- -i(0+cj>))-a(l- i(e-cj>))-B 
. ( ) ) ze ze . 
1 0-cj> 1-ze 

1 1 

PROOF. We prove (1.27) for lzl < !. Then the more general case lzl < 1 will 

follow by analytic continuation in view of (1.11). We will start the proof 

with an additional parameter o (Reo>O) and, at a certain stage, we will put 

o = y. It follows from (1.18), (1.11) and (I.I) that 
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TT I ( . . ) k ( . 1 ) 2y- l ( 1 ) 28 -1 • cos~+1s1n~cos¢ s1n2¢ cos 2¢ d¢ = 

0 
TT 

r(y+o) J -ie -a = -r--'-(y..,_,)_r--'-(,--o~) ( 1-ze (cos~+isin~cos¢)) • 

0 

• (l-zei6 (cos~+isin~cos¢))-8(sin½¢) 2y-l(cos½¢) 20 -l d¢ = 

r ( y+o) -ie -a ie -B 
= r(y)r(o)' (l-ze cos~) (1-ze cos~) • 

TT I ( . -ie . \-a( . ie . \-B 
• 

1 1_ 1ze ~1n~cos¢ 1_ 1ze s1n~cosw 
-10 ) \ · e ) 

\ 1-ze cos~ \ l-ze1 cos~ 
0 

• (sin½¢) 2y-l(cos½w) 20-I d$ = 

r ( y+o) -ie -a ie -B 
= r(y)f(o) (1-ze cos~) (1-ze cos~) • 

• ~ ___ ,_ 1ze sin~ 1ze sin~ 00 (a)k(B)u (· -ie . ~ \k( . ie . ~),f_ 
L k 1 ,e_' \ -ie J \ ie 

k,l=O · · 1-ze cos~' 1-ze cos~ 
TT 

• f (cos*)k+l(sin½¢) 2y-l(cos½*) 20 -I d¢ . 

0 

Now assume y = o. Then 

TT 

f (cos*)k+l(sin½*) 2y-l(cos½¢) 2y-ld¢ = 

0 

= 

2l-Zyr(½(k+l+l))f(y) 
r(½(k+l+l)+y) -

0 

if k+l is even, 

if k+l is odd. 

Hence, by [4, 1.2(15)], the left hand side of (I .27) equals 

-ie -a ie -B ( 1-ze cos~) (1-ze cos~) . 



00 

. }: 
k,l=O 
k+l ev.en 

(a)k (B)o (½) l(k+D) r· -is . \k(. is . )l ~ g ~ 1ze s1n4> JZe s1n4> 
7Z!"" ""7! (y+l) I -iS ) \ iS . = 

2 Hk+l) \1-ze cos<j> 1-ze cos<j>' 

-is -a is -B 
= (1-ze cos<j>) (l-ze cos<j>) • 

( ( 
-is ~!)U.-2p • is 1-ze cos<j> 

\. e • S • 
1-ze1 cos<j> 1 ' 

By substitution of (1.3) this equals 

13 

-is -a is -B 00
}: (½)P · ( -z2sin24> ~P. (1-ze cos~) (1-ze cos~) --,---.,+--

"' 'f' , (y+!) 2 2 
p=O 2 p J-2zcos<j>cosS+z cos 4> 1 

( ( -is )1) • C(a,B) is J-ze cos<j> 2 

2 \e ·s · 
P 1-ze1 cos<j> 

Finally, substitution of (1.24) leads to the right hand side of (1.27). D 

COROLLARY 1.8. If Re(a+B) > O, z Et, lzl < 1 then 

½ (a+B) 
00 k (a, B) is ck (coS<j>) 

(I • 28) }: z Ck (e ) I (a+B) = 
k=O ck (I) 

(1-zeise-iq, \½(a-B) 2 !(a+B) 
= 1 -is -iq, 1 (1-2zcos (<j>+S) +z ) - • 

\J-ze e 1 

( 4zsinq,sinS \ 
• 2F 1\½(a+B),a;a+B; z J· 

J-2zcos (<j>+S) +z 

PROOF. Use [4,5.10(1)]. 0 

REMARK 1.9. Formula (1.28) has the following significance. As will be ap~ 

parent later in this paper, the main obstruction to finding the Poisson 

kernel for the Dirichlet problem on the Heisenberg ball is the fact that an 

1 .. k 1 f h f d 0 t'00 C(a,B)( is) t exp 1c1t erne or t e trans orm sen 1ng lk=O ~ k e o 
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is not available. Formula (1.28) gives an answer to a related question. Due 

to the orthogonality property of the Gegenbauer polynomials it provides the 
• too ½(a+S) 

kernel for the transform which sends Lk=O ckCk (coscf>) to 

REMARK 1.10. C.F. Dunkl {personal communication, unpublished) obtained a 

dual formula to (1.26): 

0 

with a+B = y+o = A, expressed in terms of a balanced 4F3 of unit argument. 

