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Intertwining Functions on Compact Lie Groups I, Summary_of Results 

by 

Bob Hoogenboom 

ABSTRACT 

Let (U,K) and (U,H) be two Riemannian symmetric pairs of the compact 

type. An intertwining function on U is a left-K-, right-H-invariant function 

on U which is an eigenfunction of all left-U-, right-H-invariant differen

tial operators on U. Thus an intertwining function is a generalization of 

a spherical function. We give an outline of the proof that the intertwining 

functions on U may be considered as orthogonal polynomials with respect to 

a positive weight function, defined on a region in ]Rl. 

KEY WORDS & PHRASES: Inter-twining Function., Orthogonal Polynomials in 

one or more variables., representations of K,H- class I, 

generalized Cartan decomposition for a compact Lie 

group. 



INTRODUCTION 

As was proved by Vretare (cf. [Vre]), the spherical functions on a com

pact Lie group can be considered as orthogonal polynomial in several 

variables. The present work generalizes this result to intertwining func

tions. Roughly speaking, an intertwining function on a compact Lie group 

U is a spheirical function, but with the K-biinvariance (here (U,K) is a 

Riemannian synnnetric pair of the compact type) replaced by left-K-, and 

right-H-invariance (where (U,H) is another Riemannian synnnetric pair of the 

compact typ1e). 

Although the line of proof is roughly the same as the original proof 

for spherical functions (cf. [Vre]) , this generalization is far from a 

routine exercise; many complications of algebraic nature arise. This cor

responds to new phenomena, which arise when a complex semisimple Lie al-

gebra is studied with two connnuting involutions, instead of one. 

This work is planned to appear in a dissertation, University of 

Leiden, at the end of 1983. Here we present a sunnnary of the most impor

tant results. 

INTERTWINING FUNCTIONS 

Let g be a noncompact real semisimple Lie algebra, with complexifi

cation g . Let a be an involution of g, then there exists a Cartan involuc 

tion 0 of g such that ea= ae, cf. [Lo, p. 153]. Let g = k. + p = h + q be 

the decomposition of gin ±1 eigenspaces of e and a, respectively. 

k. 0 0 Put u. := + ip, then u. is a compact real form of g • Let u. = h + q be 
C 

the decomposition of u. with respect to a. Let G be a simply connected Lie 
C 

group with Lie algebra g. Let G, K, H, HO and Ube analytic subgroups of 
('_ 0 

G with Lie algebras g, k., h, h and u, respectively. Let a c p n q be a 
C pq 

maximal abelian subalgebra. Extend a to a c n maximal abelian subalgebra 
pq P r , 

and also to a c q maximal abelian subalgebra. q 

THEOREM 1. There exists a cg maximal abelian subalgebra such that 

a. ca, a ca. 
p q 

The proof is straightforward, see also [Os]. One shows that 
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[a ,a J = (O), hence a $ a is maximal abelian in p n q $Rn q $ p n h. 
p q p q 

0 DEFINITION 2. An irreducible representation n of U is said to be of K,H -

class I if there exist nonzero vectors eK and eH in H (the representation 

space of n) such that n(k)eK = eK, n(h)eH = eH Vk EK, h E Ho. 

Necessary and sufficient conditions for an irreducible representation 

of U to be of K,K- class I are given in [Wa, Th. 3.3.1.1]. By twice applying 

[Wa, Th. 3.3.1.1], using Theorem I, one can give necessary and sufficient 
0 conditions for an irreducible representation of U to be of K,H - class I. 

This gives Theorem 3. But, before we can state this result, we first need 

some more notation. 

Let~, E , E and E be the sets of roots of the pairs (g a) 
p q pq c' C ' 

(gc,(ap)c), (gc,(aq)c), and (gc,(apq)c), respectively. These are 

root systems. Put~:= an k, ~ :=an h. Let us agree to extend linear 

forms on (a) , (a) or (a ) to a, by making them trivial on (a.) , (a.) , p C q C pq C C k C h C 

or both, respectively. Then roots in~, E, E or E are real-valued on p q pq 
iak + a . The Killing form of g induces an inner product ( • , •) on the real 

p C 

d 1 . 'bl . . ~+ + + + ( h' ua of ia. + a . Choose compati e positive systems L, , E , E ~ t is 
k p pq p q' 

is possible, cf. [Os]). Let A be the set of weights corresponding to 

+ h . 'h +l d h' d ~, A c A t .e set of dominant weig ts. For A E A , et n A enote t e irre uc-

ible finite dimensional representation of G with highest weight>.. 

