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ABSTRACT

This paper collects a large deal of what is presently known about

spherical harmonics on the Heisenberg group and the related functions

Céa’s). It contains both new results and new approaches to old results.

éa,B) are

First, orthogonality properties and generating functions for C
discussed. Next a new approach to Kordnyi's Kelvin transform on the
Heisenberg group is given. After a treatment of Heisenberg harmonics, the
Kelvin transform is applied in order to obtain a new proof of Dunkl's ex-
pansion of the translate of the fundamental solution for LY. Finally it
is shown that, if the Dirichlet problem for L on the Heisenberg ball is

(a,B) .’
k

solvable, then the related functions C form a complete system.
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0. INTRODUCTION
. . . . . (a,B) , 18
This article is concerned with the functions 6 v (e™ ),

a,B ¢ €, k=0,1,2,... and 0 <6 < m, defined by the generating function

(o]

.1 (1mre ™ (e = 7 B 1Y),
k=0

IEOL,B)__S comes from the Dirichlet

The impetus for the study of the C
problem for a class of second order differential operators, LY’ on the
Heisenberg group Hn' Hn has underlying manifold ¢" x R and the non-abelian
multiplication
(0.2) (z,t) (z',t") = (z+z',t+t"+2Im z-2"),

?=1 zjzj. With this group law the groups

Hn form the simplest class of non-commutative nilpotent Lie groups. Define

where z = (Zl""’zn) and z-z' := 2

_3 .= 2 o
(0.3) Zj i= sz + 1 zj YT j i,...,n.

{Zl,...,Zn,Zl,...,zn, g%& is a basis for the Lie algebra of left-invariant

vector fields on Hn' Set

(0.4) LY = -4

[[Rngr¥=]

= . ]
L (Zij+Zij) + 1y 3E °
LY is left-invariant with respect to (0.2) and invariant under the natural
action of the group U(n) on the z-coordinates. Given R > 0 one introduces
the dilation R: (z,t) > (Rz,th). Then L is homogeneous in the sense that
LY(fOR) = RZ(LYf)OR for any smooth functzon f.

LY is not elliptic. Nevertheless, FOLLAND [5] (for y=0) and FOLLAND &

STEIN [6] showed that LYhas a fundamental solution at any u in Hn:
(0.5) L(u)® (v_]u) = § u,v ¢ H , #y # n,n+2,...

Y ¥ (€2 M n’ = ? 2o
where

(0.6) 0 ((2,0)) = cy(|z|2+it)—%(n—Y)(Izlz—it)_%(n+Y)



for some constant cY.
There is a great deal of similarity between LY on Hn and the usual
2
Laplace operator, A := Z?=l Bz/axj on R® (cf. [91). To deepen the analogy

we say that f is H-homogenous of degree k if
2 k
0.7) f(Rz,Rt) = R f(z,t), R > 0,
and that f is LY—harmonic if
(0.8) L £ =0.
Y

If +y # n,n+2,n+4,... Ly—harmonics are real-analytic. This follows from the
analyticity of @Y away from the origin. Hence an Ly—harmonic has a conver-
gent power series expansion near the origin. In analogy with A we consider
the power series as a sum of H-homogeneous LY-harmonic polynomials. Such
polynomials were first described in [9] where the discussion was restricted

1
geneous polynomials of degree m uniquely splits as a direct sum of irredu-

to H,. DUNKL extended this to Hn in [3]. The space of LY—harmonic H-homo-

cible subspaces under the action of U(n). In spherical coordinates adapted
to Hn, the functions in these irreducible subspaces factorize and one of the

factors is a function Céa’s)

. Dunkl also expanded QY(V—lu) in a series of
H-homogeneous LY—harmonic polynomials in u whose coefficients are functions
of v, which are H-homogeneous Ly~harmonic functions near infinity, and
singular at the origin. This is in complete analogy with such an expansion
of the classical Newtonian potential, ]x—yl—n+2, in a double series of
spherical harmonics on R", which are Kelvin transforms of each other. It
motivated us to introduce an analogue of the Kelvin transform on H]. In-
dependently, KORANYI [17] introduced a Kelvin transform on Hn’ guided by
group theoretic motivations. Unfortunately, this transform does not operate
radially, thus there is no obvious way it can be used to solve Dirichlet's
4+t2 <13,

Using probabilistic methods GAVEAU [8] showed that the Dirichlet

problem for LY in the unit Heisenberg ball {(z,t) ¢ Hn l |z ]

problem for LO has a solution in the Heisenberg ball in Hn. An analytic
proof (also for certain LY) was later given by JERISON [12], [13]. Heuris-

tically this result suggests that, by restricting the H-homogeneous LY—



harmoni¢ polynomials to the surface of the unit Heisenberg sphere one ob-
tains a "complete'" system of functions. More precisely, introducing spheri-

cal coordinates adapted to Hn’ we are interested in the "completeness" of
(o,B) , 16

ko Vo, 1,2, ... .
-s on Hn are the analogues of the Gegenbauer polynomials on R .

the system {6 = C on (0,m) (see [9]). We note that

that the Céa’s)
Finally, a short outline of this article is in order. Section 1 dis-

cusses analytic properties of the Céu,B)

-s, integral representations, bi-
linear generating functions, and orthogonality on [0,2w], originally found
by GASPER (see [7]). Section 2 is devoted to a discussion of the Kelvin
transform on Hn (in a way which is even more group theoretical and less
computational than in Kordnyi's approach), while in sections 3 and 4 we
calculate the LY—harmonic polynomials and discuss Dirichlet's problem.
Finally, in chapter 5 we expand @Y(v_lu) in a sum of products of harmonics
near zero and of harmonics near infinity by the use of the Kelvin trans-
form. This yields a new proof of Dunkl's expansion. Next, knowing that the
Poisson kernel in the Heisenberg ball exists for LO’ we show that its
spherical harmonics are dense in the class of continuous functions on the

surface of the unit Heisenberg ball.

Acknowledgement. We want to thank C.F. Dunkl and M.E.H. Ismail for giving
us access to unpublished results and permission to use these results in

our paper.
1. ANALYTIC PROPERTIES

1.1. Definition of the functions Céa’B)

For complex a,B the functions Cia’s) (k = 0,1,2,...) are defined by

the generating function

T e B S B e (O TR A P E LTI

k=

It follows immediately that

k o), _.(B). , . .
(1.2) @ = e e e, e

i=0



@5 &5 1504

. k
(a,B) 14y _
N e R R =11

3=0

¢ € R.

Here we follow GASPER's [7] notation. GREINER [9], who first introduced
these functions, denoted them by Hi’n(aam,n,keZZ,kEO). On comparing [9,

(8.7)] with (1.1) we find

C(-(a-l)/2,n+(a-l)/2)(ei¢)’

>0
. k ’
(1.4) 1™ 1) = .
Cl(c-n-(a-l)/Z,(oc-l)/2)(e1¢), <o.
From (1.3) we obtain:
(1. B ety = e P e,
(1.6) Céa’B)(ei¢) = Cés’a)(e_l¢) = Cés’a)(el¢) = Céa,B)(e_i¢)’
. (a) s .
(1.7) cl((“’S)(eld’) = k!k e 1k"’2F1(-k,s,1—a—k;e21¢)(a¢o,—1,...,—k+1)
®, . N
= T-k* elk¢2F1(-k,a;l-B-k;e 210y (840,-1, ..., =k+1),
(at+B)
(a,B) _ k
(1.8) Co (D) =
Special cases are
(a,0) , i¢y _ .0
(1.9) Ck (e77) = Ck(cos¢),
where Ci denotes a Gegenbauer polynomial,
. (a) s
(1.10) ci""o)(eld’) - e ko
. ®, .
aan ol ety = ke,

Finally, by (1.3) and (1.8) we have:



al+181),

(&,B)(eifb)l < Clglal’lsl)(l) = = = 0(kla|+|61—1) as

(1.12) lck

k > o,

1.2. Orthogonality properties

In this subsection we give a new proof of GASPER's [7] orthogonality
for the functions Céa’B) and we show that there is some more freedom in
the choice of the weight function. In the special case B = a + | we get an

orthogonality which was earlier obtained by ASKEY [2].

