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*) The dynamics of structured populations: some examples 

by 

0. Diekmann 

ABSTRACT , 

This note describes recent work on first order partial differential 

equations with transformed arguments modelling the dynamics of populations 

with physiological structure. Some of the results are based on semigroup 

methods. One example treats r.ize dependent growth of a population by fission, 

and a second example shows how the functional response of a predator can be 

found from the balance of digestion and prey consumption. 

KEY WORDS & PHRASES: size-dependent population growth, reproduction by 

fission, functional response, balamce equation, first 

order p.d.e., transfoPmed arguments, semigroups of 

operators, positivity 

*)This report will be submitted for publication in the proceedings of the 
international conference on "Mathematics in Biology and Medicine", July 
18-22, Bari, Italy. 





I. INTRODUCTION 

In realistic models in population ecology individuals are distinguished from 

one another according to relevant quantities such as age, weight, amount of toxic substances 

accumulated in the body etc. (Streifer, 1974). The state of the individuu.l Ci-state) is 

given by the values of these quantities, whereas the state of the population (p-state) 

is given by the distribution (or, density) function describing the number of individu

als within each i-state. 

In the course of time each individual passes through a trajectory in the i-state 

space. The beginning and the end of this trajectory are simply its i-state at birth 

and death, respectively. In between the trajectory is determined by a differential 

equation describing the instantaneous rate of change of the i-state (aging, growth 

or accumulation of toxic substances). 

Just as in s·tatistical mechanics the evolution of the p-state is governed by a 

partial differential equation which describes the consequences of these processes at 

the individual level for the distribution function. The birth and death processes are 

described by source and sink terms, respectively (one assumes that the number of 

individuals in the relevant i-states is so large that one can use a deterministic 

approximation) .. The continuous change in the i-state is described by a differential 

operator (such that the characteristics of the first order p.d.e. are precisely the 

trajectories in the i-state space). 

Thus any model for a population with physiological structure consists of at least 

the three submodels for birth, "growth" and death. The model specification is a de

scription of: 

(i) the chances that an individual with some specific i-state is born or dies; 

(ii) the rate of i-state change; 

both as a function of the p-state, the environmental state and the p-states of all 

other populations which interact with the one under consideration. 

The aim of structured population dynamics is to derive information about the 

dynamics of the population from information about the dynamics of the inviduals or 

vice versa. These models provide links between life history studies on the one hand 

and measurements of population distributions, as a function of time, on the other. 

They relate knowledge of physiological processes and behavioural patterns to the 



2. 

development of the population as a whole. 

A characteristic feature of biological (as opposed to physical models) is the 

occurence of non-local terms (transformed arguments) in the birth term. Consequently, 

the analysis of such models poses nontrivial and challenging mathematical proble.ms. 

One of the reasons to take the population structure into account is to provide 

a framework for the detailed modelling of the interaction of a population and its 

environment (or some other population) on the basis of biological knowledge. So, as 

a rule, one obtains nonlinear equations. Although the long term objective is the 

study of nonlinear problems, I shall here mainly review some recent work on linear 

equations and only in passing I will comment on the incorporation of density dependence. 

In particular I shall concentrate on the concept of a stable distribution. I hope that 

the examples presented below will give some feeling for the general ideas underlying 

models of structured populations and that their mathematical analysis serves, apart 

from its intrinsic interest, as a finger-exercise for the solution of nonlinear prob

lems. 

The present paper is based on work by T. Aldenberg, F.H.D. van Batenburg, 

H.J.A.M. Heijmans, H.A. Lauwerier, J.A.J. Metz, H. Thieme and the author. 

2. GROWTH AND DIVISION 

Consider a population of unicellular organisms and assume that the physiological 

state of an arbitrary individual is determined completely by the value of one quantity, 

denoted by x and called "size", which obeys a physical conservation law (for example, 

total mass or the amount of nitrogen atoms in the cell). The cells are subject to the 

following processes: growth, death (= outflow in a chemostat) and fission. Growth is 

a deterministic process: the rate of size increase of a cell of size xis described 

by some function g(x), which we assume to be known and to be strictly positive. 