THEOREM 3. Let>. EA+. Then n;\ is a representation of K,H- class I iff 

(I) 

(2) 

>. I = 0 
ah u ak 

_(:\,a.) E 7l 

(a.,a.) 
Va.E E u E. 

p q 

Let a have dimension l. As a corollary to Theorem 3 we obtain that the 
pq 0 

representations of U of K,H - class I are parametrized by a lattice 

?ll of real forms on a , analogous to the spherical case, cf. [Vre]. Let 
+ pq 

the generators of this lattice be denoted by µ 1, ••• ,µl. 
f'",J F:::$ """' -

For S E ~ , let S , S , S denote the restriction of S to (a ) , (a ) , 
p C q C 

(a ) , respectively. pq C 



Put, for a E. I 
pq 

c:(a) := max 
j3 E qi 

B=a 

J (s, s) ts, s> 1. 
1:(a,a) ' (a,a)J 

LEMMA 4. Condition (2) in Theorem 3 can be replaced by 

(2') (),,a) E c(a)7l 
(a,a) 

V a E I 
pq 

Let Ic be defined by 
pq 

2:c := {c(a)ala E I }. 
pq pq 

LENY.IA 5. , .. c . t t 
L ~s a roo sys em. 
pq 

The proofs of Lemmas 4 and 5 are straightforward. 

root system consisting of roots c(a)a in Ic such that 

Let (Ic )' be the 
pq C 

2c(a)a I. I . 
pq 

Let A 
C 

pq C I 

be the weight lattice corresponding to ( I ) . Then 
pq 

Lemmas 4 and 5 

imply: 

THEOREM 6. Z~i = 2A. 
C 

Let W be the Weyl group of I . Then Theorem 6 implies: 
pq pq 

THEOREM 7. z~i is w - invariant. 
pq 
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0 
DEFINITION 8. Let TI be an irreducible representation of U of K,H - class I. 

Then the function 4> : XI+ (eKITI(x) eH) (x EU) 1.S called an inter-twining func-

tion. (Here <. I • > denotes an inner product 1.n H according to which TI is 

unitary). If TI= TI;\ with :.\ = "1µ1 + ... + "i µi then denote cjJ by cjJ :.\. 

Equivalent conditions for a function on U to be an intertwining func

tion can be given, just as for spherical functions (cf. [Re, ch.X], see also 

[Du]). Therefore, let IDO (U) be the algebra of differential operators on U 

which are left-U-, and right-HO-invariant. 
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THEOREM 9. Let <I> be a function on u. The following conditions are equivalent: 

1. <I> is an intertwining function. 

2. <I> is continuous, not identically zero, and there exists c IO such that: 

<f>(x)<f>(z)<f>(y) = c JK JHo <f>(xhz- 1ky) dhdk for all x,y,z EU. 

3. <I> is C00
, left-K-, and right-H0-invariant, <I># 0, and there exists 

11. ID O (U) + C such that: 

Def> = 11.(D)<f> for all D E ID0 (U). 

Put A := exp ia • pq pq 

0 THEOREM 10 • U = K A H • pq 

For the proof, see [Ho,Th. 3.6]. Theorem 10 will be referred to as the 

"generalized Cartan decomposition". For the concompact analogue of this 

decomposition [FJ, Th. 2.6] gives an integral formula. We shall now give 
+ae the compact version of Flensted-Jensen's formula. Therefore, let g- be 

+ae -ae 
the ± 1 eigenspace of cre in g. Put pa. : = dim (ga. n g ) , qa. : = dim (ga. n g ) • 

DEFINITION 11. For XE ia let the function o be defined by: pq 

o (exp X) := I TT sin 
+ 

THEOREM 12. 

I A o(a) da 
pq 

0.EL -pk 

jUf(u)du 

Ea. qa. 
ia. (X) cos ia. (X) I . 

f(kah) o (a)dk da dh Vf E C(U). 