2. THE KELVIN TRANSFORM ON THE HEISENBERG GROUP 

W. Thomson (Lord Kelvin) proved in 1847 the following fact: If U is 

harmonic on lR.3 then the function V defined by 

V(x,y,z) -1 2 -2 2 -2 2 -2 := ar U(a r x,a r y,a r z) 

I 2 2 21 3 (r := {x +y +z ,a>O) is harmonic on R \{0} (cf. KELLOGG [14,p.232]). For 

this reason the transformation U ~Vis called the Kelvin transform. In 

looking at DUNKL's [3, Theorem 1.6] expansion of the translated fundamental 

solution for L on the Heisenberg group the authors of the present paper 
y 

conjectured, by analogy to the corresponding case for the Laplace operator, 

that this double expansion involves, beside harmoncis on the Heisenberg 

group, certain Kelvin type transforms of these harmonics, which should 

also be Ly-harmonic. Indeed, in the case of L0 on n1 we were able to give 

the formula for the Kelv~n transform explicitly. Independently, KORANYI 

[17] obtained the Kelvin transform for general L on a Heisenberg group H 
y n 

of arbitrary dimension. He was guided by considering H as the nilpotent n 
factor in the Iwasawa decomposition of a noncompact semisimple Lie group G 

and by looking at the action of the Weyl group of G on H. Thus he could n 
guess the general form of the formula for the Kelvin transform and by a cal-

culation he.could next prove it. 
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In the following we will present a proof of the Kelvin transform which 

is even more conceptual and less computational than Koranyi's proof. We will 

consider H as a boundary of a symmetric space and obtain L as a limit case 
n y 

of a Laplace-Beltrami type operator on this synnnetric space. Thus L will 
y 

inherit the symmetries of the Laplace-Beltrami type operator. 

As a side result we now have a canonical way of introducing L on H 
Y n 

for ally, rather than only for y = n,n-2, ... ,-n+2,-n by an interpretation 

using~ (cf. FOLLAND & STEIN [6,§5]). 

For n = 1,2, ... consider the group 

G := {TE SL(n+2,«:) I T*JT = J}, 

G 
0 

T) and * where J := I T means n 
2 i 0 

adjoint of T. Then G is a noncompact connected semisimple Lie group iso-
. ( ) h . n+2 . h d 0 morphic to SU n+l,l . Te group G acting on a; wit coor inates 

(w0 ,w 1, ••• ,wn+l) leaves the form lw 112+ ... +1wn1 2-Im(w0.;n+I) invariant. 
d . . n+2 d . d The ifferential operator~ on a; efine by 

(2. I) ~ := -

is G-invariant. 

We now consider some structural facts about G (cf. HELGASON [10,Ch.6, 

9] for general structure theory). Let 

K :={TE G I T(i,O, ... ,0, I) = ei4>(i,O, ... ,0, I) 

for some real qi}!:>! S(U(n+l)xU(I)), 

s -s I A:= {a = diag(e ,1, ... ,1,e ) s E JR}!::,! 
s 

N := {n t = z, 

iz ... iz t+ilzl 2 
1 n 

I </, 2z 1 

2z 
n 

1 

R, 

n (z,t) EtxJR} 
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Then G = KAN is an Iwasawa decomposition of G. Note that 

with 

(2.2) (z",t") = (z+z',t+t'+2Im z.z'), 

where z. z' := '1!" 1 z. V. Thus N is isomorphic to H , the Heisenberg group 
lJ= J J n 

of real dimension 2n+I. 

Let Mand M' be the centralizer and normalizer, respectively, of A in 

G. Then 

-- ((detoTO) -½ 
M = {~ 

0 0 

T 0 

0 (detT) -½ 
TE U(n)} 

(note that (detT)-½, and hence~, can assume two different values). Fur­

thermore, Mis a normal subgroup of M', the Weyl gPoup W := M'/M has order 

two and M' =Mum M with 
w 

Now G = MAN u MAN m MAN (disjoint union), a BPUhat decomposition of G. 
w 

Hence the action of G as a trausformation group is completely determined by 

the actions of M,A,N and m. 
w 

Let N := m Nm. A fact related to the Bruhal decomposition is that 
w w 

NMAN is open and dense in G. If N is considered as NMAN/MAN, open and dense 

in the flag manifold G/MAN, then G acts locally on N. Similarly, if NA is 

considered as NAK/K = G/K then G acts on NA. We will construct a G-space 

which includes the G-space NA as an open G-orbit and the G-space N as the 

boundary of NA. 
n+2 

Introduce new coordinates ~0 , ••• ,,n+I on C : 

~. = w. /w 1 (j = 0, I, ••• , n) , 
J J n+ ~n+I = wn+I • 
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W · ( ) Th th acti·on of G on "'n+2, d · t rite z; := z; 0 ,z; 1, •.• ,z;n. en e ~ expresse in erms 

of the new coordinates, takes the form 

(2.3) 

n+l 
where the action of G on the z;-space C is a group action andµ is a 

multiplieP with respect to this action, i.e., a complex-valued function on 
"'n+l G . f . "' x satis ying 

(2.4) 

. n+l . . The G-action on t andµ are completely determined by the data in the 

following table: 

g 

a 
s 

Table I 

(z;0 ,(detT)½T.(z; 1, ••• ,z;n)) 

2s s s 
(e z;O,e z;1,···,e z;n) 

(z;O+t+ijzj2+2i ).j=l z;jzj,z;I+zl, ••• ,z;n+zn) 