Death is a stochastic process: the chance (per capita, per unit of time) that a cell of size 

x dies is described by a nonnegative functionµ (x), which we assume to be known. Fission 

is a stochastic process. There are (at least) two ways to describe fission into two 

identical daughters. Let 

(i) b(x) be the rate at which individuals of size x divide; 

(ii) y(x) be the chance (per unit of size) that an individual will have size 

x at the moment of division; 

then one can assume that either b or y is known. Under constant environmental condi

tions this just amounts to two different ways of representing the statistics (or, 

bookkeeping). By following a cohort one finds the relations 

b(x) g(x) y(x) 
1-Jx y(Odi; 

a 

y(x) 
b (x) 
g(x) e 

X 

_ rb(Odl; 
J g(O 
a 

(2. I) 



where by definition a is the smallest size at which fission can occur (i.e., the 

smallest point in the support: of b and y). So let u·s assume for the moment that 

conditions are constant indeed and return to this point later. 
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Let: n(t: ,x) be the size distribution function. The balance law for n is (Be.11 & 

Anderson (1967), Fredrickson, Ramkrishna & Tsuchiya (1967), Sinko & Streifer (1967, 

1971)) 

cln , ) 
at(t ,x 

cl -h (g(x)n(t,x)) - µ(x)n(t,x) -b(x)n(t,x) + 4b(2x)n(t,2x). (2.2) 

In order to let it fit into our general description one should interpret fission as 

the "death" of the mother cell and the "birth" of two daughter cells, each of them 

having half the size of the mother. This equation is supplemented by the boundary 

condition 

n(t,½a) o, (2.3) 

which expresses that no cells are created with a size less than ½a, and the initial 

condition 

n(O,x) (2. 4) 

Let us assume that cells have to divide before they reach a maximal size, which we 
I 

normalize to be one. This amounts to the assumption that f Y(s)ds = I, or (see 
a 

(2.1)) 

lirn 
sHl 

]-E: 

J b(Ods 

a 

+ oo, (2. 5) 

As a consequence we have to interpret the term 4b(2x)n(t,2x) in (2.2) as zero for 

Now suppose that a~½ (i.e., cells cannot undergo two divisions immediately 

after each other) and put 

B(t) n(t,!). 

Using elementary integration techniques we find the relation 

fort~ t 

B(t) 

I 
2 

J KCs)BCt+GCs)-cc2s))ds, 

½a 

max{G(20-G(0 ½a :s: s :S: ½}, where by definition 

2x 

K(x) 4 b(2x) ( f µ(s)+b(Ods\ 
g(2x) exp\- j g(O } 

X 

(2.6) 

(2. 7) 

(2.8) 
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and 

G(x) 

X 

r dE; 
J g(E;) 

½a 

(2.9) 

(note that G(x) = the time it takes a cell to grow from size ½a to size x; also note 
I 

that K is integrable and that J½a K(E;)ds = 2 whenµ= O). B depends in some compli-

cated manner on the initial condition for O ~ t ~ t. This reduction to a scalar 

equation reflects the fact that any cell which takes part in the reproduction process 

necessarily has to pass the size x = ½, so that we can base our bookkeeping on the 

traffic of cells at this size. We shall analyse three different cases. 

Case (i): g(2x) < 2g(x) for ½a~ x ~ ½. 

Under this condition the transformation 

n G(2E;) - G(E;) (2.10) 

dn 2 
is invertible (note that~= g( 2s) 

1 
g(s)) and we can write (2.7) as the Volterra 

convolution integral equation 

G(l)-G(½) 

B ( t) r dE: J K(s(n))d~(n)B(t-n)dn, ( 2. 1 I) 

G(a) 

which has a positive kernel. Hence (see, for instance, Hoppensteadt (1975) or Diekmann 

( l 9 80)) 

(2. 12) 

where Ad' the dominant eigenvalue~ is the unique real root of the characteristic 

equation 
l 
2 

r K(E;)eA(G(E;)-G(2s))ds 
J 
½a 

I , (2. 13) 

which is obtained by substituting B(,t) = exp At into (2. 7). Note that for A = 0 the 

left-hand side of (2.13) can be interpreted as the expected offspring (measured at 

x = ½) of an arbitrary expectant mother cell passing size x = ½. So Ad> 0 iff this 

quantity exceeds one. The asymptotic behaviour (2.12) is a consequence of the fact 

that, due to the positivity of the kernel in (2.1 I), all other roots of (2. 13) satisfy 

Re A< Ad. For the size distribution function one finds, after some more calculations, 

n ( t, x) 

where 

1 
g(x) 

(2. 14) 

X 

exp(- f (2. 15) 

½a 
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with 

(2. I 6) 
p(x) f Ad(G(s)-G(2s))ds ½as x s ½, 

J K(s)e ' 

½a 

and 

(2. 17) 

1 A (G(s)-G(2s)) 
Ila e d (G(s)-G(2s))K(s)ds 

In words this says that the population grows exponentially with exponent Ad (or 

decays when \i < 0), while the size distribution converges towards the stable d·istri

bution nd(x). The initial distribution n0 manifests itself only in the constant c2 . 