For the proof, see [Ho, Th. 4.7]. Let LO be the set of roots in L such pq 
that pa.> O. Then LO is a root system. Let w0 be the Weyl group of ~o· We know 

that the spherical functions (i.e. K,K-intertwining functions) are invariant 

under the Weyl group of L. For intertwining functions this is no longer 
p 

true, but we have the following theorem, which implies that intertwining 

functions are invariant under w0 • 

THEOREM 13. Let a.EE , and lets be the reflection corresponding to a.. pq a, 

Let <f> be an intertwining function. Put H := [X ,ex J with X E g normalized a. a. a. a. a. 
such that B(X ,ex)= -2 (a.,a.)- 1 

a. a. 



1. If g a 
£• If 9 a 

n g+ae f (O) then $(expsaX) = 

-ae f (O) then $(exps X) = n g a 

$(exp X) for aU X E ia. • pq 
$(exp(X+ !1riH )) for aU XE ia . 

a pq 

The proof of Theorem 10 is quite straightforward, using 

Definition 8. If A= (>- 1, ••• ,A,e_) E 7ll, denote the monomial 

x~ 1 ••• x1l by xA. A polynomial p (x) =+ Ev,<>. q (v) xv (q (v) E «: , q (>.) f O) is 

said to be of degree>., where-< denotes the partial ordering on the root 

lattice as defined in [Vre]. 

THEOREM 14 • Let >. E 7l l _ Then $ >. is a polynomial of degree >. in the v.ari

ab les $ , ••• , $ • 
. µ1 µ l 

5 

The proof proceeds in exactly the same way as the corresponding proof 

for spherical functions, cf. [Vre, Th. 3.1], after having made some prelim

inaries which we'll omit here. For i = 1, ••• , l, put$. := $ • ]. µi 

DEFINITION 15. Define a function F: ia. • tl by pq 

Put 

n0 := F(ia. ) c ti. 
pq 

(XE ia. ) • 
pq 

Denote the function on A , defined by exp X • F (X) (X E ia. ) also by F. 

There exists a function !qwhich embeds n0 in :m.l (just as i;qthe case of 

spherical functions, cf. [Vre]). Put n := ~(n0). For a EE put 
pq 

k(a) := min l 
µE7l 

(µ,a) f 0 

(µ,a) 

(a,a) 

Put E' := {a EE+ 
pq pq !a f. E + } , and for j = 0, 1 put E ! : = E. n E 1 • 

pq J J pq 

THEOREM 16. det dF(X) = 

X E ia. • pq 

The proof of Theorem 16 again follows the idea of the corresponding 

proof for spherical functions, but of course is much more complicated. Put 



D := {X e: ia. I k(a.)a.(X) e: rri :ll for some a. e: E0', or 
pq 

k (a.) (a. (X) + ½rri) e: rri:ll for some a. e: E j}, 

A' : = A \ exp D • pq 

Let F 1 denote the restriction of F to A' . pq 

DEFINITION 17. Let J be the set of all pairs (s,mh), with 

me: NK(ia. ), he: Ho, ands= Admlia. • 
pq pq 

Then J is a finite set. Let J 

and put k:= IMHO n A j. 
pq 

THEOREM 18. j = wk. 

:= !JI. Let w:= lw j. pq Let M:= CK(ia. ), pq 

THEOREM 19. F' is a regular wk- to- one mapping of A' onto a:n open dense 

subset Qo of no. 

Regularity follows from Theorem 16, and A' is open dense in A , pq pq_ 
hence QO is open dense in Q0 . The fact that F' is wk-to-one is proved first 

for a dense subset A" of A , and the extension to A' then follows by a pq pq pq 
topological argument. 

DEFINITION 20. Let the positive function w on ~l be defined by: 

w(lji(F(X))) := I i:i: + 
a.EL 

pq 

Pa. qa. 
sin ia. (X) cos ia. (X). 

TT sin (k(a.) (ia.(X) - ½rr)) I 
a.e: E' 

1 

-1 
sin (k(a.) ia.(X)). 

XE ia. • 
pq 
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THEOREM 21. The mapping Pt+ P O 1jJ ° F is an isomoPphism of the algebra of poly-

ncmials on Q onto the algebra of functions on A spanned by the interwining 
pq l 

functions such that the orthogonal polynomial P O 1jJ of degree A e: :ll+ with 

respect to the weight function w is mapped onto the interwining function ~A. 

Theorem 21 follows from Theorem 12, Theorem 16 and Theorem 19, by using 

the orthogonality relation of Schur. 
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