I 
(- ~' 

0 

µ (z;' g) 

(detT)-½ 

-s 
e 

In terms of the coordinates z;0 , ••• ,z;n+l the differential operator 6 

(cf.(2.1)) takes the form 

(2.5) 
-2r n ( a2 

+2iz;. 
a2 

-2i - a2 ) 6 = 1-r; I l , - --- z;. ar;/lt0 + n+l L· I ar;.az;. J a tj ar;0 J J= J J 

+ 2i <z;o-~o) 
a2 

+ 2i 
a2 

- 2ir; a2 ] 
az;oa~o z;n+l cl z;n+ I a to n+l az;n+l a-e-0 • 

n+l Then, for a,S int and£ a smooth function on the r;-space «: : 
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{2.6) 

where 

(2. 7) 
n 

(- a2 a2 a2 \ t:,. := I ar,; .a~. 
+2i 1,;. 

ar,;j a~O 
-2i 1,;. 

a~lr,;oJ 
+ 

et,B j=l J J 
J J 

+ 2i(r,;o-~o> 
a2 

+2i a 2· a 
ar,;oar,;o 

B --=- - l.Ct --
ar,;o ar,;o 

F f . d 1.'n G and for ( ) · ~n+l ~ wr1.'te or 1.xe g r,;,r,;n+l 1.n ~ x ~ 

Lett:,.' denote the operator (2.4) with r,;. replaced by 1,;!, and similarly 
J J 

LE:t-lMA. 2.1. For smooth functions f on 11:n+l and with r,;' := g.r,;, where gin G 

is fixed, we ha:ve 

(2.8) -B-1-- -a-1 
= µ(r,;,g) µ(1,;,g) t:,.~,Bf(r,;'). 

PROOF. The G-invariance oft:,. can be expressed by the formula 

Hence 

The right hand side of (*) equals 

(**) 

by the use of (2.6). The left hand side of (*) equals 
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by the use of (2.3), and, by (2.6), this can be written as 

Now formula (2.8) follows by (2.3) and the equality of (**) and(***). 0 

Then G acts transitively on Dn+l and the stabilizer of (i,0, ... ,0) in G is K. 

Hence D 1 =, G/K. Also G acts transitively on 3D I u { 00 } and the stabilizer n+ n+ 
of (0, ... ,0) in G is MAN. Hence 3Dn+l u { 00 } = G/MAN. 

n Introduce new coordinates (t,x,z 1, ... ,zn) E JR x R x «: on the l;;-

space «:n+l by 

Write z = (z: 1, ... ,zn). Note that l;; E Dn+l <=> x > 0; l;; E 3Dn+I <=> x = 0. 

Also: 

(2.9) ( t+ i ( I z I 2 +x) , z 1 , ••• , z n) = n a 11 (i,0, ... ,0), 
z,t 2 ogx . 

(2.10) ( t+ i I z I 2, z 1 , ••• , zn) = n ( 0, ... , 0) . z,t 

tion 

This identifies D I with n+ NA and 3Dn+l with 

of G on 3D I can be transplanted to n+ 
The operator ti expressed in terms 

a,B 

H . 
n 

of the 

takes the form 

n 
(- 32 3 ( (2.11) /j, = I + i a 

a, 13 at" \zj j=I \ 3z.3z. az. 
J J J 

izi 2 
32 

i(B-a) 1._ -
(32 32\ 

-· --+ x\-2 + -2/ 
at2 at 3 t ax ' 

N ~ H and the local ac­
n 

coordinates t,x,z 1, ••• ,zn 

_a_\\ + z. 
J az.}) 

J 

+ (n-a-13) a 
ax 
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If 

( 2. I 2) a. = Hn-y), 8 = Hn+y), y EC:. 

then the restriction L of 8 a to x = 0 will be a differential ope_rator on y a.,.., 

(2. 13) LY = J. n=l l (\_ a 2 azjazj 
i. _a_),+ 

J azj ; 

2 a2 
-·- + 
at2 

- z 

Now we obtain from Lennna 2.1 and Table 1: 

THEOREM 2. 2. For smooth functions f on H and for g in G we have n 

(2. 14) 
-8 --,---. -a. 

L (µ(z,t;g) µ(z,t;g) f(g.(z,t))) = 
y 

-8-1--- -a.-1 
= µ(z,t;g) µ(z,t;g) (L f)(g.(z,t)), 

y 

where the ZoaaZ action of G andµ are specified by: 

g I g.(z,t) µ (z, t ;g) 
I 

! -1 
mT ( (detT) 2 Tz, t) (detT) 2 

s 2s -2s a (e z,e t) e s 

n , t' z , (z',t')(z,t) 

m ( z 2 , 
t 2+~zl 4) 

t+ilzl 2 
w 't+i I z I 

Table 2 



21 

In other words, L 1.s left H -invariant and invariant under the action 
Y n 

T. (z,t) = (Tz,t) of U(n), 

(2.15) 

and 

(2.16) 

2 L (f (Rz,R t)) 
y 

We call the function K f defined by 
y 

( 2. 17) 2 -a 2 -S ( z -t \ CK f)(z,t) := (lzl +it) Clzl -it) f . 2, 2 4; 
Y t+i. I z I t + I z I 

the Kelvin t:ransform of f. 

