
stichting

. mathematisch

centrum

AFDELING NUMERIEKE WISKUNDE
(DEPARTMENT OF NUMERICAL MATHEMATICS)

NN 31/83

G. T. SYMM, B. A. WICHMANN, J • KOK & D. T. WI NTER

GU !I DEL INES FOR THE DES I GN OF LARGE MODULAR
SCIENTIFIC LIBRARIES IN ADA

SECOND INTERIM REPORT

~
MC

AUGUSTUS

kruislaan 413 1098 SJ amsterdam

~U~lHEEK MATH!:MA1'1SCH CEIICTRUM
AMST!ROAM

Printed at the Mathematical Centre, Kruislaan 413, Amsterdam, The Netherlands.

The Mathematical Centre, founded 11 February 1946, is a non-profit institution for the promotion
of pure and applied mathematics and computer science. It is sponsored by the Netherlands
Government through the Netherlands Organization for the Advancement of Pure Research
(Z.W.O.).

1980 Mathematics subject classification: 69D49, 65-04

Copyright© 1983, Mathematisch Centrum, Amsterdam

Guidelines fo1r the design of large modular scientific libraries in Ada.

Second interim report.

by

*) . *) . G.T. Symm , 1LA. Wichmann , J. Kok & D.T. Winter

ABSTRACT

This report is a second interim technical report on a project, entitled

"Guidelines for the design of large scientific libraries in Ada", which is

being pursued jointly by the Division of Information Technology and Com

puting, NPL, in the UK, and the Mathematisch Centrum, Amsterdam, in the

Netherlands, with support from the Commission of the European Communities.

A final report, entitled "Guidelines for the design of large modular

scientific libraries in Ada", will be produced around the end of 1983.

Meanwhile, the authors will be pleased to receive comments on this interim

version.

Ada is a Registered Trademark of the AJPO-US. Government.

KEY WORDS & PHRASES: Ada Programming language, Scientific software

*) National Physical Laboratory, Teddington, Middlesex TWII OLW UK

GUIDELINES FOR THE DESIGN OF LARGE SCIENTIFIC LIBRARIES IN ADA

Second Interim Technical Report, July 1983

This report is a draft of the first nine chapters, with some appendices
and appropriate references, of the proposed final report:

GUIDELINES FOR THE DESIGN OF LARGE MODULAR SCIENTIFIC LIBRARIES IN ADA

CONTENTS

1. INTRODUCTION

2. THE PROBLEMS

a) Precision
b) Basic functions
c) Composite data types
d) Information passing
e) Error handling
f) Working-space organisation
g) Real-time environment

3. PRECISION

a) Hardware types
b) Derived types
c) Attributes
d) User-defined types
e) Use of generics
f) Library design

4. BASIC FUNCTIONS

a) Contents of a package of basic mathematical functions
b) Naming of basic mathematical functions
c) Method of use for user-defined types
d) Efficiency of execution
e) Calling sequences
f) Exceptions
g) Pack.age specification
h) Practical considerations

5. COMPOSITE DATA TYPES

a) Complex operators
b) Use of generics for complex operators
c) Complex functions
d) Use of generics for complex functions
e) Vectors and matrices

6. INFORMATION PASSING

a) Solution of model problem for simple functions
b) Solution of model problem using global variables

3

3
4
5
6
7
8
9

10

10
10
10
11
12
12

15

15
16
17
18
21
22
23
24

26

26
28
30
31
34

36

36
38

c) Parametric solution 41
d) Reverse communication solution 42
e) Parameter association 43

7. ERROR HANDLING 45

a) The predefined exceptions 45
b) Existing practices 49
c) Recommended Ada practice 50

8. WORKING-SPACE ORGANISATION 53

a) Choice of data types (transparent or private) 53
b) Use of parameters and generic parameters 55
c) Representation clauses 56
d) Use of relevant attributes and pragmas 57
e) Running system (storage overheads for Ada style declarations) 57
f) Use of the heap 58
g) Machine architecture 60
h) Use of generics and subunits 61
i) Implicit copying 63

9. REAL-TIME ENVIRONMENT 65

a) Libraries for real-time use 65
b) Use of language features regarding tasks 67
c) Variables shared by tasks 68
d) Exceptions 69
e) Calculations by server tasks 70
f) Use of special architecture of machines 76

10. SUMMARY OF RECOMMENDATIONS - *** To appear in final report*** 80

APPENDIX A - TARGET IMPLEMENTATION AND LANGUAGE DEFICIENCIES 81

a) Necessary requirements. 81
b) Highly desirable features 81
c) Useful features 81
d) Language deficiencies 82

APPENDIX B - SUMMARY OF BASIC PACKAGES FOR SCIENTIFIC COMPUTATION 83

APPENDIX C - PRIMITIVE AND BASIC FUNCTIONS - ***Tobe added*** 84

APPENDIX D - COMPLEX POLAR OPERATORS - ***Tobe added*** 84

APPENDIX E - A LEAST-SQUARES PACKAGE - ***Tobe added*** 84

APPENDIX F - THE IEC FLOATING-POINT STANDARD AND ADA 85

a) Comments on the Standard 85
b) Relationship with Ada 86

APPENDIX G - TOPICS REQUIRING FURTHER STUDY 88

a) Topics outside the scope of this project 88
b) Topics omitted due to lack of resources 88

REFERENCES 89

- 1 -

1. INTRODUCTION

The new programming language Ada (ANSI/MIL-STD 1815 A, 1983) has been
designed primarily for real-time computation. However, in view of the
scale o:f effort that has been invested in its design, it is generally
expected that it will also be widely used in other areas, including
the important one of large-scale scientific computation. Preliminary
evaluations of the suitability of Ada for this purpose (Cox and
Hammarl:ing, 1980; Hammar ling and Wichmann, 1982) have indicated that
several features of the language require careful consideration if
large portable and modular scientific algorithms libraries are to be
implemented successfully. Accordingly, the present project is
concerned with identifying the problems associated with the overall
design and implementation of such libraries in Ada and with making
recommendations for their solution.

The main objective of this project is to help numerical analysts
who wish to develop large libraries in Ada, comparable with the NAG
FORTRAN Library (Ford et al. , 1979), the NUMAL Library in Algol 60
(Hemker, 1981) or the NAG Algol 68 Library (NAG, 1983), to do so in
the most efficient manner, by providing them with appropriate
guidelines. Without such guidelines there is, owing to the structure
of the language, a significant risk that any library packages
developisd will be incompatible.

In this work, the guidelines of the Portability Subgroup of
Ada-Europe (Nissen et al., 1983) are taken into account. These
guidelines, which aim to aid programmers in designing and coding
portablis Ada programs, are extended as necessary to ensure that
individually compiled modules of large scientific libraries can
retain this portability while also being compatible with each other
and with users' programs. (Incidentally, the need for portability
rules 1::>ut the possibility of simply providing interfaces with
existing libraries in other languages, though it is realised that
mixed language programming will inevitably be employed in the initial
stages to permit the gradual introduction of Ada on to a new machine.
This and other topics, which are not covered by the present project
but which clearly require further study, are listed in an appendix
(Appendix G) to this report.),

The guidelines proposed here should contribute to the construction
of libirary packages for basic computations and hence also to
applications packages. We hope therefore that they will be exploited
by commercial organisations in the future to provide such packages
which are coherent and easy-to-use.

Throughout this report, references to the Language Reference
Manual (ANSI/MIL-STD 1815 A, 1983) are abbreviated to LRM xxx, where
xxx indicates chapter, chapter and section or sub-section {punctuated
by full stops) or appendix, as appropriate. In some cases an
individual paragraph, numbered n in the margin of the Reference
Manual, is cited by the addition of (n) to the reference. Multiple
referenoes are separated by commas. Details of the Language Reference
Manual and all other references are gathered together, in
alphabetical order of author, at the end of the report.

- 2 -

The plan of our report is as follows. In Chapter 2, we outline the
basic problems which face designers of large modular scientific
libraries in Ada. In Chapters 3 to 9, we discuss each problem area in
turn, deriving solutions to the problems through examples of Ada
code. W•~ then summarise our recommendations in Chapter 10.

Some examples of program code are included in Appendices C, D and
E, in order to avoid unnecessary interruptions in the text, while in
further appendices we summarise:

- f,eatures (assumed or desired) of a target implementation,
together with what we consider to be deficiencies in the
A1ia language as far as scientific computing is concerned
(Appendix A),

- the proposed contents of basic packages for scientific
computation (Appendix B)

- the IEC floating-point standard and its relationship with
Ada (Appendix F) and

topics which we consider to require further study, such
as interfaces with other languages, as mentioned above
(Appendix G) .

Note that, while preparing this report, we have not had regular
access to an Ada compiler but most of the Ada code included in the
text has been verified by means of a syn tax checker. In relation to
this, a sequence of statements is sometimes indicated by a single
statement describing the action involved, e.g.

SIMPLE _APPROXIMATION;

rather than by a comment:

siequence of statements

since the latter is not acceptable to the syntax checker where at
least one statement is necessary. On the other hand, the notation
" .•. ", which is never acceptable to the syntax checker, is used
occasionally, as in the Language Reference Manual, to cover an
obvious gap in the code. Unfortunately, the current syntax checker at
the NPL does not allow for recent changes in the syntax of Ada
(Harris,on, 1982) but that available at the MC has been updated to the
ANSI Standard and this latter version has been used wherever
possibl,e.

- 3 -

2. THE PROBLEMS

In this chapter we outline the problems, as we see them, which face
designers of large modular scientific libraries in Ada.

a) Precision

The first and most fundamental problem in the design of large
scientific libraries in Ada is concerned with precision.

Every object in the language has a type (or, more specifically,
contain::i a value of that type), where a type is characterised by a
set of values and a set of operations applicable to those values
(LRM 3.:2, 3.3). In particular, for floating-point computation, the
languag1e includes at least one predefined type FLOAT. An
implementation may also have predefined types such as SHORT FLOAT and
LONG FLOAT, which have (substantially) less and more -accuracy,
respectively, than FLOAT (LRM 3. 5. 7). These and all other predefined
identif:iers are contained in the package STANDARD to which the user
may be assumed to have access (LRM C). The user is also permitted to
declare his own floating-point types, e.g.

type REAL is digits D;

where D is any number of decimal digits supported by the
implementation, i.e. any positive integer not exceeding
SYSTEM.MAX DIGITS (LRM 13.7.1(4)). In this case, the type REAL is
derived by-the implementation from one of the predefined types which
has at least D digits of precision. Note that (from LRM 3.5.7(12))
there is always one predefined floating-point type (call it
LONGEST FLOAT) which corresponds to the highest possible value of D,
i.e. su;ib that the attribute LONGEST_J'LOAT 'DIGITS (LRM 3. 5. 8) equals
SYSTEM.MAX DIGITS. Note. also that explicit type conversions are
allowed between closely related types (LRM 4.6); for example,
REAL(2*,J) represents the integer expression 2*J in the floating-point
form of the type REAL.

The user must decide how best to use these facilities and, since
the rulies of the language require that types must match on a function
or proc::iedure call (LRM 6.4.1(1)), the choices are particularly
important in the design of large numerical libraries. In such
librariEes, separately compiled program units must be compatible with
each other, with units of other libraries and with users' units. Also
intercommunication between units, of any kind, should involve as
little recompilation as possible. In Ada a compilation unit
(LRM 10.1) can be a subprogram (i.e. procedure or function)
declaration or body, a package declaration or body, a generic
declaration or a generic instantiation. Alternatively, it can be a
subunit (LRM 10.2), which is the separate body of a subprogram,
package or task declared within another compilation unit. In either
case it may be preceded by a context clause.

The main problem arises from the strong type-checking rules of the
languag1e whereby any two type definitions specify distinct types even
if their descriptions are identical (LRM 3.3.1(8)). For example, if

type REALA is digits 6;
type REALB is digits 6;
A HEALA;
B : lREALB;

- 4 -

then A and Bare of different types. Similarly, if one compilation
unit deelares

type REAL is digits 10;
X: HEAL;

while another declares

type REAL is digits 10;
Y: HEAL;

then X and Y are of different types and the two units are
incompatible.

Ways around this difficulty and other problems associated with
precision are discussed in Chapter 3 of these Guidelines.

b) Basic functions

The basic mathematical functions, which, in Fortran and other
languag1es, are denoted by SQRT, EXP, SIN, etc. , are not (apart from
ABS, wh:lch is covered by the operator abs, represented by a reserved
word) included in the Ada language and must therefore be provided in
a library package (LRM 7). Ideally, such a package would already be
available, in some universally accepted form, to the designer of
large scientific libraries. Unfortunately, al though some proposals
have be1en made (e.g. Firth, 1982; Whitaker and Eicholtz, 1982), this
is not yet the case and we must therefore design our own package. In
so doing, we hope that we may influence the ultimate design of a
universal package in such a way that it is compatible with the
remaindier of our guidelines.

If all computations could be carried out successfully in terms of
the predefined type FLOAT, the required package might have a
specifieation of the form:

package MATH_FUNCTIONS is

function SQRT(X: FLOAT) return FLOAT;
function EXP(X FLOAT) return FLOAT;
function SIN(X: FLOAT) return FLOAT;

-·- etc.

end MATH_FUNCTIONS;

In praetice, however, types SHORT FLOAT, LONG FLOAT and, more
generally, user-defined real types must also be -accommodated. How
this may be achieved is clearly dependent upon the way in which the
precision problem is solved (in Chapter 3 of these Guidelines).

Problems relating to the package MATH FUNCTIONS and its contents
are dis1~ussed in Chapter 4.

- 5 -

c) Composite data types

Composite data types, such as COMPLEX, VECTOR and MATRIX, whose
values 1aonsist of component values (LRM 3, 3(2)), are not predefined
in the Ada language and must therefore be provided in appropriate
packages.