LEMMA 1.1. Let a,B € €, Re(a+B) > 0, k € {0,1,2,...},£ ¢ {~k—1,-k+1, ...,
k-1,k+1}. Then

o
(1.13) J clﬁ“’s) (1) 1B O o yatBlyy o
0

13 -
] o2i(-a+s ])"nr(a+3+k) . .
20"+B_1T(B)I'(Ot+k+]) /E,"'k"l

e%i(—a+8+l)n

T (a+B+k)
T'(a)T(B+k+1)

$

2a+8—1 L, k+1"

PROOF. Let I denote the left hand side of (1.13). Then, by (1.7):

1s -
e21-'"(a+8 1)(a)k m 2i¢
I = 2a+8-1k. J 2Fl(—k,B; I-a=k;e V)
‘ 0

. ei(ﬂ—k-2a+l)¢(l_e2i¢)a+8—ld¢ -

e%in(a+8—2)(a)k(0+)

B, oF 1 (ks B3 1-a—k;2) :
27 "k, 1

. z%(ﬂ—k-l)-a(]_z)d+3‘ldz (O<argz<2m).

Substitution of the Rodrigues type formula

_ . . \ TR _ ___L___ il.k y+k . 8+k
2F]( k,k+y+8+13y+13z)z' (1-2) (Y+])k (dz) [z (1-2) ]



(cf. [4, 10.8(10),10.8(16) 1) yields

. . (0+)
. e%lﬂ(a+8—2)(_l)k J (Ji)k[z_a(l_z)
otB. , dz
2 k' 1

o+B+k—1

].

1 -
. z2(k+£ 1)dz.

Repeated integration by parts yields I = 0 if £ = —k+1,-k+3,...,k-1. If
£ = -k-1 then

, (0+)
e

I =
o+B

dz,
2 1

which can be evaluated by [4,1.6(9),1.5(5),1.2(6)]. Finally, the case

£ = k+1 follows from (1.13) for £ = k-1 by the transformation of integra-

tion variable ¢ - w—¢ and by (1.5), (1.6). 0

PROPOSITION 1.2. For complex c],cz,a,B with Re(a+B) > 0 let the weight

function w be defined by

w(¢) = w(p+m) := ei(B_o")cb(cleiq)+c2e_i¢))(sind))clﬂa_1

s 0 < ¢ < m.
Then, for nomnegative integers k,L:
2m

(1.14) J Cﬁu’s)(ei¢)céa’8)(ei¢)w(¢)d¢ -

0 .
(1 2\ LB L aai)

= - §
\B+k —a*k/ o*B=2. (3 r gyt

k,2°

PROOF. Because of (1.5) it is sufficient to evaluate the integral at the
left hand side from O to 7 for k-£ even. This can be done by the use of
(1.3) and (1.13). 0

GASPER [7] showed that
™
J 00 B) (M) HEHETO 500y 0¥ gy < g
0

for £ = -k+2,-k+4,...,k-2, which is implied by our formula (1.13), and next



he derived the case ¢, =y of Prop.l.2.

PROPOSITION 1.3. If Re(a+B) > 0 then

™
(1.15) J eik¢céa,8)(ei¢)e—LK¢CéB—l,u+])(ef1¢)el¢(8—a“l)(Sin¢)a+3-ld¢ _
0

Lin (- -
ezl'ﬂ'( a+B l)ﬂr(a+8+k) 5

T'(a+1)T(B)Kk!

20L+B—1 k,L °

PROOF. If k > £ then substitute (1.3) for Cés_l’a+l)(e_l¢) and apply (1.13).
If k < £ then make the change of integration variable ¢ » m—¢ in (1.15),

substitute (1.3) for Ck and again apply (1.13). [

COROLLARY 1.4. If o > -} then

m
(1.16) I eik¢céa,a+])(e1¢)eLﬂ¢Céa,a+l)(el¢)(sin¢)2a d
0

I (20+k+1)

= — 8
27T (a+1)T(a+])k!

k,Z’
PROOF. (1.15) with B = a+l. [

Formulas (1.15), (1.16) were given by ASKEY in [2] and [1], respective-
ly. Note that (1.15) and (1.16) give a biorthogonality respectively orthog-
lk¢C(a’B)(el¢) on (0,m) and that (1.14) gives

an orthogonality for the functions ¢ & Céa’s)(el¢) on (0,27). However, what

onality for the functions ¢ b e

would be needed for the applications we have in mind and what is unfor-
tunately unknown is a (bi)orthogonality for the latter functions on (0,m).

Formula (1.13) implies yet another orthogonality:

PROPOSITION 1.5. Let Re(a+B) > 1. Then, for £,m € {0,1,...,k}:

™
(1.17) J (sing) c{0FEE ) (e19) (sing) e (HEID) (1¢)
0

o (sin¢)a+8-2ei(8_a)¢ d(b =

li(a-
ezm(B Ot)(oc+8+217_)k_17_1rI‘(orl'8+2£—l)
2a+3+2£—2

Sp
(k=£) 'T (a+2) T (B+L) o



PROOF. In the case £ # m apply (1.13). In the case £ =m (1.13) can also be

used in order to rewrite the left hand side of (1.17) as

™
C(a+'€9 B+’e) (1) C(O-""E’B""E) (eid)) (sin¢)a+6+2'e—2ei(B—a—k+£)¢d¢ .
k—-L k=L
0

By (1.7), (1.8) and [4,1.5(29)] this becomes

e%iﬁ(B-a)(a+6+2£)kﬁ£(3+€)k_£nf(a+8+2£‘l)
2a+3+22—2

(k=€) " (k=£) ‘T (a+L) T (B+L)

. 2F1(—k+£,—6-£+1;—8-k+1;1).

Finally apply [4,2.8(46)]. [

The above proposition tells us that the functions ¢ & (sin¢)£C£fz£’B+£)

(el¢) £ =0,1,...,k) form an orthogonal basis on [0,n] for the space of
trigonometric polynomials f of degree < k satisfying f(¢+m) = (—l)kf(¢).

1.3. Integral representations

ISMAIL [11] derived the following Laplace type integral representation:

3

(a,B) , id
S (e”) _ _T(a+B)
Céd,B)(]) I'(a)T(B)

(1.18) J (cos¢+isin¢cosw)k9

o

. (sinéw)za—l(cos£w)28_ldw, Re a > 0, Re B > 0.

For the proof note that

(cos¢+isin¢cosw)k = (ei¢coszéw+e_i¢sin2%¢)k,

write down the binomial expansion of the right hand side, use the beta in-
tegral and apply (1.3).

More generally we have

n
(1.19) F%é%%%%? J (cos¢+isin¢cosw)k Péa~l’s_])(cosw) .
0

. (sin%w)zu-](608%¢)28_1d¢ =



k!(d)K(S)E
= ZETE:ESEIZ-(2131n¢)

(a-1,B8-1)

(a+£ B+£)( i¢)’ Re a > 0, Re B > 0,

where P is a Jacobi polynomial. For the proof substitute the
Rodrigues type formula for the Jacobi polynomial into the left hand side of
(1.19), perform integration by parts and reduce to (1.18).