COROLLARY 2.3. If L f = 0 on H then L (K f) = 0 on H \{(0,0)}. 
y n y y n 

3. HARMONICS ON THE HEISENBERG GROUP 

Throughout assume (2.12) and ±y -:/= n,n+2,n+4, .... Define 

(3. I) 

where 

(3. 2) 

Then <I> 1.s a fundamental solution of L at O (with respect to standard 
y y 

normalisation of Lebesgue measure): 

(3.3) L <I> = o, 
y y 

cf. FOLLAND & STEIN [6,§6]. Actually, the fact that L <I> = 0 outside 0 
y y 

follows from (2.16). By the use of the analyticity of <I> outside 0 
y 
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and the left H -invariance of L it now follows that L is hypoelliptic 
n y Y 

and real analytic hypoelliptic, cf. FOLLAND & STEIN [6,§7]. In particular 

if f is a distribution on an open subset of H containing O and if f is n 
L -hannonic, i.e. 
y 

(3.4) L f = o, 
y 

then f is real analytic, so it can be expanded as a power series around 

zero. Because of (2.15) this power series can be rearranged such that 

(3.5) f = I 
m=O 

f , 
m 

with absolute and uniform convergence in some neighbourhood of O and 

where f is a (solid) Heisenberg harmonic of degree m: 
m 

DEFINITION 3.1. A function f on H is called H -homogeneous of degree m 
n n 

if 

(3.6) 2 m f(Rz,R t) = R f(z,t), R > O. 

DEFINITION 3.2. A (solid) Heisenberg hannonic of degree m on H is a poly­
n 

nomial in z1, ••• ,z ,z1, ••• ,z, t which is H -homogeneous of degree m and n n n 
L -harmonic. 

y 

Because of the U(n)-invariance of L and property (3.6), the class of 
y 

Heisenberg harmonics of degree m can be decomposed as a direct sum of sub-

spaces on which U(n) acts irreducibly. These subspaces were obtained ex­

plicitly by GREINER [9] in the case n = 1 and by DUNKL [3] in the general 

case, later also by KOR.ANY! [17] with a different proof. Here we will ob­

tain these subspaces in yet another way, somewhat related to Koranyi's ar­

gument. 

DEFINITION 3.3. The space Hk l of complex (solid) spherical hannonics of 

bidegree (k,l) on en consist; of all polynomials Pin z 1, ••• ,z0 ,z1, ••• ,zn, 

homogeneous of degree kin the z.'s and homogeneous of degree l in the z.'s 
J J 

and satisfying 



(3.7) 
n a2 

---P = 0. I 
j=1 az.az. 

J J 

PROPOSITION 3.4 (cf. KOORNWINDER [15], RUDIN [19,§12.2]). 
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(a) The group U(n) acts irreducibly on each space Hk,l (k,l = 0, 1, 2, ••• ; if 

n = 1 then, moreover, k or l = O). 

(b) Representations of U(n) on different spaces Hk,l are inequivalent. 

(c) 

(d) 

L2(S2n-1) = $ H I g2n-1 • 
k,l k,l 

·- d. H _ (n+k+l-l)(n+k~2)!(n+l-2)! 
Nk,l .- im k,l - k!l!(n-l)!(n-2)! • 

(e) If {Y 1, ••• ,YN } is an orthonormal basis of Hk l I 82n-l then 
k,l ' 

~kl -- I 1-1 n-2 2n-1 
l ' Y.(s)Y.(n) = s2 -1 Nk oR:'- oCs·n), s,n ES , 

j=l J J n ,~-k,~ 

where the disk polynom-ial ~,l is defined in terms of Jacobi polynomials 
P(a,13) by 

n 

Pk(~~lk-ll)(2r2-l) 
Cl iq> t'-(.. 

Rk, 0 (re ) := I I ~ P(a, k-l ) (1) 
kA.l 

I k-l I i(k-l) <I> r e . 

(f) If Fis a bihomogeneous polynomial of bidegree (k,l) on tn then 

w 2· 
F ( z) = t I z I J Y . ( z) with Y . E Hk . o •• 

j~O J J -J ,~-J 

THEOREM 3.5. The space of Heisenberg harmonics of degree m on H is spanned n 
by the functions 

(3.8) (a+l, f3+k) . I 12 
(z,t) 1+ Cl(m-k-l) (t+i z ) Y(z), 

where m-k-l ~ 0 and even and YE Hk,t· 

PROOF. First we show that the function (3.8) is a Heisenberg harmonic of 

degree m. Clearly, it is a H -homogeneous polynomial of degree m, so it is 
n 

left to prove that the function is L -harmonic. By (2.13) and (3.7) L Y = 
y y 

= O, where Y(z> t) := Y(z). · It follows from Corollary 2.3 and the_ biho-::,. 

mogeneity of Y that 



24 

O = L ((t-ilzi 2)-a(t+ilzi 2)-BY( z 2)) = 
Y t+i I z I 

= L ((t-ilzi 2)-a-l(t+ilzi 2)-B-~(z)). 
y 

By the left N-invariance of L and by (1.1) we obtain 
y 

0 = Ly((l+t-ilzl 2)-a-l(l+t+ilzi 2)-B-kyk,l(z)) = 

= L { I (-l)rC~a+l,B+k) (t+ilzi 2)Yk 1 (z)), t 2 + lzl 4 < 1. 
Y\r=O ' 

The result follows by use of (2. 15). 