For 1example, COMPLEX may be provided as a record type (LRM 3. 7),
with it.s associated operators (cf. Wichmann, 1981), in a package of
the form:

packl!ge COMPLEX OPERATORS is

type COMPLEX is
record

RE,IM: REAL;
end record;

function "+"(X COMPLEX) return COMPLEX;
function "-"(X COMPLEX) return COMPLEX;
function 11 abs 11 (X: COMPLEX) return REAL;
function ARG(X: COMPLEX) return REAL;
function "+"(X, y COMPLEX) return COMPLEX;
function "-"(X,Y COMPLEX) return COMPLEX;
function "*"(X,Y COMPLEX) return COMPLEX;
function "/"(X, y COMPLEX) return COMPLEX;
function 11 H 11 (X : COMPLEX; N : INTEGER) return

end COMPLEX_OPERATORS; -- specification

COMPLEX;

where it is assumed that a type REAL is already available. If it is
further assumed that the basic mathematical functions, in the package
MATH FUNCTIONS, are applicable to such REAL variables, then the
package body (LRM 7, 3), corresponding to the above specification,
could take the form:

with MATH_FUNCTIONS;
pack.age body COMPLEX_OPERATORS is

function 11 + 11 (X: COMPLEX) return COMPLEX is
begin

return X;
end "+";

function 11 -"(X: COMPLEX) return COMPLEX is
b1egin

return (- X.RE, - X.IM);
e,ncl. "-";

- 6 -

function "abs"(X COMPLEX) return REAL is
A,B: REAL;

b,egin
if abs X.RE > abs X.IM then

A:= abs X.RE;
B := abs X.IM;

else
A : = abs X. IM;
B ·- abs X.RE;

end if;
if A > 0.0 then

return A* MATH_FUNCTIONS.SQRT(1.0 + (B/A)**2);
else

return 0.0;
end if;

e10.d "abs";

-- etc.

end COMPLEX_OPERATORS; -- body

Similar packages may be provided for interval arithmetic, using a
record type to describe an interval, e.g.

type INTERVAL is
r1ecord

MIN,MEAN,MAX
eio.d record;

REAL;

but, since these would give rise to similar design problems, they are
not conl:3idered in detail here.

Other abstract floating-point types, such as representations of
multiple length variables as record types, are not considered in
detail here either, for several reasons. All manipulations of such
variablE!S would have to be done by software and would therefore tend
to be extremely slow and inefficient. Such variables could not
feature in type conversions and the basic MATH FUNCTIONS library
would not be available to their users. The design of libraries to
accommodate such variables is considered to be outside the scope of
the present project. Nevertheless, the design of such packages would
be useful, after the basic structure of scientific libraries has been
established, and is recommended for further study (Appendix G).

SincE! vectors and matrices are useful in their own right, we
consider that these are best packaged separately from their
associated operators. Appropriate packages, together with packages
for complex arithmetic, are discussed in detail in Chapter 5.

d) Information passing

The Ada language does not define the implementation method for
passing parameters of array, record and task types; such parameters
may be passed either by copying or by reference (LRM 6. 2 (7)) • A
program which depends upon the method used is erroneous since it will
have indeterminate properties. Al though this implementation freedom
is needed in certain special cases, it is essential, for reliable
high-quality scientific libraries, that large vectors and matrices
are not copied unnecessarily. This is discussed in Chapter 6.

- 7 -

Ada does not permit functions or procedures as parameters in
procedure calls but such information may be passed by means of
generic8 (LRM 12) or by means of "reverse communication" (Hammarling
and Wichmann, 1982) •

As an example of the former, a simple procedure for numerical
integration (quadrature) of a function F of a single real variable X,
between fixed limits of integration A and B, may have a declaration:

gener•ic
wlth function F(X: REAL) return REAL;

prOCE!dure QUAD (A' B in REAL; R : out REAL);

Then integration of a specific function F1 with declaration:

funcUon F1(X : REAL) return REAL;

may be achieved by means of an instantiation (LRM 12. 3) of the
generic procedure:

prOCE!dure QUAD _F 1 is new QUAD (F 1) ;

followed by a procedure call:

QUAD __ F 1 (A, B, R) ;

IssUE~s raised by such use of generics and the alternative of
reverse communication are also discussed in Chapter 6.

e) Error handling

The Ada concept of exceptions (LRM 11) provides an error handling
mechani:3m which must be fully explored. An exception is an error or
other exceptional situation which arises during program execution.
Detecting this situation and drawing attention to it, abandoning
normal program execution in the process, is called "raising the
exception". Executing some actions, in response to the raising of an
exception, is called "handling the exception".

Exception names, other than a few predefined exceptions such as
CONSTRAINT ERROR and NUMERIC ERROR, are introduced by exception
declarations (LRM 11.1), e.g. -

SINGULAR : exception;

Exceptions can be raised by raise statements (LRM 11.3) or by other
statements or operations which propagate the exceptions
(LRM 11 .. 4. 2(8)). When an exception arises, control can be transferred
to a u;ser-provided exception handler (LRM 11. 2) at the end of a
frame, :L.e. at the end of a block statement or at the end of the body
of a subprogram, package, task unit or generic unit. This handler
acts as a substitute for the remainder of that frame; so that, for
example, a handler within a function body may execute a return
statement on its behalf.

The handling of an exception raised during execution of a sequence
of statements depends on the innermost frame or accept statement that
enclose:s that sequence of statements (LRM 11.4.1). However, if an
exceptii::m is raised during the elaboration of the declarative part of
a frame, or during the elaboration of a package or task declaration,

- 8 -

.
this elaboration is abandoned (LRM 11.4.2). In this case, if the
frame is a task body, the task becomes completed and the exception
TASKING ERROR is raised at the point of activation of the task
(LRM 9,:3). Otherwise, the exception is propagated, if possible, or
the program/task is abandoned. In particular, if an exception is
raised during the elaboration of the declarative part of a library
unit, the execution of the main program is abandoned. It follows that
one may sometimes wish to avoid the raising of exceptions in the
declarative part of a library unit, possibly by enclosing the
necessary declarations in an inner block so that exceptions due to
errors :i.n input parameters can be handled in the surrounding body.

Such issues and more general questions regarding error handling in
Ada are discussed in Chapter 7.

f) Working.-space organisation

Working-space must be efficiently organised. In Ada, this may
depend upon the types used for claiming large storage areas (e.g.
arrays, records or list and tree structures), upon the
parametier-passing mechanism (subprograms might make copies of all
parametiers passed) and other situations where extra copies might be
made, and also upon the architecture of the machine (e.g. on a
machine with paging, an algorithm should process contiguous
components of arrays and, for two-dimensional arrays, these depend
upon how the arrays are stored). Further, the length of code may be
influen1::ied by the use of generics and by the provision of a
partial-loading feature.

Programs might be made to run more efficiently by using
information about the working-space (e.g. the size for different
types). In Ada, this information is provided by attributes and by the
package SYSTEM.

Storage which is no longer required may be reclaimed, to be used
again, by a garbage collector. However, in Ada, the existence of a
garbage collector is implementation-dependent and software which
relies upon it should therefore make this clear. In any case, the
programmer may prefer to do his own tidying-up, e.g. in a real-time
program where he may achieve better timing control by so doing
(Barnes, 1982, p. 253). For access types, he may use the predefined
generic procedure UNCHECKED DEALLOCATION which has the specification:

generic
type OBJECT is limited private;
type NAME is access OBJECT;

procedure UNCHECKED_DEALLOCATION(X: in out NAME);

with a typical instantiation of the form:

procedure FREE is new
UNCHECKED_DEALLOCATION(object_type name, access type name);

All aspects of working-space organisation are discussed in
Chapter 8.

- 9 -

g) Real-time environment

Ada has been specifically designed for real-time computation and
the needs of real-time users must therefore be taken into account.
For exrunple, it may be required that a progrrun should continue to run
in all circumstances - no matter what errors may arise during its
execution. This may be achieved by the inclusion of an exception
handler of the form:

when others=>
-·- sequence of statements

where the sequence of statements carries out appropriate remedial
action to enable the computation to continue in the event of any
unforeseen error arising.

In real-time situations, such as process control, a result of a
computation may be required at a particular time; the precise
respons,e moment may not be known in advance but, when it arrives, the
answer must be immediate. This can affect the choice of an algorithm
or the way in which it is implemented. For exrunple, if an iterative
process consists of several parts (which may run concurrently), of
which the results are normally added together at the end of the
process (when each part has reached a specified accuracy), it would
be preferable in this case to keep a running total (with an estimate
of its accuracy) to be used in the event of a rendezvous being met
before the iteration is complete.

Issues such as these are discussed in Chapter 9.

- 10 -

3. PRECISION

In this chapter we consider the problems concerned with the accuracy
of real types in Ada, introduced in section (a) of Chapter 2. Our
discussion takes the form of a series of notes, labelled
alphabetically for easy reference.

a) HardwarE~ types

The predefined types FLOAT, SHORT FLOAT and LONG FLOAT correspond
to the hardware. Since one view of numerical packages is to consider
them as additions to the hardware, one might conclude that all
library software should be written in terms of these predefined
types. However, this would not be a good idea for reasons of
portability. The language does not state any specific accuracy for
FLOAT and, since this is the name assigned if there is only one
floating-point type, the actual accuracy is likely to vary
considerably. On some machines LONG FLOAT would be more appropriate
than FLOAT for library use, while on others SHORT FLOAT might
suffice .. Hence the use of the predefined types cannot be recommended
in geneiral. (Since the names FLOAT, SHORT FLOAT and LONG FLOAT are
not res•arved in Ada, one could possibly redeclare them, to achieve
the portability that would otherwise be lacking, but this idea is
rejected since it would be rather misleading.)

b) Derived types

It may appear that the type compatibility rules make it very
difficult to write any portable library software at all. Yet, if
LONG FLOAT is available as well as FLOAT (see section (b) of
Appendix A), one can certainly imitate standard FORTRAN practice by
declaring

type REAL is new FLOAT;
type DOUBLE is new LONG_FLOAT;

and writing all program
(LRM 3. JO. Alternatively,
declare

units in terms
if SHORT FLOAT

type REAL is new SHORT FLOAT;
type DOUBLE is new FLOAT;

of these derived types
is available, one may

and usE~ these derived types in all program units. Hence, by
introduoing the same names, REAL and DOUBLE, in each case, we have a
possiblE~ solution to the problem of providing portable software. This
solution is, of course, restricted to implementations which support
at least two predefined floating-point types and is based upon the
assumptiLon (which may not be acceptable to many) that two levels of
precision are sufficient for library purposes.

c) Attributes

In Ada, most of the properties of a real type can be accessed by
its attributes, which are defined as part of the language (LRM 3.5.8,
3.5.10) .. This enables one, when writing software, to anticipate the
problema of moving code to another machine. For instance, an

- 11 -

approximation may be known to be good for 1 O digits but not more, in
which case one can write

if REAL'DIGITS <= 10 then
SD1PLE APPROXIMATION;

else -
MORE_COMPLEX_CASE;

end if;

where, if the static condition is TRUE, the code for the
MORE COMPLEX CASE (though it must be valid) need not be compiled (cf.
section (e) below). Careful use of these facilities permits one to
write code which is robust and numerically correct across almost all
conceivable machines. In this, one is aided by the fact that the
numerical properties of real types are well defined in terms of model
numbers (LRM 4. 5. 7), although these have their limitations (Wallis,
1983), See also section (d) of Appendix A and Appendix F, where the
Ada model is compared with the IEC floating-point standard (CEI,
1982).

d) User-defined types

The contrary view to that expressed in section (a) above is that
of the applications programmer who wishes (not unnaturally) to ignore
details of the specific hardware in use. His concern is to program in
a portable manner knowing that, for example, 10 digits of accuracy
will suffice for his particular application. He therefore declares

type MY_REAL is digits 10;

whereupon the problem is that, since MY REAL is dependent upon the
application, numerical library packages (written in terms of a
different real type) cannot be called directly.

One approach to this problem is the use of generics, as in the
input-output system (LRM 14.3), There, for example, the output
procedure PUT may be made available for MY_REAL, as declared above,
by instantiating the generic package FLOAT_IO, which is inside the
package TEXT_IO, thus:

with TEXT IO;
procedure-MAIN is

package MY IO is new TEXT_IO.FLOAT_IO(MY_REAL); use MY_IO;
X : MY_REAL;

begin

PUT(X);

end MAIN;

It is assumed here that the declaration of MY REAL either lies within
the pre>cedure MAIN, before its use in the instantiation, or is
visible there through a previous context clause (cf. section (f)
below).

As a, consequence of the need to instantiate the generic, this
solution has some disadvantages. It is very unlikely that the
instantiation of a generic will be a cheap operation for the
compiler. At worst, it could amount to an overhead comparable with

- 12 -

the recompilation of the instantiated body. With a large mathematical
library, such an overhead might not be acceptable. Moreover, the body
of the instantiated package could need to call other packages which
would themselves need to be instantiated. The compiler overhead for
such an activity is likely to be even greater than that for the
ordinary text.

In practice, perhaps such generic packages will be precompiled
(see section (a) of Appendix A) for each of the relevant predefined
types, such as the hardware types of section (a) above, and the
appropriate version selected at instantiation. However, the
conclusion here is that generics need to be used with care, at least
within the context of a large library. The advantage of generics is
that they do allow one to write a subprogram or package for any
accuracy and let the user select the appropriate accuracy. Thus they
are ideal for the user who is prepared to tailor a system to his own
specific requirements.

e) Use of generics

On the assumption that some use is made of generics, subprograms
or packages can call any low-level routines that may be provided for
the hardware types by means of tests on the attributes and
conversions. A simple example might be

generic
type REAL is digits<>;

function SQRT(X REAL) return REAL;

function SQRT(X REAL) return REAL is
begin

if REAL 1DIGITS <= FLOAT'DIGITS then
return REAL(SQRT(FLOAT(X)));

else
return REAL(SQRT(LONG_FLOAT(X)));

end if;
end SQRT;

specification

body

Note the use of explicit conversion and the two distinct calls of the
overloaded function SQRT. Of course, for a specific instantiation of
this generic, a compiler should optimise the code so that no
condition is tested or code produced for the other leg. Note,
however, that the condition involving REAL'DIGITS is no longer static
(cf. siection (c) above) when REAL is a generic actual parameter
(LRM 4.9, 12.1(12)).

