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Connectivity ~f circulant digraphs*) 

by 

E,A, van Doorn 

ABSTRACT 

An explicit expression is derived for the connectivity of circulant 

digraphs. 
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1. Introduction 

A digraph Q consists of a finite set of vertices V(D) and a set 

of arcs A(D) which is a subset of all ordered pairs (u,v), u,v E 

V(D), and u ~ v. If (u,v) E A(D), then u is a predecessor of v and 

vis a successor of u. 

For a subset Uc V(D), D - U denotes the subgraph of D induced 

by V(D) - u. Furthermore, the set 

0
0

(U) = {v E V(D) - U (u,v) E A(D) for some u Eu} 

is called the outset of U in D. If U = {u} we write u instead of 

{u} in the above expressions. Also, if Eis a subgraph of D we 

write 0
0

(E) instead of 0
0

(V(E)). 

A cut set C of Dis a proper subset of V(D) such that D - C 

either is not strongly connected or consists of a single vertex. 

C is a minimum cut set if any other cut set of D has at least lcl 

vertices. The size of a minimum cut set is denoted by K(D) and 

called the connectivity of D. Clearly, K(D) < IV(D) I - 1 unless D 

is complete. 

For a fixed integer n > 0 and set Sc {1,2, •.. ,n-1} we construct 

a digraph D = D(n,S) with vertices v
0

,v
1

, •.. ,vn-l as follows: 

(v.,v.) E A(D) if and only if j - i = s (mod n) for some s ES. 
i J 

Any digraph that can be constructed in the above manner is called 

a circulant digraph (or directed star polygon). In this note we 

derive an explicit expression for the connectivity K(D) of a cir­

culant digraph D = D(n,S) in terms of its order n and its symbol S. 

1 



2 

Evidently, for any vertex v E V(D) of a·circulant digraph D = 

D(n,S) one has 

Is I , 

so that an upperbound for the connectivity of Dis given by 

K(D) :,;; jSj , 

( 1) 

(2) 

since removal of O (v) from D disrupts all directed paths from v to 
D 

any other vertex in D - 0
0

(v) •. If equality holds in (2) the circu-

lant digraph Dis said to be K-optimal. It is of interest in net­

work design studies to be able to identify the class of circulant 

digraphs which are K-optimal. Our basic result on the connectivity 

of circulant digraphs, which is stated in Section 3, enables us to 

perform this identification. It will subsequently be shown that the 

known sufficient conditions for K-optimality of circulant digraphs 

follow readily from our result. Section 2 contains some preliminary 

results. 

If the symbol of a circulant digraph D = D(n,S) is such that 

S E s <=> n-s E s, so that the arc (v.,v.) 
1. J 

E A(D) if and only if 

(v.,v.) 
J 1. 

E A(D) I we can replace D(n,S) by the corresponding graph 

G(n,S) in which v. is adjacent to v. if and only if the pair of 
1. J 

arcs (v.,v.) and (v.,v.) are in A(D). Any graph that can be obtained 
]. J J 1. 

in this way is a circulant graph. Defining connectivity for graphs 

in ~he usual way [6], a circulant graph and its corresponding di-



graph have the same connectivity. The rec7ntly obtained necessary 

and sufficient condition for K-optimality of circulant graphs 14] 

and all previously known sufficient conditions (see the references 

in [4]) can therefore be obtained from our result by thinking of 

such a graph as the corresponding digraph. 

In what follows circulant stands for circulant digraph. For 

concepts used but not defined here we refer to Harary's book [6]. 
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2. Modules and atomic traps 

We consider a circulant D = D(n,S) with vertices v
0

,v
1

, ..• ,vn_
1

• 

Let r be a divisor of n (notation: r!n). For i = 0,1, ... ,r-1 we 

denote by Fi= Fi(D) the subgraph of D which is induced by the set 
r r 

of vertices V(-Fi) = {v. ,v. ,v. 
2 

, ..• ,v. } . Any such subgraph 
r 1 1+r 1+ r 1+n-r 

Fi will be called a module of D (of order n/r). We next define 
r 

M(r,S) {,Q, 1 ~ ,Q, <rand ,Q, _ s (mod r) for some s ES}, (3) 

so that, in particular, M(n,S) =Sand M(l,S) = 0-

LEMMA 1. For any rln and i E {0,1, ... ,r-1} one has 

n 
-IM(r,S) I . 
r 

( 4) 

Proof. It is clear that if V(Fj) contains a successor of a vertex 
r 

in V(Fi), i ~ j, then each vertex of V(Fj) is a successor of a 
r r 

vertex in V(Fi). Hence, 10 (Fi) I is n/r times the number of modules 
r D r 

Fj j ~ i, which contain successors of a vertex in Fi. But then, 
r' r 

one has (v. k ,v. ) E A(D) for some k and ,Q, (0 ~ k,,Q, < n/r) if 
1+ r J+,Q,r 

and only if either j > i and j-i E M(r,S) or j < i and r+j-i E 

M ( r, S) , whence this number of modules equals IM ( r, S) I • D 

If !0
0

(F~) I< n - n/r, or, equivalently, IM(r,S) I < r - 1, then 

0
0

(F~~ constitutes a cut set. We can therefore state the following. 