Conversely, let F be a Heisenberg harmonic of degree m. Then F must be 

a linear combination of functions 

r (z, t) 1-+ t F(z), 

where Fis a bihoruogeneous polynomial of degree (p,q) and 2r+p+q = m. Hence, 

by Prop.3.4 F must be a linear combination of functions 

r 2s ( z, t) J+ t I z I Y ( z), 

where YEH and 2r+2s+k+l = m, i.e., 
k,l 

F ( z, t) = I 
k,l 

m-k-l~O 
and even 

2 
I. fk O , , ( t , I Z I ) yk o • , ( Z) , ,.(.,J ,.{__,J 
J 

where, for each k,l, the Yk o . . -s form a basis for Hk O and fk o.• is a 
,.{__,J '.{__ ,.{__,J 

homogeneous polynomial of degree ½(m-k-l) . Now, again by Prop. 3. 4 and by 

the U(n)-invariance of L, 
y 

2 
L (fk o, .(t, lzl )Yk o, .(z)) = y ,.{__,J ,.{__,J 

2 
gk 1 .. (t,lzl )Yk 0 •• (z) 

' ,J ,.{__,J 

for some homogeneous polynomial gk,l;j 

of degree ½(m-k-l)-1. Since L F = O, it follows that each of the terms in 
y 
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the right hand side of (*) is L -harmonic, so we are left to prove that, if 

the function (z,t) ~ f(t, lzl 2)Y1z) is LY-harmonic with YE: Hk,l' fa homo­

geneous polynomial of degree r, then f is unique up to a constant factor. 

We prove this by complete induction with respect tor. It is clearly true 

for r = 0. Suppose it is proved for degree (f) = r-1. Suppose f.(t,lz1 2)Y(z) 
a 21 

is L -harmonic 
y 

for i = 1,2, degree (f.) = r. Then-;- (f.(t, lzl )Y(z)) is 
1 ot 1 

L -harmonic of 
y 

there are>.,µ, 

degree 2r-2+k+l (cf. (2.13)), so, by the induction hypothesis, 
a not both zero, such that at (Af 1+µf 2) = 0. Hence 

2 2 U 
H 1(t, lzl )+µf 2 (t, lzl ) = clzl , 

so clzlUY (z) satisfies (3.7). Thus, by Prop. 3.4, c = 0. Hence f 1 and r,s 
f 2 are proportional. D 

4. THE HEISENBERG BALL 

4.1. The Dirichlet problem 

The region 

( 4. I) I 4 2 
:= { (z/t) E H I z I +t < I} 

n 

is called the Heisenberg ball. We are interested in the Dirichlet problem 

for L (±yln,n+2, •.. ) on the Heisenberg ball: 
y 

CX) 

For given fin C(clBH) does there exist a unique function u in C (BH) n 
__ n n 

n C(BH) such that 
n 

(i) L 
y u = 0 on BH, 

n 
BH? (ii) u = f on 

n 

For y = 0 the problem was solved by GAVEAU [8], who used probabilistic 

methods, and by JERIS0N [12], who used analytic methods. For certain y I 0 

the problem was solved by JERIS0N [13], to some extent. 
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In particular, we are interested in solving the Dirichlet problem by 

finding an explicit Poisson kernel P on B x aBH such that the desired 
Y Hn n 

solution u is expressed in terms off by 

(4. 2) u(z,t) = f 
aBH 

n 

f ( z ' , t 1 ) P -y ( z, t ; z ' , t ' ) ds ( z ' , t ' ) • 

This problem is still open for all y. 

Let us introduce "spherical" coordinates p,cp,E,; adapted to the 

Heisenberg ball by 

(4. 3) (z:, t) 
1 2 2n-l = (p sin 2cpt,;,p coscp), p 2 0, 0 ~ cp ~ TI, E,; ES • 

In terms of the coordinates p,cp,E,; the special Heisenberg harmonics 

(3. 8) take thi~ form 

(4. 4) ( ) m(. ,!,)½(k+l)c(a.+l,B+k)( icp)Y(i::) 
p,,cp,E,; • p sin't' ½ (m-k-l) e s • 

4.2. Green's formula for L 
y 

-
The differential operators Z., Z. (j = I, ••• , n) and T on H , defined by 

J J n 

z. a a := + l.Z. • J az. J at 
J 

(4 .5) 
- a a z. := - l.Z • , 

J a z. J at 
J 

T 
a := 
at 

, 

form a basis for the left invariant vector fields on H . L can be expressed 
n y 

in terms of these operators by 

(4 .6) L = -½ y 

n 

I 
j=l 

(Z:Z.+Z.Z.) + iyT. 
J J J J 

If we introduce real coordinates x., y. (j = 
J J 

I , ••• , n) , t by z. = x.+iy. then 
] ] J 



(4. 7) 
n 

L = -1 I 
y j=I 

a a a a [(- + 2y. -)(- +2y. -) + ax. J at ax. J at 

+ <-a- -
ay. 