From (1.19) we obtain the Jacobi series expansion

(1.20) (cos¢+isin¢cosq))k =

k  (28+a+8-1)k" (a+B)

- E K (u*ﬂ B+L)
poo Era+B=1) (o+B)

(2ising)"C (e i¢)Péa_]’s_]2(cosw).

k+L
For o = B these three formulas reduce to well-known formulas for Gegenbauer
polynomials.

Because of Prop.l1.5, the right hand side of formula (1.20) can be viewed
as a double orthogonal expansion of the left hand side, with respect to the
measure (sin¢)a+e_2ei(6-a)¢d¢ on (0,m) in the ¢-variable and with respect
to the measure (sinéw)za_l(cos%w)zsmldw on (0O,m) in the y-variable. Hence,

by (1.17) the following formula is also an integrated form of (1.20):

2a+ R-2
T

.. k
Tin (cos¢+isingcosy)

(1.21)

™
T (a)T(B) J
(B=a) T (a+B-1)

C(Ez‘es B""e) (ei¢) (sin¢)a+8+£—2ei(6_a)¢d¢ =

(‘k)z(a+3'1)£

Péa_]’e_l)(cosw).

et , @),
A Mehler-Dirichlet type integral representation
_; oCa,B)  id
22y GiG0¢ Ging) T G T te )
) T (0+8) C(a,B)(])
k

4 o1 B-1
- J (sin(¢-6))"  (sin®)”  _i(k+}(a+B)) (26-¢)
(o) r(g)

de,
0
0<¢<m, Rea >0, Re B >0,

can be derived from (1.18) as follows. First make the substitution



10

z = cos¢+isingcosy in (1.18), next deform the contour to an arc from el¢ to
e—i¢ —i¢e216

(1.3): the role of k and ¢ is interchanged. Reduction to the case a = 8

and finally put z = e . Note that, in a sense, (1.22) is dual to

again gives a familiar formula for Gegenbauer pulynomials.

1.4. Bilinear generating functions

Appell's hypergeometric function F, is defined by the double power
P 1

series
@ (@)_, (B)_(B")

(1.23) Fl(asB,B'9Y;XsY) = z ($;n m?nt = mens y # 0,-1,-2,...,
m,n=0 m+n

which converges for [x|,|y| < 1. By the integral representation [4,5.8(5)],
valid for Re o > 0, Re(y-a) > 0, the function F (a,B,B' ,Y, .».) has an ana-

lytic continuation to a one-valued function on {(x,y) e € lx,y ¢ [1,o)}.

LEMMA 1.6. If Rey >0, z € €, |z| < 1 then

©  (3). o
(1.24) oo 2 o Bl et < (raeth Bz
k=0 Y72k
-i¢ id
° F](‘Y’aQBSZY; 2ze_i¢ 9 Zzei_qj )'
l1+ze l1+ze
PROOF. We prove (1.24) for z = r with 0 < r < 1. Then the general case

|z] < 1 follows by analytic continuation in view of (1.11). An easy calcu-

lation yields

) t
k T (y+}) 2_ 2,vy-1 2k
(1.29) “(Y'+'T"§>k - Fgry = e h T,
: -r

Thus, again in view of (1.11), the left hand side of (1.24) equals

1-2y L © .

r(y+1)r 2 2.y-1 2k (0,8) 10

TOTD J @p T L eTCy T e D,
-r

which, by the use of (1.1), can be written as

1y 12y L _ L -
TR J (P02 (14pe ™) ™ (14pe ) B

-r



By making the change of integration variable t = %ig this equals

2y-1 y . .

2 T (y+3) -i¢,-a i¢y-B

T (tTe ) (vre)
j (e(1-t)) " l{1 -t \ 0Lfl -t ——Eii—x_s dt
0 \ / \ 1+re ¢}

Now (1.24) follows by the use of [4,5.8(5)] and [4,1.2(15)]. O

Because of [4,5.10(1)], formula (1.24) can be simplified in the case
Y = 3(o+B):

® () o (@,8)
(1.26) kZO ?Z?EIEITTTE' 2k ' -

= (1+Ze_i¢)-a(l+zei¢)%(G—B)(l-zei¢)_%(d+8).

-i¢_ i¢
° 2F1<%(0L+B);a;a+8; ZZ(Ed) = )_iq) 'y
(1-ze ") (1+ze )/
Re(a+B) >0, z e €, |z| < 1.

Next we derive a bilinear generating function involving C(a’B)

the Gegenbauer polynomial CE.

and

THEOREM 1.7. If Rey > 0, z e €, |z| < 1 then

o cY (cos¢)
(1.27) ) (“ Bl iy kT F](v,a,s,ZY;
k=0 cY(l) :
. Zize—iesin¢ 21ze 31n¢\ 'i(9+¢))"d(l_zei(9‘¢))‘8

: 1-
e L, 1) 7

PROOF. We prove (1.27) for |z| < }

3. Then the more general case |z| < 1 will

follow by analytic continuation in view of (1.11). We will start the proof

with an additional parameter § (Reé>0) and, at a certain stage, we will put

§ = vy. It follows from (1.18), (1.11) and (1.1) that

11



12

Y k(@8 GO (y+8)
k.(a,B), 16, k - a,B) , i, T(y+$ .
Lo PO O (1) DR O
m
. J (cos¢+isin¢cos¢)k(sin%w)ZY-l(cos%w)zs—] dy =
0
= %%%;%%ES-J (l—ze—ie(cos¢+isin¢cosw))_a .

0

. (1-ze® (cosp+isinscosy)) B(sindv) Y T cos sy 287! ay =

= ?%é%%%%jx(1-ze—lecos¢)_a(l—zelecos¢)_8 .
) . .
J /1 ize—lesin¢cosw\_a{] izelesinq)cosw\_B

O i -— = - . °
0 \ 1-ze lecoscb / 1-ze" coso

o (singp) 2 Vcosyn) 267! qy =

= f%é%%%%i (l—zeﬁu%os¢)-a(l—zeiecos¢)_8 .

bt (u)k(B)K /ize_iesin¢ \k/ izeiesinq))K

k,£=0 ki \l—ze_lecos¢} \l—zeiecos¢
m

. J (coszp)kﬂi(sinélp)ZY_I(cos%w)zé-1 dy .
0

Now assume y = §. Then
T
j (cosw)k+£(sin%w)2Y_l(coséw)zY-]dw =
0

21721 (4 (k+£+1)) T (y)
T (1 (k+2+1) +y)

if k+£ is even,

0 if k+f is odd.

N

Hence, by [4,1.2(15)], the left hand side of (1.27) equals

(l—ze—iecos¢)_a(l-zelecos¢)_8.
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o (a)k (B)ﬂ (%)%(k+ﬂ) /ize_iesin¢ \k/izeiesin¢ \Z _

1 1 1 — . i =
ko4 (Y+2)%(k+£) \l—ze lecos¢/ \l-zelecos¢’

k,£=0
k+f even

ie

B

= (l-ze_ cos¢)—a(1—zeiecos¢)_ .