The infinite dimensional dynamics are asymptotically only one-dimensional! 

Case (ii): g(2x) 2g(x) for ½as x s ½. 
Now G(2s) - G(s) 

tion 

G(a), a constant, and (2.7) degenerates into the difference equa-

B(t) 

I 
2 I K(Ods B(t-G(a)). 

½a 

The corresponding characteristic equation is 

I 

e -:\G(a) J K(s) ds 

½a 

and all roots 
I 
2 

1 ' 

G/a) {fo I K(Ods + 2krri}, k E ?l, 

½a 

(2. I 8) 

(2. 19) 

(2.20) 

lie on a vertical line. This vertical periodicity of the spectrum corresponds to the 

fact that the evolution according to (2.18) is given by multiplication and periodic 

continuation. As another manifestation of the big difference between this case and 

the former we mention that, although the cone of nonnegative functions is left in

variant, the solution does attain the value zero for arbitrary large time., if the 

initial function attains zero. 

The biological reason for this remarkable behaviour should be clear from the 

following observation (Bell & Anderson, 1967): if two cells with equal size divide 

some time after each other their respective daughters will again have the same size 

since in the time interval between the two divisions the second mother grows exactly 
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twice as fast as each of the daughters of the first mother! The relation "equal size" 

is hereditary. Of course this behaviour hinges upon·the assumption that each daughter 

has exactly half the size of the mother. Heijmans (in preparation 1) shows that, also 

for the case g(2x) = 2g(x), one obtains a stable distribution if the size of a daugh

ter is related to the size of the mother by a smooth probability distribution. 

Case (iii): for some SE (a,I) g(2x) = 2g(x) for ½a~ x ~½Sand g(2x) < 2g(x) for 

½S < X s; ½-

Equation (2.7) can be rewritten as the difference-integral equation 

½s 
B(t) = J K(Od~ B(t-G(a)) + 

½a 

G( 1 )-G( ½) 

J K ( ~ ( n)): ~ ( n) B ( t-n) d n . 

G(S)-G(½S) 

The characteristic equation takes the form 

½ s ½ 

e -AG(a) J K(Od~ + J K(~)eA (G(O-G(2O) d~ 

½a ½ S 

(2.21) 

(2.22) 

and the unique real root Ad is dominant: Re A< Ad for all A# Ad which satisfy 

(2.22). The Laplace transform method may be used to show that the asymptotic behaviour 

1s again given by (2. 12) and (2.14)-(2.17). We conjecture that the same results hold 

1n every case in which the complement of {x I g(2x) = 2g(x)} has positive measure. 

Finally we mention that cases with the opposite inequality are mathematically similar 

but biologically irrelevant. 

In Diekmann, Heijmans & Thieme (in preparation) the results reported above are 

proved in a somewhat different manner (without the restriction a~½). Key ingredients 

are the theory of semigroups of operators, positivity theory (Krein-Rutman theorem) 

and compactness arguments. The expansion of the solution into generations (in fact 

finitely many at each fixed time) turns out to be a very useful tool. In case (i) 

the semigroup 1s compact after finite time and this guarantees that the spectrum 

of the semigroup operators consists of isolated eigenvalues which are related to 

the spectrum of the infinitesimal generator by the mapping A • exp At. In case (iii) 

this relation remains valid in the region{µ I lµI ~ eat} for some a< Ad (the essen

tial spectrum in bounded inside th; circle /µj = eat). The determination of the 

eigenvalues of the generator (including the explicit derivation of the characteristic 

equation rn the general case) is presented in Heijmans (preprint, 1982). Extensions 

of these results to periodic environments (periodic g, µ and b) are in preparation. 