J 

J J 

2 a)( a 2 a)J . a 
Xj at ay. - Xj at + J.y at 

J 

Hence L has principal symbol 
y 

(4.8) PL ((x+iy,t),(~,n,•)) 
y 

n 
= -! I 

j=I 

2 2 [(~.+2y .• ) +(n.-2x .• ) J, 
J J J J 

n n (x+iy, t) e: H , O;;, n,.) e: R x lR. x lR. , 
n 
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which shows that L is not elliptic. An associated bilinear form on vector 
y 

fields (~,n,T),(~',n',.') on H is defined by n 

(4. 9) ((~,n,.) I (~',n',.'))Hn I (x+iy,t) := 

n 
- l 1 

j=I 
[(~.+2y .• )(~!+2y .• ') + (n.-2x .• )(n!-2x .• ')J. 

J J J J J J J J 

Now let n be a nonempty open connected bounded subset of lR.n with smooth 

boundary and let v = (v ,v ,vt) denote the outward normal at a point of an 
X y 

in terms of the (x,y,t) coordinates. Write dx dy instead of 

dx 1, ••• ,dx dy 1, ••• ,dy • Let ds be the surface element on an. Let 
2 n I - n 

u,v e: c (n) n c (n). Let 

au au , ... , ax , ~ 
n I 

Then Green's foPmUla for L reads: 
y 

(4. IO) J (uL v-vL u)dxdydt = 
y -y 

, ... , au au 
~,at). 

n 

= J [u(Vvlv)H - v(Vu lv)H + iyuvvt]ds 
an n n 

(cf. GAVEAU [8, Corollaire apres Lennne 4] if y = O). 

Let us rewrite the right hand side of (4.10) in terms of spherical 

coordinates in the case n = p BH. Then: 
n 
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(4. 11) I 4 ,-1 4 
V = V (p ) V (p ) , 

( 4. 12) 

2n-l (d~ surface element on S ), 

I 4 I I 12 t au au au (Vu V (p ) ) H = - z l (~ -a - + yk -a - + 2t a) + 
n k ~ yk t 

\ au au 
- t t (yk a~ - ~ ayk). 

Define 

(4.13) 
au a ie aa <z,t> := aa u<e z,t> le=o· 

Then: 

(4. 14) 

Hence, (4.10) takes the form 

1T 

(4. 15) I f [psinH-u av + V au) + 
2 -1 ap ap 

0 S n . 

(uL v-vL u)dxdydt = ¼P 2n 
y -y 

( av au) 2 . J( . )n-ld d + COS~ U a0 -v a0 + 1y COS~ UV S1n~ ~ ~. 

Now apply (4.15) to the case of two Heisenberg harmonics of type (4.4): 

where O ~YE Hk,l" Then we obtain 

1T 

f ((-m'+m)sin~ + i(y+l-k)cos~). 

0 



• (sin~)n+k+l-IC(½(n+y)+l,½(n-y)+k)(ei~). 
m 

• c<j(n·-y)+k,Hn+y)+l)(ei~)d~ = O. 
m 

29 

By application of Carlson's theorem (cf. TITCHMA.RSH [20,§5.81]) we conclude 

that: 

'JI' 

(4. 16) J ((-m'+m)sin~ + i(a-8) cos~)(sin~)a+B-l • 

0 

Re(a+B) > 0. 

Unfortunately, this does not provide a biorthogonality for the functions 

C~a,B) since the weight function depends on m,m'. Only in the case a= 8, 

(4.16) reduces to the orthogonality for Gegenbauer polynomials (cf. (1 .9)). 

Formula (4.16) was also obtained by Dunkl (personal communication, un­

published). 

4.3. Remarks on the Poisson Kernel 

In [9] the spherical harmonics on H1 and the functions C~a,B) were 

derived in an attempt to construct the Poisson kernel for L on BH. 'l'his 
y 1 

is analogous to the construction of the classical Poisson kernel in the unit 

ball in E.n. The next step is to obtain orthogonality rela~ions among the 

C~a,B)_s. This we have not been able to do yet. For instance, L2(sn-l) 

splits uniquely into a direct sum of O(n)-irreducible subspaces (spaces of 

spherical surface harmonics of a fixed degree), while L2(BH) contains 
n 

each irreducible representation of U(n) occurring on some flk,l' countably 

many times (cf. (4 .4) and Theorem 3.5). Furthermore, an application of 

Green's formula shows that the classical spherical surface harmonics of 

different degree are orthogonal, while in the Heisenberg case we obtain 

(4.16) only. These difficulties probably have connection with the fact that 

there is no natural group acting transitively on the Heisenberg unit sphere. 

Another related fact may be that the equation Lu= AU probably does not 
y 

separate in any coordinates adapted to the Heisenberg ball. (However, ob-

serve that Lu= 0 does separate in the sense of [16, Definition 2.1].) y 
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A well-known method of obtaining the Poisson kernel for /J. on the unit 

ball uses the Kelvin transform, Green's formula and the fundamental solu­

tion. However, in terms of the coordinates p,~,s, formula (2.17) reads: 

( 4. I 7) 

Hence, in general we have 

and the method used for the unit ball fails here. 