Unfortunately, the code given here is not fully portable, being
again restricted to implementations which support LONG_FLOAT as well
as FLOAT. Moreover, no allowance is made for the possibility that
REAL'DIGITS > LONG FLOAT'DIGITS for which an exception could be
raised (see Chapter 7).

f) Library design

One conclusion from the arguments above is that, for a large
library, the use of existing subroutines by new routines necessitates
the use of a standard set of real types. Such standard types may be
collected together in one package:

- 13 -

pac~age REAL TYPES is
type REAL is digits ... ' -- an implementation choice

end HEAL _TYPES;

Then eaeh library package may operate in terms of these, for example:

with REAL TYPES; use REAL TYPES;
package LIBRARY_PACK is -

f'unction FUN(X: REAL) return REAL;

-- other functions, etc.

end LIBRARY_PACK;

-- specification

However, if the corresponding package body is written for only the
standard types, with their specified accuracy, this approach lacks
general:ity. There may well be a need for functions, such as FUN, of
higher accuracy and the textual bodies of these functions will often
admit such accuracy.

It is preferable therefore to implement LIBRARY PACK by means of a
generic package:

generic
type REAL is digits<>;

package GENERIC LIBRARY PACK is

function FUN(X: REAL) return REAL;

-- other functions, etc.

end GENERIC_LIBRARY_PACK; specification

The body of this package, written for any (sufficiently high)
accuracy, takes the form:

package body GENERIC LIBRARY PACK is

function FUN(X: REAL) return REAL is

other functions, etc.

end GENERIC_LIBRARY_PACK; -- body

Then the library package specification above may be replaced by the
instantiation:

package LIBRARY_PACK is new GENERIC_LIBRARY_PACK(REAL);

in which case:

use LIBRARY_PACK;

permits one to call, for example, FUN(X) for X: REAL.

At the same time, this approach allows a sophisticated user, who
is not satisfied with the package REAL_TYPES, to declare his own real
type and to call the library package for this type:

with GENERIC_LIBRARY_PACK;
proc1edure MAIN is

- 14 -

type MY _REAL is digits ... ;

package MY LIBRARY PACK is new GENERIC_LIBRARY_PACK(MY_REAL);
X, Y MY_REAL; -

begi1n

Y :: MY_LIBRARY_PACK.FUN(X);

end MAIN;

This construction is discussed further in the next chapter with
referen,ce to the basic mathematical functions.

Note that, in some cases, it may be very difficult to produce, and
highly inefficient to execute, code of arbitrary precision. In such
cases, the non-generic form of the package, as first described, may
be used, with its body specialised to a particular machine precision.
The effect of calling an instantiation of the generic form of the
package for type REAL could then be simply to call the more efficient
non-generic form. An example of this practice is described in section
(h) of the next chapter.

Note also that, within a program library, the simple names of all
library units must be distinct identifiers (LRM 10.1(3)). It is
important therefore that library designers should all use the same
names for basic packages, such as REAL TYPES. For ease of reference,
our proposals for the names of such packages (and their contents) are
summarised in Appendix B to this report.

- 15 -

4. BASIC FUNCTIONS

As observed in section (b) of Chapter 2, the basic mathematical
functions, which are essential for any serious scientific
computation, are not included in the Ada language and so must be
provided in a library package. The design of such a package provides
an excellent vehicle for illustrating the recommendations of the
previous chapter and, in the absence to date of any universally

.accepted package of mathematical functions, provides a useful source
of reference for the remaining chapters of these Guidelines.

In this chapter, therefore, the following problems concerning
basic functions are identified and discussed:

- contents of a package of basic mathematical functions,
- naming of basic mathematical functions,
- method of use for user-defined types,
- efficiency of execution,
- calling sequences,
- exceptions,
- package specification,
- practical considerations.

Each of these problems is considered in a separate section.

a) Contents of a package of basic mathematical functions

Although large sets of mathematical functions are sometimes
required, we propose that only Square Root and the Elementary
Transcendental Functions, as given in Abramowitz and Stegun (1965)
but omitting the secant and cosecant functions, should be components
of a basic Mathematical Functions package (see section (b) below). By
permitting some of these functions to have two arguments, with a
default value prescribed for the second, we provide a certain amount
of flexibility in their range of application (see section (e)). All
other functions can be contained in several packages of Special
Mathematical or Statistical Functions.

In the basic package, we also include number declarations for PI
and the base of natural logarithms e (here named EXP 1). In the
specification, in section (g), we give each of these constants to 35
digits, which we consider to be more than sufficient for most
purposes. Note that, in any case, the number of digits in such
declarations is ultimately restricted (LRM 2.2(9)) by the limitation
of line length to 80 characters, imposed in section 2. 2 of the
Ada-Europe portability guidelines (Nissen et al., 1983),

The alternative of using function calls for these constants, e.g.

PI: constant REAL:: 4.0*ARCTAN(1.0);

is not possible here, since the body of the function ARCTAN, which is
declared in the same specification, is not available at the time of
elaboration of this declaration. Moreover, the value of PI might be
required in the body of ARCTAN itself. Both PI and EXP 1 are
definitely required, as default parameter values , in the
specifications of other functions in this package (see section (e)
below).

- 16 -

The :further alternative of actually representing the constants by
functions, e.g.

func·tion PI return REAL;

avoids the necessity of recompilation of dependent library units when
more than 35 digits are required. This might have some merit if the
body of the basic package can compute the value of PI to the desired
accuracy and store it in a local (invisible) variable to be simply
read out on each function call. However, the feasibility of this
approach is debatable when the type REAL is a generic parameter, in
which ease only operations for this type can be used in the
computation. This construction is therefore not recommended here.

It must be mentioned that due to the proposed structure of this
Mathematical Functions package, following section (f) of Chapter 3,
there is no need for (visible) type declarations in the package (see
section (c) below). In our opinion, the package obtained through an
instantiation with a floating-point type FPT, chosen by the user,
should provide all the basic mathematical functions for this type
FPT, eaeh of the form:

function MATH FUNCTION (X : FPT) return FPT;

when only a single argument is involved. We reject a construction in
which every basic function has its specific types and subtypes, to
which a user has to accommodate.

Through each instantiation the user receives a package with the
familiar basic functions (as an extension of the set of arithmetic
operators) for his chosen floating-point type. In this connection we
note that such an instantiation is not necessary if the user-defined
type is a derived type (like type REAL is new FLOAT) and an
instant:lation of GENERIC MATH FUNCTIONS (see section (b)) is already
available for the parent type.

The package is not subdivided into smaller local packages, each
containing some connected basic functions, e.g. the hyperbolic
functions, since this would make calls of these functions too
verbose.

We do not propose a separate non-generic version of the basic
Mathematical Functions package. We propose instead that the program
library should contain at least one standard instantiation of this
package with FLOAT (or, more appropriately for scientific
computation, the library type REAL) as generic actual parameter.
(Note that a particular implementation may, through preference,
create such an instantiation from an Ada text by expanding the
generic declaration as described in section (h) below.)

b) Naming of basic mathematical functions

The package itself should be named:

GENERIC _MATH _FUNCTIONS,

where the prefix "GENERIC II distinguishes it
instantiation, or a non-generic version, with
MATH Frn~CTIONS. Its components should be named:

from
the

a possible
(same) name

- 17 -

PI, EXP_1 (the base e of natural logarithms),
SQRT,
LOG (for an arbitrary base),
EXP (for powers of an arbitrary base),
SIN, COS, TAN, COT, (for an arbitrary period),
ARCSIN, ARCCOS, ARCTAN, ARCCOT,
SINH, COSH, TANH, COTH,
ARCSINH, ARCCOSH, ARCTANH, ARCCOTH.

Although we agree with other authors, such as Barnes (1982), that
identif:iers should be meaningful and that abbreviations should not be
used where there is any risk of confusion, we think that for the
basic mathematical functions the traditional names above are
suffici1ently familiar. We use the name EXP 1 rather than E, for the
base of natural logarithms, on the grounds that there is a
signifi,cant risk of misuse of E, e.g. when 1. O*E-1 is written instead
of 1. OE-1 (assuming a mixed-type subtraction operation to be
available) or when E occurs naturally in a sequence of real variables
A, B, C, Functions with two arguments are explained in detail in
section (e) below.

c) Method ,of use for user-defined types

In aiecordance with section (f) of Chapter 3, the package structure
should be as follows:

generic
type REAL is digits <>;

package GENERIC MATH FUNCTIONS is

function SQRT(X: REAL) return REAL;

-- LOG, EXP, etc.

end GENERIC _MATH _FUNCTIONS;

Then tlh.e package may be made available for any user-defined
floating-point type, and also for the standard types FLOAT,
SHORT_FLOAT and LONG_FLOAT (if present) with implementation-dependent
accuracies, by an instantiation of the package for the type
concerrn~d; for example:

type REAL 6 is digits 6;
package MATH_FUNCTIONS_6 is new GENERIC_MATH_FUNCTIONS(REAL_6);

-- and for the standard type FLOAT:

package STD_MATH_FUNCTIONS is new GENERIC_MATH_FUNCTIONS(FLOAT);

(For completeness we remark that the program unit containing such an
instantiation must include GENERIC MATH FUNCTIONS in its context
specifieation.)

For derived types, the package is automatically available from the
parent type. For example, if types REAL and DOUBLE are declared as in
section (b) of Chapter 3, and if standard instantiations are
available as library units (which makes all subprograms in the
instanc1~s derivable, LRM 3,4(11)) as suggested in section (d) of
Chapter 3, then new instantiations for REAL and DOUBLE are not
needed.

- 18 -

No allowance is made here for mixed-type expressions, as when a
specification like

func'tion SQRT(A: AREA) return LENGTH;

is needed. We assume that any such application will be effected by
the user by means of type conversions or overloadings. Note, however,
that some of our functions serve multiple purposes. For example, our
trigonometric functions are so designed that they may be evaluated
for angles measured in either radians or degrees (see section (e)
below).

Finally we remark that it is perfectly acceptable for every
instantiation to deliver the same numbers PI and EXP 1 (since they do
not dep,end upon the generic actual parameter) .

d) Efficiency of execution

When writing an Ada source text suitable for calculating values of
some basic function for every feasible accuracy, the following
problems are faced:

- What,ever the machine arithmetic, the algorithm executed must
deliver values as specified with maximal accuracy if the argument
is inside its range. In agreement with the recommendations of the
Ada-Europe Portability Group (Nissen et al., 1983), algorithms
must be given for accuracies ranging from digits 5 up to digits 10
at least, but in the present context we propose an extension of
this requirement up to digits 35 and require a minimum of 10 (see
section (a) of Appendix A).

- The exception SIGNIFICANCE_ ERROR should be raised for calls when
the argument cannot be used for calculating the value of the basic
function with useful accuracy (e.g. for a call of
SIN (1 O. 0 H REAL 'DIGITS)). A problem here is that the function
body cannot be made aware that the user (the function call)
expects a smaller precision than normally, as would be the case if
the type provided for the function result had a less stringent
accuracy constraint than the type for the parameter. Here all
functions have the same floating-point type for parameter(s) and
function result. A possible, but somewhat arbitrary, solution is
to raise SIGNIFICANCE ERROR only if more than a specified number
of digits will be lost. (This number of digits could be controlled
by a second generic parameter of the form

SIG: in POSITIVE:: 1;

with a prescribed default value, in this case unity, but this
would only work if the user were directly responsible for the
instantiation. Perhaps some better criterion will emerge from the
deliberations of the Ada-Europe Numerics Working Group which was
established in March 1983.) The alternative, restricting calls of
the functions SIN, COS, TAN and COT to arguments in the range
[- 2*PI, + 2*PI], is not supported.

- Algorithms may have many branches conditional upon the accuracy of
the type REAL (LRM 3.5.8) (and perhaps also upon the machine
mantissa, machine exponent and other machine properties).

- 19 -

- Expr,essions must be built by the elementary operators only, though
some basic functions may call other (more basic) ones from the
same package.

- If s:ome branching depends on the value of an argument then it
should be distinctly separated from branching which depends on
attributes of the generic type. In this way optimising compilers
will not be prevented from deleting dead branches.

- The standard type FLOAT cannot be used inside the packages for
local declarations and calculations, as this might imply an
undesirable loss of accuracy in the final results. Alternatively,
it might signify a waste of computer time if FLOAT is much more
accurate than necessary. The algorithm might use different
approximations for different accuracy constraints. For this reason
we advise that branching of algorithms is not by the
MACHINE MANTISSA attribute but by the DIGITS or the MANTISSA
attribute (cf. section (c) of Chapter 3).

- As s:tatic expressions in floating-point type definitions cannot
depend on attributes of the generic actual parameter (LRM 4.9), it
is not possible (see section (d) of Appendix A) to make a local
floating-point type definition with a (slightly) larger accuracy,
e.g.

type LOCAL_REAL is digits REAL'DIGITS + 2;

for performing the internal calculations. All algorithms for basic
functions must simply deliver the best results possible using the
user-supplied floating-point type. If this user-supplied type has
unexpected additional constraints, then the exception
CONSTRAINT ERROR will be raised upon violation. This exception can
also be raised in the package body (elaborated upon instantiation)
if the user-defined type is unfit for any calculation at all.

- In the same way static expressions in fixed-point type definitions
cannot depend on attributes of the generic actual parameter. So
the idea of Wichmann (1981) of using local fixed-point arithmetic
for evaluating polynomials cannot apply here, because the
appropriate fixed-point types cannot be defined (unless the types
are declared inside the different branches). Besides, it will be
unce.rtain whether a fixed-point type with as large a mantissa as
that of the floating-point type is supported.

- No E~xception occurring in intermediate calculations should be
propagated to the user's call (provided that the final result
would not be exceptional). Only when the final result is
exceptional, due to a bad argument of the function call, should an
appropriate exception be raised (see section (f) below).