2P (B)£ (a)zpfz (%)P / —Zzsin2¢ \p .
L oto T DT GAD, \

~18

1—22cos¢cose+z2cosz¢
-3 1 92p—
. /eiefl—ze lecoscb\z\zK 2p
"—'o_——'—’ .
\ l—zelecos¢ /

By substitution of (1.3) this equals

. _ . L, €)) _2 .2 P
(1-ze leCOS¢) 0L(l‘zelefms‘b) : ) ( +1§ ( 2209 2 2 \ )
p=0 Y*2 p ‘1-2zcos¢pcosd+z cos ¢’/

. Céa,B)/eief}—zetiecos¢>%\_

P l-zelecos¢

Finally, substitution of (1.24) leads to the right hand side of (1.27). [J

COROLLARY 1.8. If Re(a+B) > 0, z € C, |z| <1 then_

3 (0+B)
0 .. C2 (cosd)
k. (a,B), 16 k
(1.28) ) zc (e =
k=0 X ¢z @*8) (1)

_ is _i¢ l(a—B) i
i} (l—zg:zg—:fa \2 (1-22cos(¢+e)+zz) 3 (a+B)
1-ze e /

. 2F1<%(a+8),a;a+8; 4zsingsind . \.
1-2zcos (¢+0) +z

PROOF. Use [4,5.10(1)]. O

REMARK 1.9. Formula (1.28) has the following significance. As will be ap-
parent later in this paper, the main obstruction to finding the Poisson

kernel for the Dirichlet problem on the Heisenberg ball is the fact that an

(a,B)(eie) to

explicit kernel for the transform sending Z:=O cka

) ckszéu,B)(ei¢) (lz]<1)
k=0
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is not available. Formula (1.28) gives an answer to a related question. Due

to the orthogonality property of the Gegenbauer polynomials it provides the

. °° 3 (0+B)
kernel for the transform which sends 2k=0 ¢ Cr (cos¢) to
I e (e 2B it
k=0 k k

REMARK 1.10. C.F. Dunkl (personal communication, unpublished) obtained a
dual formula to (1.26):

6 de,

™

J C;a,B)(ele)CI(lY,G) (e19)816(6—1r/2)sin)\'—1
0

=Y

+6 = A, expressed in terms of a balanced ,F, of unit argument.

with a+B 4F3

2. THE KELVIN TRANSFORM ON THE HEISENBERG GROUP

W. Thomson (Lord Kelvin) proved in 1847 the following fact: If U is

harmonic onZR3 then the function V defined by

V(x,y,2) := ar_IU(azr_zx,azr_zy,azr_zz)

- |
(r := /;2+y2+z2,a>0) is harmonic onZR3\{0} (cf. KELLOGG [14,p.232]). For
this reason the transformation U » V is called the Kelvin transform. In
looking at DUNKL's [3, Theorem 1.6] expansion of the translated fundamental
solution for LY on the Heisenberg group the authors of the present paper
conjectured, by analogy to the corresponding case for the Laplace operator,
that this double expansion involves, beside harmoncis on the Heisenberg
group, certain Kelvin type transforms of these harmonics, which should
also be Ly~harmonic. Indeed, in the case of LO on H1 we were able to give
the formula for the Kelvin transform explicitly. Independently, KORANYI
[17] obtained the Kelvin transform for general LY on a Heisenberg group Hn
of arbitrary dimension. He was guided by considering Hn as the nilpotent
factor in the Iwasawa decomposition of a noncompact semisimple Lie group G
and by looking at the action of the Weyl group of G on Hn. Thus he could
guess the general form of the formula for the Kelvin transform and by a cal-

culation he could next prove it.
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In the following we will present a proof of the Kelvin transform which
is even more conceptual and less computational than Koranyi's proof. We will
consider Hn as a boundary of a symmetric space and obtain LY as a limit case
of a Laplace-Beltrami type operator on this symmetric space. Thus L will
inherit the symmetries of the Laplace-Beltrami type operator. Y

As a side result we now have a canonical way of introducing L on Hn
for all vy, rather than only for y = n,n-2,...,-n+2,-n by an interpretation

using Db (cf. FOLLAND & STEIN [6,§5]).

For n = 1,2,... consider the group

G := {T e SL(n+2,C) | T*JT = J},

*
where J and T means

]
o—- O O
o H O
o O wni-

adjoint of T. Then G is a noncompact connected semisimple Lie group iso-
. . + . .
morphic to SU(n+1,1). The group G acting on c” 2 with coordinates

2 2 - . .
(WO,Wl,...,Wn+1) leaves the form |w, |"+...+|w,| _Im(WOWn+1) invariant.

1
The differential operator A on Cn+2 defined by

n
(2.1) A = - E —_—t 2 ——— - 2i
is G-invariant.

We now consider some structural facts about G (cf. HELGASON [10,Ch.6,

9] for general structure theory). Let

K := {T ¢ G | T(i,0,...,0,1) = e*®(,0,...,0,1)
for some real ¢} = S(U(n+1)xU(1)),
. s -s
A := {aS = diag(e”,1,...,1,e ) l s e R}~ R,
1 iz ...1z t+ilzl2
1 n
_ L 1 ¢ 2z
N := {nz,t = - 51 (z,t) € xR}
¢ ’ =

N 1 ZZn
1
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Then G = KAN <8 an Iwasawa decomposition of G. Note that

nz,tnz',t' = nz",t" with
(2.2) (z",t") = (z+z2',t+t'+2Im z.2'),
where z.z' := Z?=1 zj z.'. Thus N is isomorphic to Hn’ the Heisenberg group

of real dimension 2n+l.
Let M and M' be the centralizer and normalizer, respectively, of A in
G. Then

0 0
M= {mT = 0 T O T € U(n)}
0 0(detT) 2

-1
(note that (detT) %, and hence m, can assume two different values). Fur-
thermore, M is a normal subgroup of M', the Weyl group W := M'/M has order

two and M' = M u mWM'with

0 0 1
m = 0 I 0 .
W n
-1 0 0

Now G = MAN u MAN m MAN (disjoint union), a Bruhat decomposition of G.
Hence the action of G as a trausformation group is completely determined by
the actions of M,A,N and m .

Let N := m wa' A fact related to the Bruhal decomposition is that
NMAN is open and dense in G. If N is considered as NMAN/MAN, open and dense
in the flag manifold G/MAN, then G acts locally on N. Similarly, if NA is
considered as NAK/K = G/K then G acts on NA. We will construct a G-space
which includes the G-space NA as an open G-orbit and the G-space N as the
boundary of NA.

. n+2
Introduce new coordinates CO""’Cn+1 on C :

(j=0,]’~'-sn): C =W

&y < Wj/w n+l n+l

] n+l

°
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Write ¢ := (;O,gl,...,cn). Then the action of G on Cn+2, expressed in terms

of the new coordinates, takes the form

(2.3) g- (52 ) = (g.Tou(c,8)T ),

. n+l . . .
where the action of G on the g-space C is a group action and u is a
multiplier with respect to this action, i.e., a complex-valued function on

Cn+] x G satisfying

(2.4) u(c,glgz) = u(gz-z,gl)u(a,gz).

. + . .
The G-action on € : and p are completely determined by the data in the

following table:

g gz u(z,g)
) -}
m,, (zo,(detT) T.(Ty5-+252)) (detT)
2 -
aS (e Scosesc1’°--,esgn) e s
. 2 .. ¢vn —
nz,t (C0+t+1|z[ +21 yj=1 ;jzj,;1+;],...,;n+zn) 1
zC C
1 1 n
m (- T '——,°"’_—9 4
w CO EO CO 0
Table 1

In terms of the coordinates CO,...,Q
(cf.(2.1)) takes the form

the differential operator A
n+l

n 2 2 2
=2 v (_ 3 . 9 R
(2.5) A= ¢ | [ Z - — +2i., ——— 21T, =——| +
n+li Lj=1\ SCjagj J aCjaCO ] 3Cj3§0}
2 2 2
. = ) . = P P
+ 2i(g-ty) s + 2i¢ - 2ig —-————1ri-
0 ~°0 a;oacg n+l a;n+laco

o+l 3Cn+]3CO

Then, for a,B in € and f a smooth function on the g-space €n+1
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; -3 — —3—1.-0&-1A £
where
n 2 2 2
d . d . T 37\
(2.7) A = z /- —_— +2i . ——— =21 C. == +
. 9C.97. 9.9 3C.9d
a8 T o2\ dgTy j 3L;3t, i azgya,)
2
. = ] . 9 . ]
+ 21(§ =T ) —= +21 B — - 210 — .
0 °0 SCOBCO 3E0 BCO

For fixed g in G and for (g,;n+]) in En+1 x € write

(¢',z' ) :=g.(c,c__,).

n+l n+l

Let A' denote the operator (2.4) with Cj replaced by Cj’ and similarly

A .

a,fB

LEMMA 2.1. For smooth functions f on ¢n+1 and with ¢' := g.r, where g in G
18 fixed, we have

B0 iy ~g=1——— —a-1 \
(2.8) Aa’B(u(C,g) u(z,g) £(¢')) = u(z, g) u(c,g) Ao‘ Bf(a ).