Another way of deriving the Poisson kernel for /J. on the unit ball is 

to derive first a Poisson kernel for each O(n)-irreducible subspace of 
2 n-1 L (S ) separately and next to sum up all these kernels. The summands are 

easily found because fin an O(n)-irreducible subspace of 1 2(sn-l) is a 

spherical surface harmonic of degree n, which has an harmonic extension f 

to the ball given by u(x) := lxlnf(lxl-lx). Let us try to do the same for 

the Heisenberg ball. Suppose that the Dirichlet problem is solvable and 

allow some formal reasoning. Under the action of U(n) the space C(aBH) n 
splits into subspaces ck,l(aBHn) on which U(n) acts as on Hf {~.e,ck,l(aB11n) 
will be spanned by functions of the form (~,s) 1+ f(~)(sin~) ( )Y(s), 

where YE Hk 0 • By the U(n)-invariance of L, the L -harmonic continuation 
,-<- y y . 

to the interior of such a function will have the form 
( ) ( ) ( • ) ½ (k+l) ( ) H . f h d. p,~,s t+ uf,k,l p,~ sin~ Y s • ence, in terms o t e coor inates 

p,~,s and for functions fin ck,l(aBHn), formula (4.2) will take the form 

1T 

(4.18) u(p,~,s) = N I~ I J J f(~' ,s') 
k,l 2n-l O 82n-l 

• py;k,l(p,~;~')~~i<s·s')d~'ds'. 

{ sin~ \½ (k+l) 
\._sin~') 

Here we used Prop.3.4(e). The kernel P ·k O will have the property 
y, ,-<-

1T 

(4.19) J c<½(n-y)+l,½(n+y)+k)(ei~')p (p ~-~')d~' = 
m y;k,l ,o/,o/ o/ 

0 



= P2m+k+lc(½(n-y)+l,½(n+y)+k)(ei¢). 
m 
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Formula (4.19) defines Py;k,l if t~e functions¢~ ~a,B)(ei¢) are, in some 

sense, complete on [0,rr]. This 1.s, of course, true in the Gegenbauer case 

C~a,a)(y E 7Z and l - k =yin the case (4.19)). In view of (1.10) and 

(1.11) {C~a,O)} and {C~O,B)} are also complete: Mergelyan's Theorem (cf. 

RUDIN [18, Theorem 20.5]) states that every continuous function on 

{ei¢1o ~¢~~}can be uniformly approximated by polynomials in one complex 

variable. 

In section 5 we show that if P exists then the family 
y 

1.s dense for k,l E 7l and a= ½(n-y), 8 = ½(n+y). 

5. THE EXPANSION OF THE TRANSLATE OF THE FUNDAMENTAL SOLUTION 

Let \P be the fundamental solution of L at Oas defined by (3.1). By 
y y 

using the left H -invariance of L and the obvious identity 
n y 

we obtain 

\P (z,t) = \P ((z,t)- 1) 
y -y 

L (\P ((z',t')- 1(z,t)) = 0, 
y y 

L' (\P ((z',t')-1(z,t)) = O, 
-y y 

where (z,t) # (z',t') in both cases. Here L' means the differential opera­
-y 

tor L expressed in terms of the primed variables. The function 
-Y1 

\P ((•) (z,t)) is analytic in a neighbourhood of O ((z,t)#O) and can thus y 
be expanded in terms of L -Heisenberg harmonics. The expansion coefficients 

-y 
will be L -harmonic functions of (z,t) (lzl 4+t2 large). In fact, Dunkl 

y 
[3, Theorem 1.6] explicitly obtained these coefficients. He proved it by 

using an addition theorem for Heisenberg harmonics, which he first derived. 
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However, the coefficients depending on (z,t) can be recognized as Kelvin 

transforms of L -Heisenberg harmonics. This suggests a new and shorter 
y ' 

proof of Dunk.l's formula, which we will present now. 

Let K denote the Kelvin transform with respect to the (z,t) variables. 
y 

Then, by (2. 17): 

(5. 1) 

•~ ((z',t')-1( z 2, 
Y t+ilzl 

In this region~ is real analytic in z,t,z',t' and L -harmonic in (z,t), 
y y 

L -harmonic in (z',t'). Also: 
-y 

(5. 2) 

For each k,l choose a basis {Yk,l;j} for Hk,l such that its restriction to 

s2n-l is an orthonormal basis. Then it follows by Prop.3.4, Theor.3.5 and 

formulas (3.5), (5.2) that 

~ (z t•z' t') = ~ ~ ~,l 
Y ,,, l l l 

m=O k,l=O j=l 
a • m;k,l 

• C(a+l,B+k)(t+ilzl2)Yk n •• (z) • 
m ,~,J 

• c<B+k,a+l) (t'+ilz' 12)Y .(z') 
m k,l;J ' 

for certain coefficients a ·kl (not depending on j). This expansion ab­

solutely and uniformly con:;r;es for sufficiently small (lzl 4+t2)(1z' 14+(t'r). 