- Program units using the basic Mathematical Functions package
should not each make their own instantiation of
GENERIC MATH FUNCTIONS, as this might imply that several copies
are made. Consider for example:

generic
type REAL is digits<>;

package GENERIC CHOLESKY is
type SYMMATRIX is array(INTEGER range<>) of REAL;
procedure CHOLESKY_DECOMPOSITION(MAT: in out SYMMATRIX);

end GENERIC_CHOLESKY; -- specification

- 20 -

with GENERIC_MATH_FUNCTIONS;
package body GENERIC_CHOLESKY is

package MATH FUNCTIONS is
new GENERIC_MATH_FUNCTIONS(REAL);

use MATH_FUNCTIONS;

procedure CHOLESKY_DECOMPOSITION(MAT in out SYMMATRIX) is

Local declarations

begin
DECOMPOSE_MAT;

end CHOLESKY_DECOMPOSITION;

end GENERIC_CHOLESKY; -- body

Such a package, which itself must be instantiated, would require
an instantiation of the basic Mathematical Functions package and
so would all other similar numeric packages.

A solution might be that a numeric package (in the above and
following examples for the Cholesky decomposition of symmetric
positive-definite ma trices, which needs the SQRT function) is
given as a generic package with, as generic parameters (besides
the user-supplied floating-point type), those basic mathematical
functions which it uses. These generic subprogram parameters must
be declared with themselves as defaults, in which case we have

ge.neric
type REAL is digits<>;
with function SQRT(X: REAL) return REAL is<>;

package GENERIC CHOLESKY is
type SYMMATRIX is array(INTEGER range<>) of REAL;
procedure CHOLESKY DECOMPOSITION(MAT: in out SYMMATRIX);

end GENERIC _CHOLESKY; - __ specification

with a body of the form:

package body GENERIC CHOLESKY is

· procedure CHOLESKY_DECOMPOSITION(MAT in out SYMMATRIX) is

Local declarations

begin
DECOMPOSE_MAT;

end CHOLESKY_DECOMPOSITION;

end GENERIC_CHOLESKY; -- body

using SQRT

Such a generic package can be used in the following way:

with GENERIC MATH FUNCTIONS, REAL TYPES; use REAL TYPES;
with GENERIC CHOLESKY; -- and other numeric packages, etc.
procedure MAIN is

-- Instantiations:

package MATH FUNCTIONS is
new GENERIC_MATH_FUNCTIONS(REAL);

- 21 -

use MATH_FUNCTIONS;

package MY_CHOLESKY is new GENERIC_CHOLESKY(REAL);

-- Note that the name SQRT is visible, through
-- the use clause, and that SQRT can be used

as the generic actual parameter since it
-- has the correct subprogram specification.

etc.

begin
MAIN_PROGRAM_STATEMENTS;

end MAIN;

Unfortunately, this solution violates the "black box" principle of
library software by making the (possible) use of the function SQRT
apparent to the user when there should really be no need for him
to know that this function is used. We would prefer the contents
of the package body to be completely hidden from the user so that
any changes within the body, such as the use of some other
function than SQRT, would not affect dependent library units.

e) Calling sequences

Assuming the availability of the instantiation:

type REAL 6 is digits 6; -- as an example
package MATH FUNCTIONS 6 is

new GENERIC_MATH_J'UNCTIONS(REAL_6);

and the use clause:

use MATH FUNCTIONS_6;

it follows from the full declarations given in section (g), below,
that ea.ch of the basic mathematical functions can be called, taking
SQRT as an example, in each of the following ways:

MATH FUNCTIONS_6.SQRT(REAL_6_EXPRESSION) -- as a primary

SQRT(REAL 6 EXPRESSION) -- when the component SQRT of the
-- package is visible

SQRT(X => REAL_6_EXPRESSION) using the name of the
formal parameter.

Similar calls apply to those functions with two arguments, the second
of which has a prescribed default value.

The declarations of LOG and EXP take the form:

function LOG(X
function EXP(X

REAL; Y
REAL; Y

REAL·- EXP 1) return REAL;
REAL·- EXP-1) return REAL;

where the second argument, with the default value EXP 1, gives the
base of the logarithm or the power respectively. Thus, for example, a
call of LOG(X) gives the value o/ the natural logarithm ln X, while
EXP(X,A) gives the value of A . Note that EXP(X,A) is used in
preference to A**X (overloading H) to avoid confusion with the

- 22 -

predefined operator IH which yields only integer powers
(corresponding to repeated multiplication).

The declarations of the trigonometric functions are

function SIN(X REAL; y REAL :: 2*PI) return REAL;
function COS(X REAL; y REAL : = 2*PI) return REAL;
function TAN(X REAL; y REAL != 2*PI) return REAL;
function COT(X REAL; y REAL :: 2*PI) return REAL;

where the second argument Y gives the complete angle at a point in
the units of the first argument X, i.e. Y := 2*PI (the default value)
when X is measured in radians, Y : = 360. 0 when X is measured in
degrees, etc. Note that the second argument represents the period of
the functions SIN and COS but is twice the period of the functions
TAN and COT.

The declarations of ARCTAN and ARCCOT allow a particular function
call for arguments close to INFINITY. Their declarations read:

function ARCTAN(X
function ARCCOT(X

REAL; Y
REAL; Y

REAL:: 1.0) return REAL;
REAL:: 1.0) return REAL;

and are such that, for example, a call:

ARCTAN(REAL_EXPRESSION)

delivers the normal arctangent value in the range [- PI/2, PI/2],
whereas:

ARCTAN(REAL_EXPR1, REAL_EXPR2)

delivers the angle between the X-axis and the radius vector of the
Cartesian point (REAL EXPR2, REAL EXPR 1) (note the different orders
of the coordinates and the parameters of ARCTAN) lying in the range
(- PI, PI]. This would also be delivered, but possibly less
accurately, by

ARCTAN(REAL_EXPR1/REAL_EXPR2).

f) Exceptions

Any exceptional situation which arises can lead to the raising of
an exception, this raising being done either automatically or by an
explicit raise statement. Exceptions which may be raised
automatically (or explicitly) are the predefined exceptions (see
LRM 11.1 and section (a) of Chapter 7):

NUMERIC ERROR (for errors in the use of floating-point
arithmetic, especially "overflow"),

CONSTRAINT ERROR (for "out-of-range" values, as might occur
with function calls and array indexing),

STORAGE ERROR (self-explanatory) and

PROGRAM ERROR (usually for programming
calling a subprogram before its body has
reaching the end of a function call
executed a return statement, and so on).

errors, such as
been elaborated,
without having

- 23 -

Other eixceptions, which may be raised only explicitly, must be
declared explicitly. We propose that the basic mathematical functions
package contains two such exceptions:

ARGUMENT ERROR (for arguments which are outside the domain
of the relevant function, e.g. negative arguments for
SQRT) and

SIGNIFICANCE ERROR (for arguments outside
minimal accuracy can be expected, see
section (d) above).

a range where
discussion in

We propose that an exception is raised if an algorithm fails to
deliver the required result, but only if the final result itself
would be exceptional. In most cases the exception that is raised
automatically (usually NUMERIC ERROR or CONSTRAINT ERROR) can be
propagated, but it is allowed that a basic function handles these
excepti1::ms and raises one of the other exceptions as the case may be.
More specifically, if NUMERIC_ERROR is not raised automatically but
special values are returned by the hardware, then the function body
should not raise an exception, as it might be the user's wish to
continuia the calculations with these special values. This may be
compared with the IEEE recommendations for binary floating-point
arithmetic (IEEE, 1981): they advise that exceptions (like invalid
operations, division by zero, overflow, underflow) must be detected
by the hardware, but that the user should have the means to enable
and disable the corresponding traps.

As has been stated in section (d), SIGNIFICANCE ERROR should be
raised when the argument is insufficiently accurate to permit
computation of accurate results. No guidelines are offered in respect
of certain special exceptions, such as arise if storage is exhausted
when instantiating the generic package or when calling one of its
constituents.

g) Package specification

The oomplete generic package declaration is as follows:

generic
type REAL is digits<>;

package GENERIC_MATH_FUNCTIONS is

-- Declare constants.

PI: constant := 3.1415 92653 58979 32384 62643 38327 95029;
EXP_1 : constant := 2.7182_81828_45904_52353_60287_47135_26625;

-- Dia cl are the basic mathematical functions.

func'tion SQRT(X: REAL) return REAL;
function LOG(X REAL; Y REAL·- EXP 1) return REAL;
function EXP(X REAL; Y REAL·- EXP-1) return REAL;
function SIN(X REAL; Y REAL·- 2*PI) return REAL;
function COS(X REAL; Y REAL·- 2*PI) return REAL;
function TAN(X REAL; Y REAL•- 2*PI) return REAL;
function COT(X REAL; Y REAL:: 2*PI) return REAL;
function ARCSIN(X REAL) return REAL;
function ARCCOS(X: REAL) return REAL;

- 24 -

function ARCTAN(X: REAL; Y: REAL:: 1.0) return
function ARCCOT(X: REAL; Y: REAL:= 1.0) return
function SINH(X REAL) return REAL;
function COSH(X: REAL) return REAL;
function TANH(X: REAL) return REAL;
function COTH(X: REAL) return REAL;
function ARCSINH(X REAL) return REAL;
function ARCCOSH(X REAL) return REAL;
function ARCTANH(X REAL) return REAL;
function ARCCOTH(X REAL) return REAL;

-- Declare exceptions.

ARGUMENT_ERROR, SIGNIFICANCE_ERROR : exception;

end GENERIC_MATH_FUNCTIONS;

REAL;
REAL;

For the package body, guidelines about the delivered accuracy and
the raising of exceptions are given in sections (d) and (f) above. No
error messages should be issued. We advise that all the program
components of the package body are given as body stubs with separate
subunits, assuming that facilities for partial loading are available
(see Appendix A and section (h) of Chapter 8).

h) Practical considerations

As noted in section (f) of Chapter 3, and mentioned in section (a)
above, a particular implementation may, for reasons of efficiency,
effect an instantiation of a generic package by calling an equivalent
non-generic version. As far as the user is concerned, the fact that
this is not an instantiation in the normal sense will not be evident
and will not matter.

In the present case, the non-generic version will have the
specification:

with REAL_TYPES; use REAL_TYPES;
package MATH_FUNCTIONS is

-~ Declarations as in the generic package above

end MATH_FUNCTIONS; -- specification

and the body:

package body MATH_FUNCTIONS is

function SQRT(X: REAL) return REAL is separate;
function LOG(X: REAL; Y: REAL:: EXP 1) return REAL

is separate; -

-- etc.

end MATH_FUNCTIONS; -- body

Then each function will have a separate body, typically of the form:

- 25 -

separate (MATH FUNCTIONS)
function MATH FUNCTION(X REAL) return REAL is

-- Local declarations

begin

-- Sequence of statements

end MATH_FUNCTION;

This may be preceded by a context clause if necessary. Example bodies
for SIN and COS are given in Appendix C.

- 26 -

5. COMPOSITE DATA TYPES

In this chapter we discuss the provision of composite data types such
as COMPLEX, VECTOR and MATRIX.

a) Complex operators

Since complex variables are seldom used without complex
arithmetic, we propose that the type COMPLEX should be provided, as a
record type (cf. Wichmann, 1981), alongside its associated operators
in a package of the form:

package COMPLEX OPERATORS is

type COMPLEX is
record

RE,IM : REAL;
end record;

function "+"(X: COMPLEX) return COMPLEX;
function "-"(X: COMPLEX) return COMPLEX;
function "abs"(X: COMPLEX) return REAL;
function ARG(X: COMPLEX) return REAL;
function "+"(X,Y COMPLEX) return COMPLEX;
function "-"(X,Y COMPLEX) return COMPLEX;
function "*"(X,Y COMPLEX) return COMPLEX;
function "/"(X,Y COMPLEX) return COMPLEX;
function "**"(X: COMPLEX; N: INTEGER) return COMPLEX;

end COMPLEX_OPERATORS; -- specification

where it is assumed that a floating-point type REAL is already
available, e.g. through a context clause:

with REAL_TYPES; use REAL_TYPES;

such as was introduced in section (f) of Chapter 3. If it is further
assumed that the basic mathematical functions, applicable to such
REAL variables, are available in a package MATH FUNCTIONS, e.g.
through· an instantiation of the generic package described in
Chapter 4:

package MATH_FUNCTIONS is new GENERIC_MATH_FUNCTIONS(REAL);

then the package body, corresponding to the above specification,
could take the form:

with MATH_FUNCTIONS;
package body COMPLEX_OPERATORS is

use MATH_FUNCTIONS;

function "+"(X: COMPLEX) return COMPLEX is
begin

return X;
end "+";

- 27 -

function "-"(X : COMPLEX) return COMPLEX is
b,egin

return (- X.RE, - X.IM);
e:nd "-";

function "abs"(X COMPLEX) return REAL is
A,B: REAL;

b,egin
if abs X.RE > abs X.IM then

A : = abs X. RE;
B := abs X.IM;

else
A · - abs X. IM ;
B ·- abs X.RE;

end if;
if A> 0.0 then

return A* SQRT(1.0 + (B/A)**2);
else

return 0.0;
end if;

e1nd "abs";

flLlnction ARG(X: COMPLEX) return REAL is
b,egin

return ARCTAN(X.IM, X.RE);
e10.d ARG;

function "+"(X,Y: COMPLEX) return COMPLEX is
b1egin

return (X.RE + Y.RE, X.IM + Y.IM);
e1nd "+";

function "-"(X,Y: COMPLEX) return COMPLEX is
b,egin

return (X.RE - Y.RE, X.IM - Y.IM);
eind "-";

function "*"(X,Y: COMPLEX) return COMPLEX is
b,egin

return (X.RE*Y.RE - X.IM*Y.IM, X.IM*Y.RE + X.RE*Y.IM);
eio.d "*";

function 11 /"(X,Y: COMPLEX) return COMPLEX is
A,B,ZR,ZI: REAL;

biegin
if abs Y.RE > abs Y.IM then

A:: Y.IM/Y.RE;
B :: A*Y.IM + Y.RE;
ZR·- (X.RE + A*X.IM)/B;
ZI :: (X.IM - A*X.RE)/B;

else
A : = Y. RE/Y. IM;
B :: A*Y.RE + Y.IM;
ZR:: (A*X.RE + X.IM)/B;
ZI :: (A*X.IM - X.RE)/B;

end if;
return (ZR, ZI);

e1:id 11 / 11 ;

- 28 -

function 11 H 11 (X : COMPLEX; N INTEGER) return COMPLEX is
CMOD,CARG,R,THETA: REAL;

b~:11gin
CMOD := abs X;
GARG : = ARG(X);
R : = CMOD**N;
THETA : = N*CARG;
return (R*COS(THETA), R*SIN(THETA));

end "**";

end COMPLEX_OPERATORS; -- body

The complex division function in this package could perhaps raise an
explicit exception if the denominator Y should vanish but it would
seem better to rely upon the outcome of the real divisions within it
(i.e. upon whether or not they raise an exception).