LEMMA 2. For each rjn such that IM(r,S) I < r - 1 one has 

K(D) ::; ~IM(r,S) I . 
r 

( 5) 

In what follows we will show that equality holds in (5) for some 

rjn. The main obstacle in establishing this result is a proof for 

the fact that D contains a minimum cut set which is the outset of a 

module of D. The remainder of this section will be dedicated to 

this task. We start off with some terminology. 

Th~ strongly connected components of the subgraph D - C of a 

digraph D, where C is a minimum cut set of D, are called parts of D 

with respect to c. A part T of D with respect to C whose vertices 

have no successors outside Tin the subgraph D - c will be called a 

trap of D with respect to c. Clearly, for each minimum cut set of D 

there is at least one trap. Furthermore, it is readily verified 

that if Tis a trap of D with respect to the minimum cut set C, 

then C consists precisely of the successors of the vertices in T 

which are outside T, that is, C = 0
0

(T). A trap T of D with the 

property that IV(T) I does not exceed the order of any other trap of 

Dis an atomic trap. The order of an atomic trap will be denoted by 

a(D) . 

We will investigate the structure of an atomic trap of a circu-

lant. It will be convenient, however, to first consider self-con-

verse digraphs, that is, digraphs D = (V(D) ,A(D)) with the property 

that Dis isomorphic to its converse D' = (V(D') ,A(D')), where 

V(D') = V(D) and A(D') = {(u,v) : (v,u) E A(D) }. The next lemma, 
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which is easy to verify (cf. the proof of ~roposition 3 in [1]), 

shows that this context is more general. 

LEMMA 3. A circulant is self-converse. 

Concerning self-converse digraphs we have the following results. 

LEMMA 4. Let D be a self-converse digraph which is not complete. 

If Tis an atomic trap of D with ~espect to C = OD(T), then 

IV(D - (Cu V(T)))I ~ a(D). 

Proof. Since Dis not complete, the subgraph D - C contains at 

least two parts with respect to C of which Tis one. Clearly, there 

is at least one part P ~ T whose vertices have no predecessors out­

side Pin D - C. Pis a trap with respect to C in the converse of 

D, and since Dis self-converse it follows that!V(P) I~ a(D). Hence, 

IV(D - (Cu V(T))) I ~ IV(PJI ~ a(D). 0 

LEMMA 5. In a self-converse digraph distinct atomic traps are 

disjoint. 

Proof. The lemma is obviously true if Dis complete. Therefore, 

assume that Dis not complete. 

Let A an~ B be two atomic traps of D with vertex sets VA and VB 

and corresponding cut sets CA= OD(A) and CB= OD(B), respectively. 

Thus IVAI = IVBI = a(D) and lcAl = lcBl = K(D). Also, by Lemma 4, 
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I VD - ( CB u VB) I ~ a ( D) > 0 , (6) 

where v
0 

= V(D). Assuming that VA n VB ;t: 0, we let 

Evidently, s1 u (VA n VB) c CB u VB, so that, by (6), 

~ lv
0 

- (c u v) I > o . 
B B 

It follows that s
1 

is a cut set. Hence, since 

= (C n V ) u (C n V ) u (C n C ) , 
A B B A A B 

we have 

le n v I+ le - v I= le I= K(D) ~ 1s 1 1~ 
A B A B A 

~ le n v I + le n v I + le n e I , 
A B B A A B . 

( 7) 

so that 

(8) 

We subsequently note that, by (8), 
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= 1v - v I - 1c n v I + jc - v I - le n c I < A B B A A B A B -

a(D). (9) 

Since s 2 U (VA U VB) = CA UCB UVA U VB, it follows by (6) and (9) 

that 

so that s
2 

is a cut set too. Hence, since 

we have, using (8), 

so that equality holds in (8). Using this result in (7) we obtain 

1s
1
1 = K(D), i.e., s

1 
is a minimum cut set. It follows that the 

subgraph of D induced by VA n VB is a trap of D, and since A and B 

are atomic traps we must have A= B. D 



REMARK. Lemma 5 is an extension of Watkin9 ' fundamental Theorem 1 

on graphs [9]. In our proof we have used some of the ideas of 

Tindell's alternative (but incorrect) proof for Watkins' result [8]~ 

We are now ready to state the key result of this section. 

LEMMA 6. An atomic trap of a circulant Dis a module of D of order 

a(D). 

Proof. Let V(D) = {v
0

,v
1

, ... ,vn_
1

} be the vertex set of the cir­

culant D = D(n,S), and let T be an atomic trap of D with vertex set 

V(T) = {vt ,v , .•. ,v }, where a= a(D) .· If a= 1 the lemma is 
1 t2 ta 

trivially true, therefore assume that a> 1. Because of the invari-

ance of the connection relations under cyclic permutations of the 

vertex indices it is no restriction to assume that t
1 

= 0 and 

v. E V(T)} . 
l. 