PROOF. The G-invariance of A can be expressed by the formula

1 | - 1 \} 1
AF(z',z), ) = A'F(g',e) ).
Hence

1 Bz o - ~B—— -o
(*) A e Cpep £ =AMl Tl @Y.

The right hand side of (%) equals

v —B-l—— -a-1' '
(**) l_;n+1 n+1 A f(E )’

by the use of (2.6). The left hand side of (*) equals



19

B

B e i e E),

Az
by the use of (2.3), and, by (2.6), this can be written as

“B-lza=ly, B(u@,g)’BT(E,g‘)""f(c')).

() Cn+] n+tl "o,

Now formula (2.8) follows by (2.3) and the equality of (*%*) and (x*x). [J

1

i n+ 2 2
Let D ,:= {zc € € | 1z, ootz |7 < Imggl.

+

Then G acts transitively on D and the stabilizer of (i,0,...,0) in G is K.

n+l
= G/K. Also G acts transitively on 3D

Hence Dn+ U {~} and the stabilizer

1
of (0,...,0) in G is MAN. Hence 3D

n+l

Lap U (=} = G/MAN.

Introduce new coordinates (t,x,z

space Cn+] by

pe-s2) € R x R x ¢ on the ¢-

. 2
(CO,CI,..,CH) = (t+i(]z]| +x),zl,...,zn).

Write z = (zl,...,zn). Note that z € Dn+ = x >0; 17 € aDn = x =0,

1 +1
Also:
(2.9) (t+i(lz] %+x), 2 z)=n .a (i,0 0)
: S R ] z,t ilogx 2
(2.10) (t+i]z|2 z z) =n 0 0)
L4 b 1,"" n Z,t 3 b

This identifies Dn with NA and aDn with N = Hn and the local ac-

+1 +1
tion of G on 3D can be transplanted to H_.
n+l n
The operator Aa 8 expressed in terms of the coordinates L
takes the form
n 2
(2.11 A = {————a——- '_a_/ s ) _—‘ __?___\
) a,B ‘zl \" 3z,0z, = '3t \ZJ dz. ZJ 3z, ) *
J J ]
2 2 2
- |z|2 jL§-+ i(B-a) g%-— x(jL7-+ 117) + (n-a-B) g%
at ot ax
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If
(2.12) a = 3(n-y), B =i(n+y), vy eC.
then the restriction LY of Aa 8 to x = 0 will be a differential operator on
, -

3Dn+1:

n 2
- ik (o)

j=1 BZjBZj i 377

I RS

at2 ot

Now we obtain from Lemma 2.1 and Table 1:

THEOREM 2.2. For smooth functions £ on H and for g in G we have

(2.14) LY(u(z,t;g)_B 1(z,t38) © £(g.(2,t))) =

_B_]__—___ —Cy -

= iz t38) PG L ‘(LYf><g.<z,t>>,

where the local action of G and u are specified by:

g g.(z,t) u(z,t;g)
1 -1
m ((detT)’Tz, t) | (detT) 2
a_ (esz,ezst) ’ e—ZS
Dt g (z',t")(z,t) 1
. 2
m (t+iTzI2 , - t2+Tz]4> t+ilz]

Table 2
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In other words, LY is left Hn—invariant and invariant under the action

T. (z,t) = (Tz,t) of U(n),

(215 L (£Re,R%0) = RA(L ) (Ra,R7D)
and
2. -a,, (2. . -8B =z t \)
(2.16) L ((Izl +it) (lz]|T-it) "f y =
Y \t"‘ilZIz t2+lz|4 /}}

= (zt%in ™ (2110 P p{—2—, = 4) .
t+i]z| tT+| z|

We call the function K&f defined by

@1 KO0 = Qa0 el b P2, )
Y t+ilz] " t7+|z]

the Kelvin transform of f.

COROLLARY 2.3. If LYf =0 on Hn then LY(KYf) =0 on Hn\{(0,0)}.

3. HARMONICS ON THE HEISENBERG GROUP

Throughout assume (2.12) and +y # n,n+2,n+4,... . Define
(3.1) 0 (2,6) i= c (2l %ie) (2l i) 7",
where
(3.2) c, i= I(o)r(g) 2" 2L,

Then @Y is a fundamental solution of LY at 0 (with respect to standard

normalisation of Lebesgue measure):

3.3 Lo =
(3.3) y2y = 6

cf. FOLLAND & STEIN [6,86]. Actually, the fact that LY@Y = 0 outside 0
follows from (2.16). By the use of the analyticity of @Y outside 0
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and the left Hn—invariance of LY it now follows that LY is hypoelliptic
and real analytic hypoelliptic, cf. FOLLAND & STEIN [6,§7]. In particular
if £ is a distribution on an open subset of Hn containing O and if f is

LY—harmonic, i.e.
3.4 L £f=0,
(3.4) Y

then f is real analytic, so it can be expanded as a power series around

zero. Because of (2.15) this power series can be rearranged such that

(3.5) f

]
%MS
o

Hh

with absolute and uniform convergence in some neighbourhood of 0 and

where fm is a (solid) Heisenberg harmonic of degree m:

DEFINITION 3.1. A function f on H is called Hn—homogeneous of degree m
if

(3.6) £(Rz,R%t) = R%(z,t), R > 0.

DEFINITION 3.2. A (solid) Heisenberg harmonic of degree m on Hn is a poly-

nomial in zl,...,zn,z

Ly—harmonic.

se.+sZ_, t which is H_-homogeneous of degree m and
1 n n .

Because of the U(n)-invariance of LY and property (3.6), the class of
Heisenberg harmonics of degree m can be decomposed as a direct sum of sub-
spaces on which U(n) acts irreducibly. These subspaces were obtained ex-
plicitly by GREINER [9] in the case n = 1 and by DUNKL [3] in the general
case, later also by KORANYI [17] with a different proof. Here we will ob-
tain these subspaces in yet another way, somewhat related to Kordnyi's ar-

gument.

DEFINITION 3.3. The space Hk 2 of complex (solid) spherical harmonics of

bidegree (k,L) on ¢™ consists of all polynomials P in ZyseeesZos 1,...,zn,
homogeneous of degree k in the zj 's and homogeneous of degree E in the zj'

and satisfying

S
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n 2

(3.7 ] ——rp-=o.
j=1 92,02,
J 3]

PROPOSITION 3.4 (cf. KOORNWINDER [15], RUDIN [19,812.2]).

(a) The group U(n) acts irreducibly on each space Hk ) (k,£=0,1,2,...3 2f
n = 1 then, moreover, k or £ = 0).