Note that there are no explicit type conversions between types
REAL and COMPLEX but that, given

R,I REAL;
C COMPLEX;

we may write

C := (R,I);

or, equivalently,

C := COMPLEX'(R,I);

to form a complex number from two real numbers, and

R · - C .RE;
I·- C.IM;

to extract the real and imaginary parts of a complex number.

b) Use of generics for complex operators

Following our proposals in section (f) of Chapter 3, we might
consider making a generic form of the above package:

gene1ric
type REAL is digits<>;

package GENERIC COMPLEX OPERATORS is

type C01PLEX is
record

RE,IM : REAL;
end record;

etc.

end GENERIC_COMPLEX_OPERATORS; -- specification

in whicln case the corresponding package body would take the form:

- 29 -

with GENERIC_:MATH_FUNCTIONS;
package body GENERIC_COMPLEX_OPERATORS is

package MATH_FUNCTIONS is new GENERIC_MATH_FUNCTIONS(REAL);
u:se MATH _FUNCTIONS;

function "+"(X: COMPLEX) return COMPLEX is
b,egin

return X;
eind "+";

-- etc.

end GENERIC_COMPLEX_OPERATORS; -- body

The particular instantiation:

package COMPLEX_OPERATORS is new GENERIC_COMPLEX_OPERATORS(REAL);

would then serve the same purpose as the non-generic package, in
section (a) above, for the same REAL type. The generic form would
also satisfy the needs of the sophisticated programmer wishing to use
some floating-point type other than type REAL. However, this
construction cannot be recommended for general use, since it
necessitates an instantiation of the basic mathematical functions
package within an instantiation of the complex operators package (cf.
section (d) of Chapter 3).

An alternative construction, which may be preferable, is obtained
by following the example in section (d) of Chapter 4 and making the
package GENERIC_COMPLEX_OPERATORS generic with respect to each of the
mathematical functions which it uses, viz. SQRT, ARCTAN, SIN and COS.
In this case we have

generic
t,ype REAL is digits <>;
with function SQRT(X: REAL) return REAL is<>;
-writh function ARCTAN(X, Y : REAL) return REAL is <>;
""Writh function SIN(X : REAL) return REAL is <>;
with function COS(X: REAL) return REAL is<>;

pack~ge GENERIC COMPLEX OPERATORS is

type COMPLEX is
record

RE,IM: REAL;
end record;

etc.

end GENERIC_COMPLEX_OPERATORS; -- specification

with a body of the form:

pacLcage body GENERIC COMPLEX OPERATORS is

- 30 -

function "abs"(X
A,B REAL;

b12gin

COMPLEX) return REAL is

using SQRT
e1r.1.d "abs";

function ARG(X: COMPLEX) return REAL is
b1egin

return ARCTAN(X.IM, X.RE);
e1t1d ARG;

function "**"(X : COMPLEX; N
CMOD,CARG,R,THETA: REAL;

b1egin

INTEGER) return COMPLEX is

-- using SIN and COS
eiod "**II• '

end GENERIC_COMPLEX_OPERATORS; -- body

Provided that the necessary MATH _FUNCTIONS are visible, e.g. through
a use clause, this package may be instantiated exactly as above. We
observe here, however, that to proceed in this way in general could
lead to very long lists of generic function parameters.

c) Complex functions

Corriesponding to the basic mathematical functions considered in
Chapter 4, we might also have a package of basic complex functions
with thie specification:

with COMPLEX OPERATORS; use COMPLEX OPERATORS;
package COMPLEX _FUNCTIONS is -

function SQRT(X: COMPLEX) return COMPLEX;
function LOG(X COMPLEX) return COMPLEX;
function EXP(X COMPLEX) return COMPLEX;
function SIN(X COMPLEX) return COMPLEX;
function COS(X COMPLEX) return COMPLEX;

end COMPLEX_FUNCTIONS; -- specification

and the package body:

with REAL TYPES, MATH FUNCTIONS;
pac~age body COMPLEX_FUNCTIONS is

u.se REAL_TYPES, MATH _FUNCTIONS i

function
YR, YI
ABS X

begin

SQRT(X: COMPLEX) return COMPLEX is
REAL;

: constant REAL:= abs X;

if ABS X = 0.0
YR := 0.0;
YI : = 0. 0;

then

elsif X.RE >= 0.0 then
YR:: SQRT((X.RE + ABS_X)/2.0);

- 31 -

YI:: X.IM/(2.0*YR);
else

declare
SIGN: REAL;

begin
if X.IM >= o.o then

SIGN : = 1.0;
else

SIGN : = - 1.0;
end if;
YI:: SIGN*SQRT((abs X.RE + ABS_x)/2.0);
YR := X.IM/(2.0*YI);

end;
end if;
return (YR, YI);

e1nd SQRT;

function LOG(X: COMPLEX) return COMPLEX is
b,egin

return (LOG(abs X), ARG(X));
eind LOG;

function EXP(X : COMPLEX) return COMPLEX is
EXP RE: constant REAL·- EXP(X.RE);

b,egin
return (EXP_RE*COS(X.IM), EXP_RE*SIN(X.IM));

e1nd EXP;

function SIN(X : COMPLEX) return COMPLEX is
b,egin

return (SIN(X.RE)*COSH(X.IM), COS(X.RE)*SINH(X.IM));
e1nd SIN;

f·unction COS(X : COMPLEX) return COMPLEX is
begin

return (COS(X.RE)*COSH(X.IM), - SIN(X.RE)*SINH(X.IM));
end COS;

end COMPLEX_FUNCTIONS; -- body

d) Use of generics for complex functions

Unfortunately, we cannot make the above package of complex
functions generic with respect to the type COMPLEX, which is a record
type, unless we make this type private (see section (d) of
Appendix A). Then, of course, this type is no longer necessarily
defined by its real and imaginary parts, but may, for example be
given, in polar form, by its modulus and argument, thus:

type COMPLEX is
record

CMOD,CARG REAL;
end record;

Since the bodies of the functions within the package require the real
and imaginary parts and the modulus and argument of the type COMPLEX,
it would appear to be necessary to make the package generic also with
respect to functions which extract these parts. Similarly, since the
bodies require to form a complex number from its real and imaginary
parts, the package must also be generic with respect to a function

- 32 -

which does this, e.g.

function CCMPLEX_FORM(REAL_PART,IMAG_PART: REAL) return COMPLEX;

The spe,cification of the generic package might therefore take the
form:

with REAL_TYPES; use REAL_TYPES;
gene:r-ic

type COMPLEX is private;
w:ith function REAL PART(X : COMPLEX) return REAL is <>;
with function IMAG-PART(X: COMPLEX) return REAL is<>;
with function 11 abs11(X: COMPLEX) return REAL is<>;
w:ith function ARG(X: COMPLEX) return REAL is<>;
w:ith function COMPLEX FORM(X,Y: REAL) return COMPLEX is<>;

package GENERIC COMPLEX FUNCTIONS is

function SQRT(X : COMPLEX) return COMPLEX;
function LOG(X COMPLEX) return CCMPLEX;
function EXP(X CCMPLEX) return COMPLEX;
function SIN(X COMPLEX) return CCMPLEX;
function COS(X COMPLEX) return COMPLEX;

end GENERIC_CCMPLEX_FUNCTIONS; -- specification

The body of this package could then take the form:

with MATH_FUNCTIONS;
package body GENERIC_COMPLEX FUNCTIONS is

use MATH_FUNCTIONS;

function SQRT(X: COMPLEX) return CCMPLEX is
YR,YI REAL;
ABS X: constant REAL:: abs X;

begin
if ABS X = 0.0 then

YR : = 0. 0;
YI : = 0. 0;

elsif REAL PART(X) >= 0.0 then
YR·- SQRT((REAL PART(X) + ABS X)/2.0);
YI:= IMAG __ PART(X)/(2.0*YR); -

else
declare

SIGN REAL;
begin

if IMAG_PART(X) >= 0.0 then
SIGN : = 1. 0;

else
SIGN := - 1.0;

end if;
YI·- SIGN*SQRT((abs REAL_PART(X) + ABS_X)/2.0);
YR := IMAG PART(X)/(2.0*YI);

end; -
end if;
return COMPLEX_FORM(YR, YI);

end SQRT;

- 33 -

function LOG(X: COMPLEX) return COMPLEX is
bE!gin

return COMPLEX_FORM(LOG(abs X), ARG(X));
e11d LOG;

function EXP(X: COMPLEX) return COMPLEX is
EXP_RE: constant REAL:: EXP(REAL_PART(X));

biegin
return COMPLEX FORM (EXP RE*COS(IMAG PART(X)),

EXP_RE*SIN(IMAG_PART(X))); -
end EXP;

function SIN(X COMPLEX) return COMPLEX is
biegin

return COMPLEX FORM (SIN(REAL PART(X))*COSH(IMAG PART(X)),
COS(REAL_PART(X))*SINH(IMAG_PART(X))); -

end SIN;

function COS(X: COMPLEX) return COMPLEX is
b•egin

return COMPLEX FORM (COS(REAL PART(X))*COSH(IMAG PART(X)),
- SIN(REAL_PART(X))*SINH(IMAG_PART(X))); -

e11d COS;

end GENERIC_COMPLEX_FUNCTIONS; body

For the type COMPLEX defined in the package COMPLEX OPERATORS,
those functions which are required as generic parameters;- but which
are not included in the package COMPLEX OPERATORS, may be included in
a package COMPLEX _PARTS, thus: -

with COMPLEX_OPERATORS; use COMPLEX_OPERATORS;
package COMPLEX _PARTS is

function REAL PART{X: COMPLEX) return REAL;
function IMAG-PART(X: COMPLEX) return REAL;
function COMPLEX_FORM(X,Y: REAL) return COMPLEX;

end COMPLEX_PARTS; -- specification

with the body:

package body COMPLEX PARTS is

function REAL PART(X: COMPLEX) return REAL is
b 1egin

return X. RE ;
end REAL_PART;

function IMAG PART(X COMPLEX) return REAL is
begin

return x. IM;
end IMAG_PART;

function COMPLEX_FORM(X, Y REAL) return COMPLEX is
begin

return (X, Y);
end COMPLEX_FORM;

end COMPLEX_PARTS; body

- 34 -

We might then have an instantiation:

with COMPLEX OPERATORS, COMPLEX PARTS;
use COMPLEX_OPERATORS, COMPLEX_PARTS;
package COMPLEX FUNCTIONS is

new GENERIC _COMPLEX_FUNCTIONS(COMPLEX);

Clearly, the contents of the package COMPLEX_PARTS may be included in
the paekage COMPLEX OPERATORS, and we now recommend this, in which
case the above instantiation simplifies to

with COMPLEX OPERATORS; use COMPLEX OPERATORS;
package COMPLEX FUNCTIONS is -

new GENERIC_COMPLEX_FUNCTIONS(COMPLEX);

For the programmer who wishes to use polar coordinates, we propose
in Appendix D a package COMPLEX_POLAR_OPERATORS corresponding to the
package COMPLEX OPERATORS here. Note that either of these packages
may be extended to include operations between REAL and COMPLEX
arguments.

e) Vectors and matrices

Similar packages, to those proposed for complex arithmetic, might
be provided for vectors and matrices, but we consider that these
types, being useful in their own right, are best packaged separately
from their associated operators. Thus for a given

type REAL is digits D;

where D has some appropriate value for scientific computation, we
define

type VECTOR is array (INTEGER range <>) of REAL;
type MATRIX is array (INTEGER range<>, INTEGER range<>) of REAL;

and we group these three types together in one package, as suggested
in section (f) of Chapter 3:

package REAL TYPES is
type REAL is digits D;
type VECTOR is array (INTEGER range <>) of REAL;
type MATRIX is array

(INTEGER range <>, INTEGER range <>) of REAL;
end REAL _TYPES;

In this case, the context clause:

with REAL_TYPES; use REAL_TYPES;

attached to a library unit, gives immediate access, within that unit,
to all three types, as, for example, in the package LEAST SQUARES in
Appendix E.

Alternatively, the types VECTOR and MATRIX may be grouped in a
package which is generic with respect to the type REAL as follows:

generic
type REAL is digits<>;

package GENERIC REAL TYPES is

- 35 -

type VECTOR is array (INTEGER range<>) of REAL;
type MATRIX is array

(INTEGER range<>, INTEGER range<>) of REAL;
end GENERIC _REAL _TYPES;

This could be useful for the programmer who wishes to manipulate
vectors and matrices with a particular precision other than D digits.
However, it would not appear to be very helpful in the construction
of library packages. Suppose, for example, that one were to make a
linear algebra package generic with respect to the type REAL:

gener·ic
type REAL is digits<>;

package GENERIC LINEAR ALGEBRA is

end GENERIC _LINEAR _ALGEBRA;

Then within this package, which manipulates vectors and matrices, we
would require an instantiation:

package REAL_TYPES is new GENERIC_REAL_TYPES(REAL);
use REAL_TYPES;

giving access to the types VECTOR and MATRIX. Unfortunately, these
types would only be available within the LINEAR_ALGEBRA package and a
similar instantiation in a user's program would yield a different set
of REAL TYPES. The user would not therefore have access to
subprograms in the LINEAR ALGEBRA package with VECTOR or MATRIX
parameters.