When trying to apply these calculations to "real" microbial populations it 

might be difficult to determine g and b experimentally whereas the measurement of the 

stable distribution might be relatively easy. Thus one is led to consider the inverse 

problem: given the left-hand side of (2.15), derive information aboutµ, band g. This 

is discussed is some detail in the pioneering paper of Bell & Anderson (1967). 

The present model allows for the incorporation of density dependence (or, more 

precisely, nutrient limitation) in a natural and biologically justified manner. 
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Indeed, one can describe the available substrate by a dynamical variable Sand specify 

how the growth rate g depends on Sand how, in turn,, the consumption influences S. 

However, since now the growth rate becomes a function of time, it matters how the 

fission process 1.s described: should one take b or y independent of time? Or, possi

bly, still some other function? What is the intrinsic quantity? 

If one assumes that (i) y is time-independent; (ii) the substrate concentration 

influences the growth rate as a factor; (iii) the death rateµ is independent of x; 

then one can show that the dynamics is described by the linear problem and a non

linear, implicit, time-scaling (these assumptions imply that growth and fission scale 

with the same factor). One finds convergence towards the stable distribution (which 

does not depend. on the dilution rate or the inflowing substrate concentration) and. 

an asymptotic dynamical behaviour described by an unstructured. total population 

system of ordinary differential equations. So, under these conditions, the time evo

lution of the size structure decouples from the nonlinear interaction. In otherwords: 

because of the stable distribution it is safe to ignore the size st~ucture (note, 

however, that these results might still be relevant in view of the inverse problem). 

We refer to Diekmann, Lauwerier, Aldenberg & Metz (preprint, 1983) and Heijmans (in 

preparation I) for the details. We intend to study the case where (ii) is not 

satisfied (i.e., the basal metabolism is taken into account) in the near future. 

This example shows that a population can be stabilized through a density

dependent effect on the growth-rate of individuals only. Another recent example of 

the same phenomenon is presented in Nisbet & Gurney (1983). Gyllenberg (1983) uses a 

somewhat different approach. 

3. THE FUNCTIONAL RESPONSE DERIVED FROM THE BALANCE OF DIGESTION AND PREY CONSUMPTION 

The functional response of a predator is the number of prey eaten (per predator, 

per unit of time) as a function of the prey density. Holling (1959, 1966) has ana

lysed prey-predator interactions in some detail in order to derive the functional 

response from the underlying processes. An important realistic assumption is that 

these processes take place on a much shorter time-scale than the population repro

duction so that, effectively, prey and predator densities may be considered to be 

constant when calculating the functional response. As a consequence, the functional 

response may be derived from a linear equation and subsequently used as an input into 

the nonlinear equations for the prey-predator dynamics. 

Neglecting handling times and concentrating on prey consumption and digestion, 

Metz & van Batenburg (preprint, 1983) arrive at the equation 

where t 

clp 
at(s,t) 

cl -as ( f ( s) p ( s 't) ) - xg ( s) p ( s 't) + xg ( s-w) p ( s-w' t) ( 3. I) 

time, s = satiation (i.e., some measure for stomach and gut filling or, in 
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other words, the inverse of hunger), and 

p(s,t) the distribution of predators with respect to satiation at time t, 

f(s) = digestion rate (experimentally found to be described by - as for some 

constant a> O), 

w prey weight (assumed to be a constant; Holling (1966) kept it constant 

in his experiments), 

x prey density, 

g(s) = catchi°ng tendency (xg(s) = catching rate). 

In the terminology of the introduction, a predator which eats a prey "dies" and at 

the same time a new predator with satiation s + w is "born". One can, alternatively, 

interpret p(s,t) as the probability that one given predator will be in the i-state 

sat time t. The term xg(s-w)p(s-w,t) should be interpreted as zero for O 5 s s w. 

Experimentally one finds a satiation threshold and this is reflected in the assumption 

g(s) = 0 for s ~ c (the predator is full up). 