(b) Representations of U(n) on different spaces Hk p are inequivalent.
b

«© LZ(Szn—]) ) k?ﬂ Hk,ﬂ | g2n-1
@ e, SRR
(e) If {Y],...,YNk,z} is an orthonormal basis of Hk,ﬂ | s 2n-1 then

j=1

where the disk polynomial Ri 2 18 defined in terms of Jacobi polynomials
Pia,s) by

(a’]k—'el) 2_
R (raldy o JkaL Cr =D k-2l _i-0)¢
k»s'e P(a,lk—zl)(l) :
kAl
(f) If F is a bilhomogeneous polynomial of bidegree (k,L) on c” then
kAL 2
F(z) = jZo |z] Yj(z) with Yj € Hk—j,ﬂ—j'

THEOREM 3.5. The space of Heisenberg harmonics of degree m on H 18 spanned
by the functions

((X,'he, B+k)

Loty (e¥ilzl?) Y(2),

(3.8) (z,t) » C

where m-k—£ > 0 and even and Y € Hk X

H

PROOF. First we show that the function (3.8) is a Heisenberg harmonic of
degree m. Clearly, it is a Hn—homogeneous polynomial of degree m, so it is
left to prove that the function is Ly-harmonic. By (2.13) and (3.7) LY Y =
= 0, where Y(z,t) := Y(z). It follows from Corollatry 2.3 and the biho-..

mogeneity of Y that



24

o
]

L ((e-ilzl D) ™ (erilz) ) Py (—2—) -
Y t+i| z|

Ly(<t—ilz|2>'““<t+i|z|2)'B'kY(z>>.

By the left N-invariance of LY and by (1.1) we obtain

o
]

L (aee-ilzlH ™ P el 21D Y @) -

LT T (i Dy, 6l 12l <
Y r k,L
r=0
The result follows by use of (2.15).
Conversely, let F be a Heisenberg harmonic of degree m. Then F must be

a linear combination of functions
r

where F is a bihomogeneous polynomial of degree (p,q) and 2r+p+q = m. Hence,

by Prop.3.4 F must be a linear combination of functions
T 2s
(z,t) » t |z]77Y(2),

where Y ¢ Hk 2 and 2r+2s+k+f =m, i.e.,

b

() F(z,t) = ) g
k,L i i
m-k—-£>0
and even

2
K;j(t’|zl )Yk,z;j(z)’

where, for each k,£, the Yk,ﬂ;j—s form a basis for Hk,ﬂ and fk,ﬁ;j is a
homogeneous polynomial of degree }(m-k-£). Now, again by Prop. 3.4 and by

the U(n)-invariance of LY,

L (£

vy k,43] (2)

2 _ 2
(t, |z )Yk,ﬂ;j(z)) = gk,ﬂ;j(t’[zl )Yk,ﬂ;j

for some homogeneous polynomial = £33
b 3

of degree }(m-k-£)-1. Since LYF = 0, it follows that each of the terms in
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the right hand side of (%) is L_-harmonic, so we are left to prove that, if
the function (z,t) v f(t,]zlz)Y¥z) is LY—harmonic with Y € Hk 2 f a homo-
geneous polynomial of degree r, then f is unique up to a cons;ant factor.
We prove this by complete induction with respect to r. It is clearly true
for r = 0. Suppose it is proved for degree (f) = r-1. Suppose fi(t,lzlz)Y(z)

3
Ly—harmonic of degree 2r-2+k+£ (cf. (2.13)), so, by the induction hypothesis,

is LY—harmonic for i = 1,2, degree (fi) = r. Then j%-(fi(t,lzlz)Y(z)) is

there are A,u, not both zero, such that é%-(lfl+uf2) = 0. Hence

2 2
A (e, 2l Dt (e, 121 = elzl %,

so clzlzzYr S(z) satisfies (3.7). Thus, by Prop. 3.4, ¢ = 0. Hence f] and
5

f, are proportional. [J

4. THE HEISENBERG BALL

4.1. The Dirichlet problem

The region

(4.1) B, = {(z0) e H_| lzl*t? < 1)
n n

is called the Heisenberg ball. We are interested in the Dirichlet problem

for LY(iy#n,n+2,...) on the Heisenberg ball:

) n

For given f in C(BBH ) does there exist a unique function u in Cm(BH
n

n C(B. ) such that
Hn

(1) L u=20on BHn,

¥

(ii) u=f on B, ?
Hp

For vy = 0 the problem was solved by GAVEAU [8], who used probabilistic

methods, and by JERISON [12], who used analytic methods. For certain y # 0

the problem was solved by JERISON [13], to some extent.
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In particular, we are interested in solving the Dirichlet problem by
finding an explicit Poisson kernel PY on B, x 9B, such that the desired
n n
solution u is expressed in terms of f by

4.2 u(z,t) = J f(z',t')PY(z,t;z',t')ds(z',t').

3BH

n
This problem is still open for all vy.

Let us introduce "spherical" coordinates p,¢,£ adapted to the
Heisenberg ball by

1 -
(4.3) (z,t) = (p sin2¢£,pzc08¢), p20,0<¢<m, g ¢ S2n 1.

In terms of the coordinates p,¢,E the special Heisenberg harmonics

(3.8) take the form

(k+L) , (a+l,B+k)

, .
(4.4) (0,0,8) > o"(sing) e TETE My (p) .

4.2, Green's formula for L

The differential operators zj,ij (j=1,...,n) and T on Hn’ defined by

SN SN
Zy = iz, *izy T,
= 9 . 9
4.5 3Z. 1= — - 1z2. — »
(4.3) ] sz ] ot
_ 9
T := 5t °

form a basis for the left invariant vector fields on Hn' LY can be expressed

in terms of these operators by

Nol=—

(4.6) L = -

o~

7:7.+2.7.) + ivyT.

If we introduce real coordinates Xj’ yj (g=1,...,n), t by zj = xj+iyj then
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v ) 5., 9 )
(4.7) LY = -4 'Z [(EET + 2yj 5;?(5;;‘+2Yj 5;? +

i=1 ] h|

9 _ .. By 9 _ 9. i 9

* (Byj 2% 30 (Byj 2x5 3P4+ iy 5¢ -
Hence LY has principal symbol
v 2 2
(4.8) P, ((x+iy,0),(€,n,m)) = -1 | [(g.+2y.1) “+(n,-2x., 1) ],
y =1 373 1773

(x+iy,t) € H ,(&,n,1) € R x R"x R s
n

which shows that L is not elliptic. An associated bilinear form on vector

fields (&,n,1),(&",n",t') on Hn is defined by

4.9) (&, | EnST Dy | iy, e

- 1
4

j

He~—p

] [(Ej+2ij)(€3+2ij') + (nj—2ij)(n3-2ij')].

Now let Q@ be a nonempty open connected bounded subset of R" with smooth
boundary and let v = (vx,vy,vt) denote the outward normal at a point of 3Q
in terms of the (x,y,t) coordinates. Write dx dy instead of
dxl""’dxndyl’i';’dyn' Let ds be the surface element on 3Q. Let

u,v e C°(Q) n C (Q). Let

Ju Ju du 8u>

Vu := (8u
et e 9%y T 9 A.. sesvses T 9 wi/) -
ox an ay1 Byn at

1

Then Green's formula for LY reads:

4.10 ul v=vL u)dxdydt =
( ) J ( y — ) dxdy
Q
= J [u(Vv]v)Hn - v(Vu Iv)Hn + iyuvvt]ds
of
(cf. GAVEAU [8, Corollaire aprés Lemme 4] if y = 0).
Let us rewrite the right hand side of (4.10) in terms of spherical

coordinates in the case Q = p BH . Then:
n
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4o -1 4
(4.11) v=|v0p)| V),
4, - 2n-2, . -
4.12) 1™ | las = 402" % (sing)™ asae
2n-1
(d¢ surface element on S ),
4 2 Jdu ou Ju
Gulvie )], =-lz]7 ) (x, =— + 7y, — + 2t =) +
H_ £ % ox_ 'k 3y ot
ou ou
-t) (v, =— =)
L Ve B *x 3y,
Define
du _ 9 i
(4.13) 56—(z,t) = u(e z,t)[e=0.
Then:
4 __3 . du 2 du
(4.14) (Vu[V(p ))lHn- p~ sing T + p~ cos ¢ 55 °
Hence, (4.10) takes the form
m
(4.15) J (ul v=vL u)dxdydt = %pzn j J Lpsing (-u LAZN v EE) +
. Y Y 2n—1 ap op
PBy 0Ss
n oV ou n-1
+ cos¢(u 38 Y 5§D+21Y cos ¢ uv](sing) d¢dg.