For general purposes, of course, one instantiation of the package
GENERIC_~EAL_TYPES for the appropriate type REAL:

package REAL_TYPES is new GENERIC_REAL_TYPES(REAL);

would provide a package with the properties of the non-generic form
above.

[Note: This chapter is incomplete and will be extended later to cover
topics such as complex vectors and matrices, etc. This and subsequent
chapters are initial drafts, which did not appear in the first interim
technical report on this project. As such, they are not always as clear
as they should be, unfortunately, but they will be carefully revised for
the final report.]

- 36 -

6. INFORMATION PASSING

Software interface problems arise whenever two (or more) items of
software are to be used in conjunction with each other. In this
chapter we consider such problems in detail, beginning with the
particular problems which arise when one item is a library procedure
and the other a function (or procedure) to be supplied by the user,
in whic:h case the former has to be designed extremely carefully in
order to accommodate the latter in a flexible but straightforward
manner.

Problems in which the user has to specify a mathematical function
to a library procedure in this way occur in many areas of numerical
analysis including the solution of differential and integral
equations, function approximation, and the location of zeros and
extrema of functions.

Consider the following model problem:

It is required to design a mathematical library procedure
to find a zero z of a function f(x), for real x in an
interval [a, b], to an absolute accuracy e > O. The
function f and the values of a, b and e are to be
specified by the user.

We discuss, in the following sections (a) - (d), the solution of
this problem for functions f(x) of varying complexity. In each
section, we begin by describing a solution in FORTRAN, which will be
familiar to many readers, and then describe the corresponding
solution in Ada.

In section
available for
defaults.

(e), we discuss the various possibilities which
parameter association together with the use

a) Solution of model problem for simple functions

are
of

If the function f(x) has a simple explicit expression in terms of
x, a FORTRAN library subroutine for the solution of the model problem
might take the form:

SUBROUTINE ZERO(F, A, B, E, Z)
REAL F, A, B, E, Z
EXTERNAL F

code for determining Z from F

RETURN
E:ND

where F is declared as EXTERNAL in the calling (sub) program. (In
practic:e ZERO would have additional parameters, to indicate cases of
failure, etc.) The user would be asked to supply a function
subprogram which would return the value of F corresponding to any
specified value of X in [A, B]. Subroutine ZERO would operate
according to some iterative process, making repeated calls of F, for
values of X selected by the process, until it was deemed that a zero
Z had been determined to the prescribed tolerance E. In its simplest
form the subprogram would appear as:

REAL FUNCTION F(X)
REAL X

- 37 -

code for determining F from X

RETURN
END

For straightforward problems this approach is ideal. For example,
to determine the zero z of the function g(x) = ex-bx - 3, within the
interval [O, 2] to an absolute accuracy of 10 the user would
simply supply the subprogram:

REAL FUNCTION G(X)
REAL X
G = EXP(X) - X - 3.0
RETURN
END

and make the call:

CALL ZERO(G, 0.0, 2.0, 1.0E-6, Z)

In Ada, as already mentioned in section (d) of Chapter 2,
functions may not be passed as procedure parameters in the normal way
(see sE~ction (d) of Appendix A) but may be passed by means of
generics (LRM 12). Consequently, for the model problem above, an
appropriate Ada procedure might have the generic specification:

generic
with function F(X: REAL) return REAL;

procedure GENERIC_ZERO(A,B,E: in REAL; Z : out REAL);

where it is assumed, as it will be throughout this Chapter, that type
REAL is available, e.g. through the context clause:

with REAL_TYPES; use REAL_TYPES;

The body of this procedure must contain the code for determining the
zero Z from the function F. Then, in the manner of the example given
in section (d) of Chapter 2, the zero of a specific function g(x),
with the specification:

function G(X: REAL) return REAL;

may be obtained, to the required accuracy, by instantiating the
generic procedure, thus:

procedure ZERO is new GENERIC_ZERO(G);

and making the call:

ZERO(A, B, E, Z);

with appropriate values for A, Band E.

For the specific example above, the body of the function G will
have the form:

- 38 -

function G(X: REAL) return REAL is
begin

return EXP(X) - X - 3.0;
end G;

and the procedure call will be simply:

ZERO(O. O, 2. O, 1. OE-6, Z);

b) Solution of model problem using global variables

For many applications the simple approach used above is
impracticable since the user-specified function depends upon
additional information, as for example with the function:

n
\

h(x) = L cj exp(djx)
j:1

for specified values of n and the coefficients cj, dj' j = 1, .•. ,n.

The only way to supply such information to the function subprogram
written in the above form is to declare variables that are global to
it. In FORTRAN, because of its lack of block structure, the global
variables have to be simulated through the use of COMMON statements.
For example, for the function h(x) above, the user could supply the
subprogram:

REAL FUNCTION H(X)
REAL X, S
INTEGER J
CCMMON / CONSTS / N, C(10), D(10)
s = o.o
DO 10 J = 1, N

S = S + C(J)*EXP(D(J)*X)
10 CONTINUE

H = S
RETURN
END

The user's main program must then contain an identical COMMON
statement and assign appropriate values to the constants N and
C(J), D(J), J = 1, ••. ,N.

Note the severe restriction that arrays in COMMON storage must be
specified of fixed length. If, in the example, a value of n larger
than 10 were required, the main program, the function subprogram and
any other affected program units would have to be modified
accordingly and recompiled.

In Ada, this solution may be simulated by using a data package
(LRM 7. 2):

package CONSTS is
N : constant INTEGER :: 10;
C,D: array (1 •. N) of REAL;

end CONSTS;

in which case the body of the function representing h(x) might have
the form:

- 39 -

with CONSTS; use CONSTS;
function H(X: REAL) return REAL is

SUM REAL:= 0.0;
begin

for Jin 1 N loop
SUM :: SUM+ C(J).*EXP(D(J)*X);

end loop;
return SUM;

end H;

Here the user must assign the values of the coefficients to the
arrays C and Din the package CONSTS, whereafter he may instantiate
the generic package, thus:

procedure ZERO is new GENERIC_ZERO(H);

and call ZERO as required.

This Ada solution is only marginally better than the FORTRAN
solution, since, although N may be changed from its default value of
10 (in the main program, where the coefficients are assigned to the
arrays C and D) without any textual alteration to H or ZERO being
required, any such change, or a change in the coefficients, still
necessitates a recompilation of H.

A slight improvement over this crude simulation of FORTRAN
practice may be obtained by packaging the function, thus:

package FUN is
N: constant INTEGER := 10;
procedure INITIALISE (X, Y : in VECTOR);
f'unction H(X: REAL) return REAL;

end FUN; -- specification

where the vectors X and Y, of the type VECTOR introduced in
Chapter 5, are to contain the prescribed coefficients of the series
for h(x). The body of this package may have the form:

package body FUN is
C,D: array (1 •• N) of REAL;

procedure INITIALISE(X,Y: in VECTOR) is
begin

Check that vectors match arrays:

C(1 N) := X(1 N);
D(1 N) :: Y(1 N);

e1nd INITIALISE;

f'unction H(X: REAL) return REAL is
SUM REAL:= 0.0;

begin
for Jin 1 N loop

SUM:: SUM+ C(J)*EXP(D(J)*X);
end loop;
return SUM;

emd H;

end FUN; -- body

- 40 -

With this package, the user must provide a value for N (unless
n = 10) and appropriate vectors, XN and YN, of the coefficients. He
may then initialise the arrays C and D, which are now.private to the
package body, by the procedure call:

FUN.INITIALISE(XN,YN);

and instantiate the generic package, thus:

procedure ZERO is new GENERIC_ZERO(FUN.H);

whereafter the call:

ZERO(A, B, E, Z);

yields the necessary zero Z.

In this case, the coefficient arrays C and D may be changed, by
altering the vectors XN and YN in the user's program, without having
to recompile the package FUN containing the function H(X). However, a
change of N still necessitates recompilation of the package.

To overcome this difficulty, we remove N from the specification of
the package FUN, thus:

pack:age FUN is
procedure INITIALISE(X,Y: in VECTOR);
f'unction H(X: REAL) return REAL;

end FUN; -- specification

and modify the body of the package to:

pack:age body FUN is
type VECPTR is access VECTOR;
C,D : VECPTR;

procedure INITIALISE(X,Y in VECTOR) is
begin

C := new VECTOR'(X);
D : = new VECTOR I (Y);

Emd INITIALISE ;

function H(X: REAL) return REAL is
SUM REAL:: 0.0;

begin
for Jin 1 C1 LAST loop

SUM:: SUM+ C.all(J)*EXP(D.all(J)*X);
end loop;
return SUM;

emd H;

end FUN; -- body

In this case, the number n of terms in the series for h(x) is
implicit in the lengths of the vectors XN and YN of the coefficients.
Changes: may be made in these vectors without any recompilation of the
package FUN being required.

- 41 -

c) Parametric solution

The following alternative approach avoids the use of COMMON
storage in FORTRAN, but requires a different structure for the
function subprogram. Suppose the function subprogram were to take the
form:

REAL FUNCTION F(X, WRK, LWRK, IWRK, LIWRK)
REAL X, WRK(LWRK)
INTEGER LWRK, LIWRK, IWRK(LIWRK)

RETURN
END

where the real and integer working-space arrays WRK and IWRK are at
the disposal of the user. Within these arrays he can store any
information relating to the definition of his mathematical function.
(We could also add a LOGICAL working-space array if we so wished.)
For the example function h (x) above, IWRK (1) could contain n and
elements 1 to 2n of WRK could contain the values of the coefficients.
These values would have to be initialised before the call to the
subroutine ZERO. The dimensions LWRK and LIWRK, of WRK and IWRK
respectively, would need to be set appropriately.

The disadvantages of this alternative approach are that

(i) the user is required to pack information (n and the 2n
coefficients in the above example), which to him is in
meaningful terms, into the anonymity of working-space
arrays, and

(ii) he has to code the function subprogram in terms of
elements of the working-space arrays, thus losing all
clarity in the process.

The first disadvantage is certainly tiresome for the user, but the
second may necessitate a major reprogramming effort. For example, in
practice, it is not uncommon for each function value to involve
extensive computations such as matrix manipulations or the solution
of systems of differential equations.

This alternative solution to the model problem, for non-trivial
functions f(x), may be implemented equally well in Ada, with a
function specification:

function F(X: REAL; WRK VECTOR; IWRK
return REAL;

INTEGER_VECTOR)

assuming the availability of appropriate types VECTOR and
INTEGER VECTOR. In this case, the vector lengths LWRK and LIWRK can
be extracted from the vectors themselves, by calling upon the
appropriate attributes, e.g.

LWRK := WRK'LENGTH;

within the function body. Otherwise, this solution suffers from the
same disadvantages as the FORTRAN version. We note also that, in
other contexts, the passing of working-space parameters can have
undesirable effects (see section (b) of Chapter 8).

- 42 -

d) Reversei communication solution

The rigid specification of the structure of each of the function
subpro~irams described above implies that the user has to program his
mathematical function within a set of rules that are outside his
control. Ideally, however, a library routine of the type under
discussion should not constrain the user at all but should permit him
to com1truct his code in any way he chooses and, perhaps, even more
importamtly, to use existing code that he may already have available.
This may be achieved by means of reverse communication.

The concept of reverse communication involves the substitution of
control by the library routine, over the user's mathematical
function, by full control by the user.

Because of the nature of serial computers, a FORTRAN subroutine
such as ZERO would necessarily make successive calls to the
user-specified function F. Thus a likely internal structure for ZERO
would be:

DO 20 IT
(i)
(ii)
(iii)

20 CONTINUE

= 1, ITMAX
tests to determine whether the process has converged
code to produce a new value of X
call to user function to provide the value FX
of the function corresponding to X

Now suppose that steps (i) and (ii) above are replaced by a call to a
subroutine with declaration part:

SUBROUTINE ZER02 (.•• , FX, X, INF ORM, ...)
REAL ... , FX, X, ...
INTEGER ... , INFORM, ...

where X is the new estimate of the zero, FX is the value of the
function corresponding to the previous value of X, and INFORM
indicates the status of the process, e.g. whether a failure of some
kind has occurred or whether the process has converged. The
unidentified arguments include A, B, etc. and some working-space
parameters used to preserve information between calls of ZER02. (In
FORTRAN 77 the SAVE facility could be used to avoid these
working-space parameters.)

The situation, as seen by the user, is, so far, unchanged.
However, now suppose that the declarative part of ZERO is completely
removed, the user being requested instead to write in-line code of
the form:

DO 20 IT= 1, ITMAX
CALL ZER02(•.• , FX, X, INFORM, ...)

code to examine INFORM and evaluate FX from X

20 CONTINUE

This approach has the following advantages:

- 43 -

a) The fact that he is supplying in-line code implies that
the user's mathematical function can depend on any or all
of the information available in his program.

b) The form of the mathematical function specification is
arbitrary: subroutine, function subprogram, in-line code,
etc.

c) The user can easily incorporate his own termination
requirements: iteration count, absolute or relative error
tolerance, etc.

Its disadvantages are:

d) The user has to supply a few lines of in-line code,
surrounding the relevant procedure call (to ZERO2 in this
case).

e) The zero-finding algorithm is broken up, making its
components visible unnecessarily (and inhibiting parallel
computation).

f) Working-space is needed to preserve information.

Implementation of reverse communication in Ada may proceed along
similar lines by introducing a procedure with the specification:

procedure ZERO2(... ; FX
X: out REAL; INFORM

in REAL;
out INTEGER; ...);

and asking the user to write in-line code of the form:

for IT in 1 .. ITMAX loop
ZERO2(... , FX, X, INFORM, ...) ;

. . . -- code to examine INFORM and evaluate FX from X

end loop;

This implementation has all the advantages of the FORTRAN solution
and avoids the passing of unnecessary array parameters which the
parametric solution involves and which can be costly in Ada if
passing is done by copying. However, it also has the disadvantages
listed above and we feel that it is not required in Ada, where the
use of generics and the nested block structure of the language
provide all that is needed (see, for example, the code at the end of
section (b) above).

e) Parameter association

In subprogram calls, for each parameter an actual parameter is
associated with a corresponding formal parameter (LRM 6. 4(3)). This
association is said to be "named" if the formal parameter is named
explicitly, e.g.