As a consequence one has to supplement (3.1) with the boundary condition 

p(c+w,t) = 0. (3. 2) 

Heijmans (in preparation 2) shows that one can associate with (3,1)-(3.2) a semigroup 

of bounded linear operators on a space of functions on the interval [0,c+w]. In fact 

he first treats the backward equation 

clq ar<s, t) f(s):;(s,t) - xg(s)q(s,t) + xg(s)q(s+w,t) (3. 3) 

on the space C[O,c+w] and then interprets the forward equation (3.1)-(3.2) as the 

adjoint problem of (3.3) in the space of (normalized) bounded variation functions 

provided with the weak* topology. Again there exists a dominant real eigenvalue Ad 

( Js+w ( ) . of course Ad= O; note that the number of predators O p o,t do is a constant 

which we take to be 1 with a corresponding nonnegative eigenfunction pd(s) (also 

normalized to have integral 1). Moreover, the essential spectrum of the semigroup 

op~rators consists of a full circle whose radius is given by exp(-xg(O)t). Thus one 

finds the asymptotic behaviour 

p (s, t) pd(s) + o(l), t ++co. (3.4) 

Or, in other words: under the influence of prey consumption and digestion the 

satiation structure stabilizes in the course of time. The functional response is now 

defined to be the function 



c+w 

x + x I g(s)pd(s)ds 

0 

(note that this is a nonlinear function since pis) depends on x). 

Taking formally the limit w + 0, x + 00, ~ = xw constant, we find 

a 
els 

((f(s)+~g(s))p(s,t)). 
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(3.5) 

Prey capture is now conceived as a deterministic process: the predator is constantly 

slurping prey soup. It appears that (3.5) has a stable Dirac delta distribution 

o(s-s), wheres is the unique value for which f(s) + ~g(s) = 0. The functional 

response~+ ~g(s) describes the amount of prey soup eaten. In the special case that 
s -1 

g(s) = b(1--) and f(s) = -as one finds s = bc~(ac+b~) and the functional response 
C 

b~ 
~ + --b-'---

1+-~ ac 

(3.6) 

Numerical experiments of Metz & van Batenburg (in preparation) indicate that the 

deterministic limit yields a very good approximation in most cases of practical 

interest. Finally, we mention that Heijmans (in preparation 2) uses a Trotter-Kato 

type theorem to justify the limiting procedure. 

4. REMARKS 

In recent years the study 9f age-structured population dynamics has flourished 

(Busenberg & Iannelli (to appear), Cushing (1980) Gurney & Nisbet (1980), Gurtin & 

MacCamy (1979), Pruss (1981, to appear), Webb (1982, to appear)) and in the mathemat

ical analysis semigroup methods have proved to be useful. The present note calls 

attention to two points: 

(i) other-than-age-structures are biologically relevant and mathematically 

interesting; 

(ii) semigroup methods are appropriate in this context as well. 

Untill now the area of nonlinear structured models is largely unexplored. Some 

special examples of age-structured interactions have been studied (Auslander, Oster 

& Huffaker (1974), Cushing & Saleem (1982), Frauenthal (1983), Gurtin & Levine 

(1979), Hastings &Wollkind (1982); sometimes, but not always, the analysis is based 

on a reduction to a system of ordinary differential equations which is possible 

under certain restrictive assumptions) and first attempts to investigate the effect of 

a density-dependent individual growth rate (due to competition for food) have been 

made (Nisbet & Gurney 1(1983) Diekmann et al. (preprint 1983). In a very interesting 

paper Botsford (1981) argues that the combined effects of a density dependent individ

ual growth rate and cannibalism.can lead to multiple stable equilibria and catastro

phic effects of parameter (fishing pressure, for example) variation. (See May (1977) 
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for a discussion of similar phenomena in unstructured population models.) Botsford 

indeed finds this behaviour 1.n numerical simulations. 

Let me mention some more recent work on structured population models (without 

any claim of completeness) Lasota (1981) and Brunovsky (1983) find stable but also 

chaotic behaviour in a model for the proliferation of differentiating red blood cells 

(see Lasota, .Mackey & Wazenska-Czyzewska, 1981). 

Kooijman & Metz (preprint, 1983) study the effects of toxic chemicals on the 

population growth rate, given the effects on iridividuals, in the corttext of a general 

model for the age- and food-dependent growth and reproduction of individuals (the 

model 1.s showrn to fit the available data on the development of Daphnia magna quite 

well). 

Thieme ( 1982) presents results on stable distributions which apply to many linear 

and nonlinear models (for instance in epidemiology). 

In my opinion these examples underline the need for a general qualitative 

and quantitative mathematical theory of nonlinear first order partial differential 

equations with nonlocal terms. At the moment such a theory seems still far-off, but 

I hope that it will ultimately arise. 
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