Now apply (4.15) to the case of two Heisenberg harmonics of type (4.4):

1 .
u(p,6,8) = p ™K (sing) 1D ((BHL0) Ty gy

T 1 1d . ——.
w(p,0,8) = p°™ ™ (ging) 8 (M0 B+ (1377

where 0 # Y ¢ H . Then we obtain
k,L

m
J ((-m'+m)sin¢ + i(y+£-k)coso).
0
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n+k+0-1 o (4 (n+y) +£, 4 (n-y) +k)
m

. (sing) it

1(n- 1 i
. C(?(n Y) +k, 5 (nt+y) +£) (e1¢)d¢ = 0.
m
By application of Carlson's theorem (cf. TITCHMARSH [20,§5.81]) we conclude
that:

a+p-1

(4.16) ((-m'+m) sin$ + i(a-B) cos¢) (sing)

O+——-3

- 0B (1B 104y = 0, Re(ars) > 0.

Unfortunately, this does not provide a biorthogonality for the functions
Céd,B) since the weight function depends on m,m'. Only in the case o = B,
(4.16) reduces to the orthogonality for Gegenbauer polynomials (cf. (1.9)).
Formula (4.16) was also obtained by Dunkl (personal communication, un-

published).

4.3. Remarks on the Poisson Kernel

In [9] the spherical harmonics on Hl and the functions Céu,B) were
derived in an attempt to construct the Poisson kernel for LY on BH . This
1

is analogous to the construction of the classical Poisson kernel in the unit
ball in R" . The next step is to obtain orthogonality relations among the
Céa’s)—s. This we have not been able to do yet. For instance, L2(Sn—l)
splits uniquely into a direct sum of O(n)-irreducible subspaces (spaces of
spherical surface harmonics of a fixed degree), while.Lz(BHn) contains

each irreducible representation of U(n) occurring on some Hk,ﬂ’ countably
many times (cf.(4.4) and Theorem 3.5). Furthermore, an application of
Green's formula shows that the classical spherical surface harmonics of
different degree are orthogonal, while in the Heisenberg case we obtain
(4.16) only. These difficulties probably have connection with the fact that
there is no natural group acting transitively on the Heisenberg unit sphere.
Another related fact may be that the equation Lyu = Au probably does not

separate in any coordinates adapted to the Heisenberg ball. (However, ob-

serve that LYu = 0 does separate in the sense of [16, Definition 2.1].)
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A well-known method of obtaining the Poisson kernel for A on the unit
ball uses the Kelvin transform, Green's formula and the fundamental solu-

tion. However, in terms of the coordinates p,¢,&, formula (2.17) reads:
_ —2n iy(w/2-¢) ., -1 -i¢,

(4.17) (KYf)(p,cb,E)—p e £(p sm=¢,e TTE).

Hence, in general we have

(KYf)(1,¢,€) # £(1,9,8)

and the method used for the unit ball fails here.

Another way of deriving the Poisson kernel for A on the unit ball is
to derive first a Poisson kernel for each O(n)-irreducible subspace of
Lz(Sn—]) separately and next to sum up all these kernels. The summands are
easily found because f in an O(n)-irreducible subspace of Lz(Sn_]) is a
spherical surface harmonic of degree n, which has an harmonic extension £
to the ball given by u(x) := lenf(|x|—1x). Let us try to do the same for
the Heisenberg ball. Suppose that the Dirichlet problem is solvable and
allow some formal reasoning. Under the action of U(n) the space C(aBHn)
splits into subspaces Ck,ﬂ(aBHn) on which U(n) acts as on Hk k,K(aBHn)
Y(&),

where Y ¢ Hk 2 By the U(n)-invariance of LY’ the L -harmonic continuation
3 .

: C
will be spanned by functions of the form (¢,£) » f(¢)(sin¢)§(£+£)

to the interior of such a function will have the form

)%(k+£)

Y(£) . Hence, in terms of the coordinates

(ps9,8) uf’k’ﬂ(pnb) (sing
p,$0,& and for functions f in Ck K(BBHn)’ formula (4.2) will take the form
9

T 1
‘ . 3 (k+2)
. I ¢ pry (sine ) :
(4.18) u(p,9,8) = Nk £|32n_1| i IZn—l £(o',€8") \sin¢'/
4 S

vypD—2 o ! 1 '
© P p (a3 R (ErE ) de dE"

Here we used Prop.3.4(e). The kermnel Py'k I3 will have the property
b ]
m

1 - 1 T
(4.19) J Cn(lz(n 1)+, (nty) +k) (el‘b )PY‘k’ﬂ(p,¢;¢')d¢' =

9’

0
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_ p2m+k+ﬂcéé(n-Y)+£,%(n+Y)+k)(ei¢)‘

) . . (a,B)
Formula (4.19) defines Py;k,ﬂ if the functions ¢ » Ck (e

i¢) are, in some
sense, complete on [0,n]. This is, of course, true in the Gegenbauer case
Céa’a)(y € Z and £ - k = v in the case (4.19)). In view of (1.10) and
(1.11) {Céa’o)} and {CéO,B)} are also complete: Mergelyan's Theorem (cf.
RUDIN [18, Theorem 20.5]) states that every continuous function on
'{ei¢|0 < ¢ < 7} can be uniformly approximated by polynomials in one complex
variable.

In section 5 we show that if PY exists then the family
£u+k,3+£)(ei¢)}

{omc k=0,1,...

is dense for k,£ ¢ Z and o = {(n-y), B = L(nt+ty).
5. THE EXPANSION OF THE TRANSLATE OF THE FUNDAMENTAL SOLUTION

Let @Y be the fundamental solution of LY at 0 as defined by (3.1). By
using the left Hn-invariance of L_Y and the obvious identity

a -1
Qy(z,t) = ¢_Y((z,t) )

we obtain

1oyl =
Ly(éY((z »t') (z,v)) =0,

' v 11 =
L_Y(QY((Z »t') (z,t)) =0,

where (z,t) # (z',t')Ain both cases. Here LLY means the differential opera-
tor L'I expressed in terms of the primed variables. The function

Qy((-) l(z,t)) is analytic in a neighbourhood of 0 ((z,t)#0) and can thus
be expanded in terms of L_ -Heisenberg harmonics. The expansion coefficients
will be LY—harmonic functions of (z,t) (Izl4+t2 large). In fact, Dunkl

[3, Theorem 1.6] explicitly obtained these coefficients. He proved it by

using an addition theorem for Heisenberg harmonics, which he first derived.
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However, the coefficients depending on (z,t) can be recognized as Kelvin
transforms of Lyéﬂeisenberg harmonics. This suggests a new and shorter
proof of Dunkl's formula, which we will present now.

Let KY denote the Kelvin transform with respect to the (z,t) variables.

Then, by (2.17):

G.1) v (z,e52',t") i= Ky(QY((z',t')_l(z,t)))= (| 2| 2+it) (2| 2-ie) 8.