HEADER=> TITLE,

otherwise it is said to be "positional". For positional association,

- 44 -

each aotual parameter corresponds to the formal parameter with the
same position in the formal part, whereas named associations may be
given in any order (though, once a named association has been given,
all following associations must also be named). If a default is given
for an in parameter (in the formal part), then an association for
that parameter can be omitted, in which case the default is used.

No irules are given for the order of evaluation of parameter
associations and, even if the parameter-passing mechanism is
call-by-copying, the copying-in may be performed in a different order
from the copying-out. One might expect that the order of evaluation
would be changed if the order of named associations were changed, but
this is not necessarily the case. Therefore no subprogram call should
depend upon a specific order of evaluation of its parameter
associations.

If a formal parameter has a default and its association is omitted
from the subprogram call, then, for all following parameters, the
named association must be used. Consequently, it is convenient if all
parameters with defaults are given at the end of the formal part.
This is contrary to the common practice of writing in parameters at
the beginning.

Finally, we note that formal parameters cannot be used in default
expressions in the same formal part (LRM 6.1(5)) and that a type
conversion is allowed as an actual parameter (not only for mode in
but also for modes out and in out) if the conversion exists for the
two types (see also section (i) of Chapter 8).

- 45 -

7. ERROR HANDLING

The Ada exception mechanism provides an elegant and disciplined way
of handling error situations. The mechanism has three components:
detection of the error, location of the appropriate software to
handle the error, and the error handling software itself. However,
like all language features, the exception mechanism can be misused.
This chapter therefore illustrates the correct use of exceptions in
the design of mathematical libraries. Some pitfalls are noted as
appropriate.

a) The predefined exceptions

The misuse of a language construct in Ada, such that no semantics
for an operation can be defined, results in the raising of a
predefined exception. We consider here the three such exceptions
which a.re most likely to arise in the present context. We discuss
TASKING ERROR later, in section (d) of Chapter 9, and we refer the
reader to the LRM 11.1 for details of PROGRAM ERROR.

- CONSTRAINT ERROR

A typical example of an undefined operation occurs when an array
subscript value lies outside the bounds of the array, in which case
the exeeption CONSTRAINT _ERROR is raised. This situation is clearly
caused by a programming bug and should never arise in high-quality
software. As we shall see, in other contexts the CONSTRAINT ERROR
exception can arise in software which does not contain such obvious
programming bugs.

Consider the example of the mathematical function SQRT whose
specification in the proposed library is:

func.tion SQRT (X REAL) return REAL;

If the argument is negative, then the (semantic) specification states
that ARGUMENT ERROR is raised. This can be accomplished by including
an initial test in the body of SQRT:

if X < 0.0 then
raise ARGUMENT_ERROR;

end if;

However, a reasonable alternative strategy is to use a subtype
constraint on the formal parameter:

subtype POS is REAL range 0.0 REAL'LAST;
function SQRT(X: POS) return REAL;

In this case, the constraint is checked before the function is called
and the exception CONSTRAINT ERROR is raised. The subtype POS is used
to cheiek a pre-condition on the parameter - such checks being
essential for robust real-time software.

The main difference from the array bound violation is that
interface checking is necessary in large systems and an occasional
violation is to be expected. For instance, a variable which logically
must bE~ positive may computationally have a negative value due to
rounding errors. Hence CONSTRAINT ERROR can be raised in 'working'

- 46 -

softwar,e.

Care must be exercised with range constraints used for real types,
since range constraints are defined in terms of relational operators
which give only approximate results for such types depending upon
their accuracy. Consider, for instance:

subtype RATIO is REAL range 0.0 .. SQRT(2.0);

The mathematical value of the square root of two is certainly not a
model number of type REAL. In consequence, values near to the upper
bound will give indeterminate results. In contrast, there should be
no pro1blems with the lower bound since O. 0 is a model number
(regardless of the accuracy of type REAL).

There is another reason for being cautious about the use of real
range eonstraints, namely the cost, in space and time, that the
checking of such constraints implies. By contrast with the situation
with constraints on integer values, there is virtually no chance here
that an optimising compiler will remove 'unnecessary' constraint
checking.

- NUMERIC ERROR

The predefined exception NUMERIC ERROR is very important for
mathematical software. Although it is theoretically possible to write
software that never overflows, it is substantially simpler not to
make the checks that this implies. Because FORTRAN provides no
mechanism for controlling overflow, the majority of high-quality
packages in that language avoid overflow by careful coding. This
approach is satisfactory in many cases but it is virtually impossible
to prove that overflow can never arise. Hence in sensitive real-time
contexts (e.g. controlling a chemical plant) one must allow for
overflow.

The Ada definition does not require the NUMERIC ERROR exception to
be raised on overflow - it merely advises that this is highly
desirable. We do not believe that it is sensible nowadays to consider
a high--quality scientific library on machines which cannot raise
overflow on floating-point arithmetic.

The package COMPLEX OPERATORS in Chapter 5 has a function to
calculate the modulus of a complex value. This function could be
written as:

function 11 abs 11 (C: COMPLEX) return REAL is
begin

r·eturn SQRT(C.REH2 + C.IMH2);
end "abs";

Unfortunately, this simple algorithm has a defect. The expression
SQRT(C.RE**2 + C.IM**2) could overflow even if the result is in range
(for instance, when C.RE is the largest number, REAL 1LAST, and C.IM
is zero). This can be avoided by careful (but awkward) programming,
but can more easily be overcome by handling the exception
NUMERIC_ERROR, thus:

- 47 -

function 11 abs 11 (C: COMPLEX) return REAL is
begin

return SQRT(C.RE**2 + C.IM**2);
exception

when NUMERIC ERROR=>
declare

X : REAL : = abs C. RE;
y : REAL : = abs C. IM;

begin
if X > Y then

return X * SQRT(1.0 +
else

return y * SQRT(1.0 +
end if;

end;
end "abs";

(Y/X)**2);

(X/Y)**2);

The handler itself uses the cautious approach, so that a value is
returned by the function even in cases where NUMERIC ERROR is raised
by the simple algorithm. Of course, the cautious coding of the
handler could be used in the main body, but the method given above is
much mc,re efficient if NUMERIC_ERROR is not raised. Also, the main
body above is much easier to understand and can act as a logical
description of the objective in all cases.

It must be admitted that this example is not entirely satisfactory
because the algorithm above has another defect which is not caused by
overflow. This concerns underflow. If the real and imaginary parts
have ve1ry small (but non-zero) values, then the square can underflow
to giv1e zero. In these circumstances, the value abs Z could be
computed as zero even though Z is non-zero. The cautious coding given
in Chapter 5 avoids this pitfall.

We advocate that high-quality numerical software should require
that NUMERIC _ERROR be raised in overflow situations. The Ada language
does not require this, and several machines cannot efficiently
implement our requirement. The reason for our view is the desire to
ensure high reliability in all software and to be able to prove small
algorithms formally correct. If NUMERIC ERROR is not raised, then
most algorithms will malfunction in extreme cases in such a way that
no rem1edial action is possible. Formal correctness can only be
achieve1d if values are in the range of safe numbers. However, almost
no computation can be shown to keep to this range, hence the need to
raise NUMERIC _ERROR to show the presence of overflow. Even if an
algorithm, say a sine routine, keeps values within the range of safe
numbers:, the argument value could be outside the range. This
require1s, of course, that values outside have some reasonable
properties.

One might assume that Ada arithmetic is adequately behaved if
MACHINE: OVERFLOWS is true. Unfortunately, this is not the case (see
section-Cd) of Appendix A). The current wording (LRM 13.7.3) implies
that if MACHINE OVERFLOWS is true then every real operation gives a
result in the -model interval defined in LRM 4. 5. 7, or if this
interval is not defined, NUMERIC ERROR is raised. (This is the highly
desirable situation in LRM 4.5.7(7)).

It is very unlikely that MACHINE OVERFLOWS will ever be true
accordj_ng to this definition. To see why this is so, consider the
example of double length (say FLOAT) on the IBM series. The machine
has 14 hexadecimal places. With the Ada floating-point model, this

- 48 -

gives at most 53 binary places (= 4 * 14 - 3). Using the formula in
LRM 3,5,7, this implies FLOAT'DIGITS = 15 and FLOAT 1MANTISSA = 51 (:B
in LRM 3,5.7). FLOAT'SAFE_LARGE will therefore have 51 leading binary
1 's in its representation. However, the largest machine number
clearly has 56 non zero bits in the mantissa. The difference is
caused by two factors (a) use of hexadecimal (3 bits lost),
(b) specification of FLOAT in decimal digits rather than binary
places (2 bits lost). (A further loss could arise if the machine
exponent range was unsymmetric with more positive than negative
values) • As a result, there are 31 machine numbers greater than
FLOAT 1SAFE_LARGE. Moreover, since the IBM arithmetic is in some loose
sense 111 well-behaved", these 31 numbers can result from a real
cperation and be the "correct" result.

The conclusion from this is that the MACHINE OVERFLOWS attribute
should take into account that the underlying hardware may give more
precision than required (in the same way that the concept of safe
numbers extends the exponent range).

In fact, it does appear possible to define the attribute in an
abstract manner, like the model and safe numbers, which gives the
desired properties. Define ideal numbers to be those with unbounded
exponents but the same mantissa length as the model numbers. This is
an infinite set, of course, with

model numbers<= safe numbers< ideal numbers

Define ideal interval analogously to model (safe) intervals of
LRM 4.5,7. Then if MACHINE OVERFLOWS is true, every operation either
gives a result within the ideal interval or NUMERIC ERROR is raised.
The 31 numbers noted above do not now cause a problem because the
result is bounded by the next ideal number (which is not a machine
number). Further issues concerning numerics are considered in
Appendix F.

- STORAGE ERROR

The storage required for an Ada program consists of two quite
separat•3 parts: storage for the program instructions (and literals)
and storage for the data objects. The storage for program
instructions and 1 iterals is outside the user's control .
Consequi3ntly, if the program is to run at all, the machine's memory
must be sufficient for these. The storage required for data objects
is quit13 different. In general, it is not possible to determine the
total storage needed before the program is executed. For example, the
size of an array could depend upon values read in by the program. An
Ada system could well allocate a fixed amount of storage for data so
that the storage could become exhausted. This would raise the
exception STORAGE ERROR. Entering a subprogram, elaborating
declarations and allocating space for objects of an access type are
the main actions likely to raise the STORAGE ERROR exception. The
pattern of subprogram calls will determine the main characteristics
of the storage needed (and all subprograms should be well documented
in this respect), but information on this may be lacking, perhaps
because it depends upon the data. In practice, it may be best to run
a program with a diagnostic tool to determine its storage
charact13ristics.

It might seem impossible to handle this particular exception
because the handler itself would require storage. Fortunately, the
raising of an exception in itself never requires extra storage.

- 49 -

It is possible to provide two variants of an algorithm - a fast
version using substantial amounts of storage, and a slow version
using less storage. The fast version could be attempted and then if
STORAGE __ ERROR is raised, the handler could use the slow version.
There are only a few circumstances where such a method is likely to
be effeietive since the program would need to contain the instructions
for both variants. A more practical method is to have different
bodies for the same package specification, the selection being made
by the library builder (for the specific machine or library).

- Suppressing exceptions

Consider a function for matrix multiplication:

function MATRIX_PRODUCT(M1,M2: MATRIX) return MATRIX;

For the most obvious implementation, a compiler is likely to generate
a time consuming check on the validity of the use of every array
reference, whereas a single test that the rows of M1 match the
columns of M2 would suffice. By placing this test outside the main
loop, the check that the compiler would otherwise perform can be
safely suppressed:

function MATRIX PRODUCT(M1,M2: MATRIX) return MATRIX is
P : MATRIX(M1'RANGE(1), M2'RANGE(2));
pragma SUPPRESS(INDEX CHECK);

begin -
if M1'FIRST(2) I= M2'FIRST(1) or

M1'LAST(2) I= M2 1LAST(1) then
raise CONSTRAINT ERROR;

end if; -
for I in M1 1RANGE(1) loop

for Jin M2'RANGE(2) loop
P(I,J) :: 0.0;
for Kin M1 1RANGE(2) loop

P(I,J) :: P(I,J) + M1(I,K) * M2(K,J);
end loop;

end loop;
end loop;
return P;

end MATRIX_PRODUCT;

To perform this form of hand optimisation requires substantial care.
Each operation which could require a check must be analysed to ensure
that the check is unnecessary.

There does not seem to be any case for the suppression of the
NUMERIC ERROR exception. Random number generators occasionally use
integer-multiplication and division ignoring overflow. However, a
portable and efficient algorithm avoiding this is available (Wichmann
and Hill, 1982).

b) Existing practices

Handling error situations in current languages is awkward. As a
simple case, take Pascal. Here the method commonly adopted is to
perform a non-local goto on detecting an error so that the current
algorithm is abandoned. Remedial action can be taken before or after
the execution of the goto. The method is clearly inflexible,
especially in view of the lack of separate compilation in Pascal. A

- 50 -

Pascal program using this method would need to be restructured for
Ada. Meirely replacing the goto by the raising of an exception is
unlikely to give the best Ada solution.

Existing mathematical libraries must be able to handle error
conditions. A high-quality library must adopt a consistent method
which is both flexible and easy to use. The need for such a
consistent approach is seen in the user interface to the library and
in the need for library routines to call further routines.