It follows from (2.17) that 
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£:(w,s) 

Hence 

so 

(5 .3) 
oo oo N 

-1 -2n \' \'k 0 
cp, ((z',t') (z,t)) = p }: l l ,-<-- b 
y m=O k,l=O j=l m;k,l 

-2m-k-l i (-y+l-k)<t> ( . ,i,) ½ (k+l) C (B+k,a.+l) ( i<t>)Y ( ) 
• p e sin~ e k o • ~ • 

m ,-<--;J 

where 

b = (-l)m+k-l ½iy1r 
k O e a ·k o. m; ,-<-- m, ,-<--

Now we have absolute and uniform convergence for sufficiently small p 1 /p. 

Let u be a L -harmonic function on pBH of the form 
-y n 

u(z,t) := f(jzl 2,t)Y(z), 

where Y is in Hk l with 1 2-norm 1. Then, by Prop.3.4, f is a C00-function on 

{(x,y) lx2+y2 ~ p: x 2 O}. Let v(z,t) be given by the left hand side of 

(5.3) with lz' 14+(t') 2 < p4 . Apply Green's formula (4.15). We obtain 

(5 .4) 

where 

00 

u(z',t') = }: 
m=O 

c (p'/p)2mc(B+k,a.+l)(ei<t>')Y(z'), 
m m p' < p' 
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(5. 5) 

0 

• [sin~(p ;p +2(n+m+k+l))+2i(y+k-l)cos~] f(p 2sin~,p 2cos~)d~. 

Convergence in (5.4) is still absolute and uniform for p' sufficiently 

small. If we make the particular choice 

then, obviously, 

2m 
c = o ,p • m m,m 

Hence (5.5) yields 

,r 

0 = 1b f c<B+k,a+l) (ei~)c<B,+k,a+l) (ei~) • 
m,m' 2 m;k,l m m 

0 
i~(-y+l-k) ( . )k+l+n-1[ ( , 0 ) • • ( o) J • e sin~ m+m +n+k+~ sin~+i y+k-~ cos~ d~. 

By applying again Carlson's Theorem (cf. TITCHMARSH [20, 5.81]) in the­

case m Im' and by applying (1.14) in the case m = m' we obtain for all 

a,B in C with Re(a+B) > 0: 

(5 .6) 

0 

• [(m+m'+cx+B)sin~+i(a-B)cos~]d~ = 

e½i(B-a),rirr(a+B)(a+B) 
m = 2 0 ,. 

2a+B- r(a)r(e)m! m,m 

This formula was also obtained by Dunkl (personal communication, unpublished). 

Like in (4.16), the weight function depends on m,m'. Only if a= B this de­

pendence on m,m' can be divided out. Formula (5.6) with m-m' even is a 

special case of (1.14). 

Formula (5.6) with m = m' yields the value of b ·k O in (5.3): m, ,~ 
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(5. 7) 
b - 2n+k+l-te½i(y+k-l)nr(S+k)r(a+l)m! 
m;k,l - n(m+k+l+n-1)! • 

Formula (5.7) together with (1.11) implies that, for each k,l,j and for each 

e > 0 them-sum in (5.3) converges absolutely and uniformly if p'/p ~ 1-e. 

By combination of (5.3) with Prop.3.4(d) we get 

(5 .8) 

with convergence of them-sums as above. This formula coincides with DUNKL 

[3, Theorem 1.6]. 

Now we turn to the completeness question. First we have the interesting 

result: 

THEOREM 5. 1 • Let u be a L -harmonic funation on BR whiah behaves under 
Y n 

U(n) as the irreducible representation of U(n) on Hk,l" Then the expansion 

of u in te:rms of Heisenberg 'harmonies absolutely and unifoPmly aonvepges 

on eaah aompaat subset of BR. n 

PROOF. Apply (5.4), (5.5), (5.7). 0 

THEOREM 5.2. Suppose that the Dirichlet problem for L on BR is solvable 
y n 

for some y and n. Then, for eaah k and for eaah continuous function g on 

[O,n] there is a sequence g1,g2, ••• , of finite linear combinations of func­
tions$+ t(a+l,S+k)(ei$) suah that 

m 

lim lg($)-g.($) l(sin$)½(k+l) = O. 
j-+<x> J 

PROOF. The function f defined by 
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(O #YE Hk,l) is continuous on aBHn· Suppose that Y(t0) = 1 for some ~O 

in s2n-l. Let u be its L -harmonic continuation to~ • Then, by Theorem 
Y n 

5 .2, 

with absolute and uniform convergence for pin compact subsets of [0,1). 

Let e > 0. For some p < 1 we have 

lf(~,~)-u(p,~,~) I < ! e for all ~,~ 

and for some M we have 

Hence 

• 

Since GAVEAU [8] and JERISON [12] showed the Dirichlet problem to ~e 

solvable for y = 0 this shows: 

COROLLARY 5 • 3 • 

is dense in (sin•) la-Bl C([O,~J) with respect to the uniform norm if 

a-8 E 7l and a A 8 E {½, 1, 3/2, ••• }. 

This was earlier conjectu~ed by Dunkl (personal communication). In 

a recent preprint JERISON [13, Cor.10.2] solves some version of the 

Dirichlet problem for L for certain nonzero values of y. Theorem 5.2 

applied to these cases !ill yield the completeness on [0,~] of the cia,B)_s 

for a larger set of parameter values a,8. 
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