-1 z t
o ((z',t") ( s = ) =
Y t+i|zl2 t2+|zl4

= cY(l+it|z'lz-it'|z|2+tt'+|zlzlz'lz—Ziz'-z)—a
. (1—it|z'|2+it'|z]2+tt'+|z|2]z']2+Ziz-z')_8,
(|z]4+t2)(]z'|4+t'2) < 1.
In this region WY is real analytic in z,t,z',t' and LY—harmonic in (z,t),
L_Y-harmonic in (z',t"'). Also:

(5.2) wY(RTz,th;R'sz',R'Zt'z) = wY(z,t;z',t'), R>0, TecU).

For each k,£ choose a basis {Yk 23 .} for H K, L such that its restriction to

SZn—l is an orthonormal basis. Then it follows by Prop.3.4, Theor.3.5 and

formulas (3.5), (5.2) that

© © N.
k,L
¥ (z,t3z',t") = ) ) YT a o,
Y m=0 k.£=0 j=1 Wikt

£,B+k . 2
C;é+ B+ )(t+1|z| )Yk,ﬂ;j(z)

(BHk,0tl) .y o | 1| 2o
Cm (t +1|z ‘ )Yk,ﬁ;j(z ),
for certain coefficients a mk, L (not depending on j). This expansion ab-
solutely and uniformly converges for sufficiently small (|z| +t )(Iz'[ +(t')").

It follows from (2.17) that
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£(w,s) = (Jw|2+is) ¥ (|w|%-is) B (K £) ¢

-W -S )
s+i|w|2 sz+|wl4
Hence
@Yc(z',t')"<z,t>> = (|2 %+it) (|2 %-i0) P .
© © N
D) zkﬁz a . Kik £(]z|2+it)'m"£(|z|2-it)'m‘k .
m=0 k,£=0 j=1 35
2,8+ k 2 k, g 2 e—————r
) cé“* B+ k) (_pvi|z] )Yk,z;j(z)0;8+ ) (g1t T 4,50
SO
(5.3) o ((z',t") Nz, 0) = p~ " E I ?k’ﬂ b g
Y m=0 k,£=0 j=I msk, £
. p'zm_k_ﬂei(_w{_km(sin¢)é(k"'ﬂ)clﬁs.*k’aw')(ei¢)Yk K..(E) .
L33
oy 2mkl L F (k) (B, ak) BT o
" (sing') c, (e )Yk,z;j(a ),
where

_ m+k-£ liyw
bm;k,ﬂ = D e am;k,ﬂ'

Now we have absolute and uniform convergence for sufficiently small p'/p.

Let u be a L_Y—harmonic function on pﬁHn of the form

u(z,t) := £(]2]%, 070,

where Y is in Hk 2 with Lz—norm 1. Then, by Prop.3.4, f is a C -function on
2 2 ’
{ (XQY) [x ty =

p, X =2 0}. Let v(z,t) be given by the left hand side of
(5.3) with lz']4+(t')2 < p4. Apply Green's formula (4.15). We obtain

©o

5.4)  ulht) = ] e o'/ Bt i hgEny o o,

m=0

where
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(5.5) ¢ = b ei(—y+£—k)¢(sin¢)k+£+n-lC;B+k,u£Z)(ei¢

m m3k, L ) -

Ow—————3

. [siné(p g%-+z(n+m+k+z))+zi<Y+k-z)cos¢] £(p2sing,p2cost)db.

Convergence in (5.4) is still absolute and uniform for p' sufficiently

small. If we make the particular choice
£(1212,0) o= B0 (eaigz)

then, obviously,

_ 2m
n = Gm,m'p *
Hence (5.5) yields
™
o1 (B+k,o+l) , id,  (B+k,a+l) , i¢
6m,m' - 2bm;k,ﬂ I Ca (e )Cm' (e™)
0

. ei¢(—y+£-k)(Sin¢)k+ﬂ+n'l[(m+m'+n+k+£)sin¢+i(y+k—£)cos¢]d¢.

By applying again Carlson's Theorem (cf. TITCHMARSH [20, 5.81]) in the-

case m # m' and by applying (1.14) in the case m = m' we obtain for all

a,8 in € with Re(a+B) > O:

(5.6) c(@>8) (eifb)cn(ﬁ,ﬁ) (ei¢)ei¢(8-a) (sin¢)°‘+8'1

m

o——3

[ (m+m'+a+B)sing+i(a-B)cos¢pldd =

13 -
e BT (448) (avp)_
- 5 .
29820 ()T (8)m! m,m’

This formula was also obtained by Dunkl (personal communication, unpublished).
Like in (4.16), the weight function depends on m,m'. Only if o = B this de-
pendence on m,m' can be divided out. Formula (5.6) with m—m' even is a
special case of (1.14).

Formula (5.6) with m = m' yields the value of bm in (5.3):

sk, L
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n+k+€—le£i(y+kf£)wr(3+k)r(u+£)m£
7 (m+k+L+n-1) !

2

(5.7) bm;k,ﬂ =
Formula (5.7) together with (1.11) implies that, for each k,£,j and for each
€ > 0 the m~sum in (5.3) converges absolutely and uniformly if p'/p < l1-g.
By combination of (5.3) with Prop.3.4(d) we get

©o

(5.8) o ((z',t") N(z,t)) =0 T (o'/p)
Y k,£=0

k+£ei(—y+£-k)¢ .

« (sing sin¢')%(k+£)|s

-1 -2
2n-1 Nk,!.R;,K(F"g) :

2mcé8+k,a+£)(ei¢)cés+k,a+£)(ei¢v)

(o]
L] b '
mzo sk, 2 P70
with convergence of the m—sums as above. This formula coincides with DUNKL
[3, Theorem 1.6].
Now we turn to the completeness question. First we have the interesting

result:

THEOREM 5.1. Let u be a LY—harmonic function on Bu, which behaves under

U(n) as the irreducible representation of U(n) on Hk 2 Then the expansion
b

of u in terms of Heisenberg harmonics absolutely and uniformly converges

on each compact subset of By .
PROOF. Apply (5.4), (5.5), (5.7). O

THEOREM 5.2. Suppose that the Dirichlet problem for LY on By 18 solvable
for some vy and n. Then, for each k and for each continuous function g on

[0,m] there is a sequence 812895+ s of finite linear combinations of func-—
tions ¢ - ¢£9*5’6+k)(e1¢) such that

1
lim ]8(¢)‘8j(¢)|(sin¢)2(k+£) - 0.
J—)OO

PROOF. The function f defined by

£(6,8) = g(®) (sine) €Dy (e)
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0 #Y € Hk K) is continuous on BBHn. Suppose that Y(éo) = 1 for some EO
b
in 2071, Let u be its LY—harmonic continuation to By - Then, by Theorem

5.2,

o . 1
w(p,8,8) = § e o’ LB (10 ( 2o50p) HEHDy

m=0

with absolute and uniform convergence for p in compact subsets of [0,1).

Let € > 0. For some p < 1 we have

|£(4,8)-ulp,9,8)| < § e for all ¢,¢
and for some M we have
I Z c psz(a+£’B+k)(el¢)] < {1 e for all ¢.
m=M+1 " n
Hence
M

lg(¢) - )

m=0

o p2m+k+£c(a+£,s+k)(ei¢)|

m m

ya k) g

(sing

Since GAVEAU [8] and JERISON [12] showed the Dirichlet problem to be

solvable for vy = 0 this shows:

COROLLARY 5.3.

Span{c;é’e)(ei')(sin-)'“_Bl}

[a-B|

18 dense in (sine) C([0,m]) with respect to the uniform norm if

OL—BGZ andd/\36{%,1,3/2,..-}.

This was earlier conjectured by Dunkl {personal communication). In
a recent preprint JERISON [13, Cor.10.2] solves some version of the
Dirichlet problem for LY for certain nonzero values of y. Theorem 5.2
applied to these cases will yield the completeness on [0,m] of the Céa’s)—s

for a larger set of parameter values a,B.
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