(10) 

The set of indices {t
1
=o,t

2
, ... ,ta} of the vertices in Twill be 

denoted by I(T). It will be convenient to interprete vertex indices 

as elements in the ring ~ of integers modulo n. 
n 

Since an atomic trap is strongly connected, we have 

OD(vo) n V(T) ;t: 0, whence s n I(T) ;t: 0- Obviously, the subgraph 

D which is induced by the vertices with indices in I(T) + s = 

{s,t
2
+s, ... ,ta+s},where s ES n I(T), is also an atomic trap. 

Sin~e I(T) and I(T) +shave a common elements, it follows by 

of 

9 
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Lemma 5 that I(T) = I(T) + s. This result being valid for each s E 

Sn I(T), we conclude that I(T) contains the elements of the ideal 

of ~ which is produced by the elements of Sn I(T). Let E denote 
n 

the subgraph of D which is induced by the vertices whose indices 

are in this ideal. Clearly, E is a module of D and we are done if 

we can show that V(T) = V(E). 

To this end we subsequently note that OT(v
0

) c V(E), whence 

i0E(v
0

) I = 10T(v
0

) I. Moreover, for each v E V(E) one clearly has 

!OE(v) I = i0E(v0 ) I. In view of (10) we have IOE(v) I ~ IOT(v) I ~ 

jOT(v
0

) I, so that, actually, IOE(v) I = IOT(v) I for each v E V(E). 

Since Tis strongly connected it follows that V(E) = V(T). D 



3. Connectivity of circulants 

By Lemma 6' an atomic trap of the circulant D = D(n,S) is a 

module of D of order a= a(D). Since the minimum cut set corres-

ponding to an atomic trap is the outset of that atomic trap, it 

follows by Lemma 1 that 

K (D) = alM(!!.,s) I 
a 

If Dis complete, then a = 1 and K(D) = n - 1. On the other 

( 11) 

hand, if Dis not complete, then removal of the minimum cut set 

corresponding to an atomic trap leaves at least two parts, whence 

K(D) < n - a, i.e., 
n n 

IM(-,S) I < - - 1. Lemma 2 subsequently yields 
a a 

our main result. 

THEOREM 1. The connectivity K(D) of a circulant D = D(n,S) which 

is not complete is given by 

K(D) = min {!!.IM(r,S) I 
r 

r I n and I M ( r , S ) I < r - 1 } • ( 12 ) 

EXAMPLE. The circulant D(12,{1,4,5,9}) has connectivity 3 as 

appears from the results of Table 1. 

Some corollaries to Theorem 1 will now be derived. First we 

will give a condition for a circulant D to be strongly connected, 

i.e., K(D) ~ 1, which was mentioned earlier in [2]. 
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r M(r,S) IM(r,S) I< r-1 
n 

? ::-1 M(r,S) I 
r 

1 0 no (0) 

2 { 1} no (6) 

3 { 1, 2} no ( 8) 

4 { 1 } yes 3 

6 {1,3,4,5} yes 8 

12 { 1,4,5,9} yes 4 

Table 1. Connectivity analysis for the circulant of 

order 12 with symbol S = {1,4,5,9}. 

COROLLARY 1. The circulant D(n,S), where S = {s
1
,s

2
, ... ,s 181 l is 

strongly connected if and only if g.c.d.(n,s
1
,s

2
, ..• ,s 181 ) = 1 . 

Proof. By Theorem 1 we have K(D) ~ 1 if and only if IM(r,S)I > 0 

for all r In, r > 1. The statement follows readily. D 

The most important problem pertaining to connectivity of cir­

culants is to determine whether a given circulant D(n,S) is 

K-optimal. A simple sufficient condition is given in the next cor-

ollary. 

COROLLARY 2. The circulant D(n,S) is K-optimal if g.c.d.(n,s) = 1 

for all s E S. 

Proof. Let T be an atomic trap of D = D(n,S) and assume v
0 

E V(T). 



If lv(T) I = a(D) = 1, then, by (11), K(D) .= IM(n,S) I = Isl, so 

that Dis K-optimal. Next suppose IV(T) I> 1. Tis strongly con-

nected, whence there .exists ans ES such that v E V(T). Since 
s 

g.c.d.(n,s) = 1 and Tis a module of D, it follows that T = D, 

which is a contradiction. D 

In particular, D(n,S) is K-optimal if n is prime. 

The next sufficient condition for K-optimality was stated 

(without proof) in [5] and (with an incorrect proof) in [7]. 

COROLLARY 3*. If the circulant D(n,S) is such that i ES for 

i = 1,2, •.• ,flSl/21, then D(n,S) is K-optimal. 

Proof. If rln and n > r > flsl/27, then IM(r,S) I ~ lsl/2. Since 

n/r ~ 2, it follows that .!!.jM(r,S) I ~ ISi. If, on the other hand, 
r 

rs flSl/27, then IM(r,S) I = r - 1. By Theorem 1 we therefore have 

K(D) = IM(n,S) I = ISi. D 

We finally remark that K-optimality for the more special case 

where S = { 1 , 2, ... , IS I } was proven in [ 3 J • 

* fxl denotes the smallest integer greater than or equal to x. 
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