The Numerical Algorithms Group FORTRAN Library (Ford et al., 1979)
is an example of a high-quality product which has adopted a
consistent technique. This method involves an additional parameter
!FAIL which controls both the remedial action and the reporting of
po ten ti.al failures. In Ada terms, IF AIL is an in out parameter. The
input value determines whether a failure should terminate the program
(a hard failure) or whether the program should continue (a soft
failure). A recent addition also permits control of the reporting of
the failure. The output value indicates the nature of the error in
the case of a soft failure.

Since almost anything that can be done in FORTRAN can also be done
in Ada,, the NAG method of handling failures could be used in an Ada
library. This would be inappropriate for the following reasons:

a) In view of the exception mechanism, the additional
parameter is not needed, leading to a simplified user
Jlnterface.

b) In a real-time context, printing out error or warning
messages is inappropriate (there may be no printing
device).

c) The soft failure condition is dangerous since the user
ean easily forget to inspect !FAIL to see if a failure
has arisen. (The NAG documentation is careful to draw
attention to this.)

d) The IFAIL parameter confuses both input and output
functions. The input function can be handled elegantly in
Ada by means of an in parameter with a default value.

It should also be noted that NAG handles errors in input values by
means of the IF AIL logic, whereas in Ada these may result in
CONSTRAINT ERROR from a range constraint violation. The
recomm,endation here on NUMERIC ERROR also leads to different design
decisions. For instance, a matrix inversion routine could perhaps
raise NUMERIC ERROR where in the NAG library the code would detect
the condition and use !FAIL to handle the situation.

c) Recommended Ada practice

The above remarks result in a simple philosophy for the use of
exceptions in Ada. The general pattern advocated is that required by
defensive programming of adding the test:

if pre-conditions not satisfied then
raise condition violated;

end if;

- 51 -

This protects a package/subprogram against misuse which might
otherwise inhibit its continued correct operation. It should be noted
that it is not necessarily possible to place such a check at the
start of' a subprogram.

The conclusion here is that each package should declare exceptions
corresponding to each class of misuse. A package A may call
subprograms in package B. Therefore the question arises as to whether
the exceptions that B can raise should be handled by A. This is only
necessary if such exceptions would be meaningless to a user of A. For
instance:, the exception NUMERIC ERROR does not need to be handled if
this is a reasonable response for a user of A (and is in the semantic
specification of A). On the other hand, if A is a curve-fitting
package and B a matrix package which can raise the exception
SINGULAR, then the latter needs to be hidden from the user of A.
Hence, :Ln this case, A can handle the exception either to use an
alternative approach or to raise another more appropriate exception.

A further problem arises when an exception may be raised during
the evaluation of an expression, where a user might wish to handle
the exception, to make some amendments, and to return into the
expression to continue its evaluation.

Here, a possibility in some languages is for the subprogram to be
11 told"]beforehand what its reaction should be in the event of an
error, in which case "raise an exception" might be replaced by "issue
a message and continue with an acceptable va.lue". In Ada, this
approach can be adopted by providing an error-mending subprogram as a
generic parameter (with the raising of an exception as the default
action) to a generic subprogram or even to a complete generic package
of subprograms. The disadvantage of this method is that it does not
discriminate between the different places where various exceptional
events may occur, unless a long list of generic parameters is
anticipated.

A more satisfactory solution in Ada is for a subprogram which
might possibly raise an exception, e.g. SQRT in the following
assignment statement:

RESULT :: A * B + SQRT(C) - D;

to be replaced by a local subprogram, e.g. LOCAL SQRT with the
following body:

funct;ion LOCAL SQRT(X REAL) return REAL is
begin

rE~turn SQRT(X);
exception

when ARGUMENT ERROR=>
PUT(MESSAGE); using TEXT IO
return 0.0;

end LOCAL_SQRT;

In this case, the user can replace each SQRT call by a call of
LOCAL SQRT or some other re-definition of SQRT. Note that this
example (deliberately) does not handle NUMERIC ERROR, to show that
this exeeption is not expected and should not be handled inside the
expression evaluation.

Finally, we indicate the important difference between exceptions
raised ln the sequence of statements of a body (or a block statement)

- 52 -

and exceptions raised in a declarative part,
initialisation such as

SQRT X: constant REAL:: SQRT(X);

e.g. in an

In the :former case, the raised exception can be handled in the same
body (or block statement) but in the latter case the exception
immediately propagates to the place where the subprogram was called,
if it is a subprogram body, or to the surrounding declarative part if
it is a package body or a task body (LRM 11.4.2). This suggests that
it is advisable to avoid initialisations that are exception prone. On
the oth1:ir hand, examples have been given (see LRM 11.6(10, 11)) where
the cru1onical order of certain actions can be changed by an
implementation for the sake of optimisation, ar,; this may lead to
unexpected values for objects used in an exception handler. The LRM
advises one to initialise (by declaration) objects that might be
uninitialised in an exception handler as a result of such an
optimisation. Consequently, we advise that initialisations in
declarations should be used but that the expressions involved should
not be eomplicated.

- 53 -

8. WORKING-SPACE ORGANISATION

For a complete treatment of the efficient use of working-space, much
knowledge of particular compilers and (target-)machines would appear
to be necessary. Since such a treatment of this subject is not
feasible in an area where hardware possibilities are continually
increasing and compilers are still under development, only general
aspects of working-space organisation are considered here. These
aspects can be classified as follows:

- Type and object declarations in Ada programs: the user can claim
storage for data in several ways, some of which would be preferred
with respect to Ada style, some (not necessari 1 y the same) with
respect to efficiency; in the following sectioll., we discuss:

- choice of data types (transparent or private),
- use of parameters and generic parameters,
- representation clauses,
- use of relevant attributes and pragmas.

- Implicitly used storage, depending on:

- running system (storage overheads for Ada style declarations),
- use of the heap,
- machine architecture,
- use of generics and subunits,
- implicit copying for parameter passing, assignment statements

with array-type objects and values, and results of function
calls.

The subject of length of code of compiled units is not addressed here
in general, though section (h) contains some related discussion. For
problems that are particularly connected with the use of tasks, see
Chapter 9.

In the sequel the term II storage unit II is used, as in the LRM 13,
to denote (mostly addressable) storage places in the target machine.
No assumptions are made about the number of storage units needed for
standard type or user-defined scalar, real and composite type
objects, not even if this amount can in some way be controlled by
using the pragma STORAGE_UNIT (see section (d) below).

Also the term "heap" is used to denote that part of the
working-space which is reserved for dynamic storage allocation (see
section (f) below). With reference to the automatic raising of the
exception STORAGE_ERROR, see section (a) of Chapter 7,

a) Choice of data types (transparent or private)

Regarding integer and real type objects, it can be expected that
different type definitions (differing in range constraint for integer
types, or differing in floating-point accuracy definition for real
types) may require different numbers of storage units. It should not
be assumed that subtype objects will require fewer storage units than
objects of their host type. On the contrary, additional range
constraints may require more working-space, e.g. for:

A,B: INTEGER range F •• G;

which i:s equivalent to

A
B

INTEGER range F
INTEGER range F

- 54 -

G·
' G;

even if F and G do not have side-effects, A and B belong to different
subtype:s and every object has its own range constraint (if A and B
are of the same subtype, the working-space for storing the range
constraint might be associated with the subtype).

For composite types, the number of storage units needed will
usually be the sum of those needed for all components, with
additional space for dope vectors (with array types) and discriminant
values (with record types). However, a particular mplementation may
allow for space optimisation by packing more composite type object
components in one storage unit, and it can do so either automatically
or when instructed by an application of the pragma PACK (see section
(d) below). (Note that this pragma cannot be given for objects of
anonymous array type, as it can only be applied for named types.) Use
of access type objects will also require some extra storage units
(aside from the difficult subject of efficiently using the heap).

A minor subject is the claiming of storage in a package body, by
the declaration of composite-type objects ;n the declarative part or
by alloeators in the sequence of statements of the package body. In
the first place every user should be warned if a package itself will
claim a large amount of storage. Further, we advise that users do not
have access to this storage for updating (although subprograms of the
package body can be allowed to update this storage). Therefore, the
object declarations should be placed in the package body, so that the
objects are not visible to the user. Programmers should be aware of
the simultaneous use of such storage by tasks (see section (c) of
Chapter 9 regarding shared-variable updates).

In general it is clea'r from the application, what kinds of type
definitions will be needed for particular purposes. However, for the
construction of libraries it would be convenient (to say the least)
if all useful algorithms could be available for as many applications
as pos::::ible without much extra labour. Copying a matrix from one
composite type object to another, in order to be able to call some
library subprogram, would be unacceptable (most of the time).
Different solutions here are:

i. connecting all kinds of matrices that require different
storage methods with different data types, then all
subprograms needed will be copied for all data types,

11. choosing a common data type for all imaginable matrix
structures, while a local package of subprograms for
storage methods is used by the matrix-handling
subprograms (this type can be a private type declared in
the library package, though it might be inefficient to
update or read such objects),

iii. giving one subprogram (for each problem) with generic
parameters for the data type and the storage method,
leaving it to the user to provide these.

For all possibilities, the working-space to be claimed for storing
the (relevant) matrix coefficients can be minimised. The first
solution will lead to a large set of specialised subprograms, the

- 55 -

second will need a large set of storage method subprograms, but in
both cases the matrix handling may be coded very efficiently. In case
iii. the gain in generality will be achieved at the expense of
inefficient access to matrix coefficients. For case ii. making the
data type visible will give further problems: only an array of REALs
will be needed (together with some zero-dimensional objects
contain:Lng information about the structure) for (square) matrix
classes like:

full,
symm•9tric, and possibly (positive- or negative-) (semi-)definite,
triangular, possibly strictly triangular (or with unit diagonal),
band•9d (and again symmetric, etc.) .

For sparse matrices, however, part of the storage1.ll be needed for
INTEGER indices, and also for access values when list structures are
used with dynamic storage allocation. As case i. appears to be the
most advantageous, we need not further digress about the other cases
here.

Note that documentation of library subprograms should contain
sufficient information to allow a programmer to estimate the amount
of working-space to be claimed for their execution. Moreover, this
informat.ion should include similar information for all auxiliary
subprogirams which may be invoked. In the cc.3e of generic subprograms,
the space used may depend upon the generic parameters (space required
for REAL, etc.).

b) Use of paramete~s and generic parameters

When values of a parameter type occupy only a few storage units,
it is immaterial whether copies are made for passing parameter values
or not.. However, if we assume here that the parameter passing
mechani:sm is call-by-copying, then we can imagine that in several
cases superfluous copies will be made. For example:

Let the following declarations be valid:

type VECTOR is array (POSITIVE range<>) of REAL;
function "+"(A,B: VECTOR) return VECTOR;
X.1, X2 VECTOR (1 M);
Y 1 : VECTOR (1 . . N) ;

and consider the two cases:

i. mode in:

Calls of a procedure ZZ, declared by

procedure ZZ(A: in VECTOR);

like

ZZ(X1(1
ZZ(X1(1

2)); ZZ(X1 + X2); -- or even
10) + Y1(3 •. 12));

might implicitly give the following copies:

3 for each call of "+" (when each operand is copied,
and the result must be stored),

- 56 -

1 for passing the parameter value to ZZ.

ii. mode out (or in out):

In this case actual parameters can only be (parts of)
objects, so A + B is not a possible parameter, but for a
subprogram declaration like

procedure WW(A: out VECTOR);

calls like

WW(X1);

can still involve copying twice and claiming extra
working-space for 1 copy (the second time the parameter
is only updated). Note that for out parameters, if the
parameter passing is by copying, then copying-in as well
as copying-out will take place; otherwise a copying-out
would destroy non-updated values in some components of
the parameter. See section (a) of Appendix A.

If (inteilligent) compilers are to decide when copying can be avoided,
then it should not be made difficult for s11ch compilers to determine
this. Therefore, aliasing with subprogram parameters should be
avoided (even if the intended use of it would not make a program
erroneous). See section (i), below, for implicit copying in general.

From the above it is clear that the FORTRAN practice of passing
working--space parameters to subroutines might not have the desired
effect in Ada.

For generic parameters, the situation is different. Parameter
association takes place upon elaboration of a generic instantiation,
and the instance is a declaration containing the generic actual
parameters as a fixed environment. For in parameters, the generic
actual parameter can be expected to be copied. For in out parameters
the actual parameters are to be used as variables by the instance,
hence no copying should occur (LRM 12.3(8)). The association is
explaineid as merely a renaming of variables (LRM 12. 3. 1). The other
kinds of generic parameters do not (reasonably) affect the
working--space.

c) Representation clauses

Type representation clauses can be used to control the number of
storage units needed for objects of some type. This can be achieved
by indicating the size and relative position of distinct record
components within the total amount of storage needed for one object
of such a record type. Expressions in such representation clauses may
contain constants like SYSTEM.STORAGE UNIT and SYSTEM.MEMORY SIZE to
obtain some degree of hardware independence.

These representation clauses might be useful for the definition of
abstract data types for which a composite type definition would
otherwise waste too much storage space. However, the actual purpose
is the reverse one, viz. to adjust some type declaration to an
available hardware type, which is fully machine-dependent. Therefore,
these type representation clauses should be avoided. Address clauses
should not be used either.

- 57 -

d) Use of relevant attributes and pragmas

For abstract data types defined as private types, the attributes:

FIRST_BIT, LAST_BIT, POSITION, SIZE, STORAGE_SIZE

can be used to estimate the size of the working-space needed. By
using representation clauses (see the previous section) these
attributes might even be controlled to some extent. Together with the
constants STORAGE_UNIT and MEMORY_SIZE of the package SYSTEM, these
attributes should make it possible to calculate, in advance, whether
or not a subprogram can execute. However, the Ada language does not
provide inquiry functions for obtaining the size of the free space
dynamically, so the possibilities here are rather limited.

The pragma PACK may be used for instructing an implementation to
minimise gaps in storage areas for all objects of some composite
type, especially if the area for the components has already been
restricted by the pragma PACK or by representation clauses. This
applies in general to record types. It should not be expected that an
array of BOOLEANs will be packed in the same way as in many
implementations of Pascal for the type PACKED ARRAY [subrange] OF
boolean;.

There may be some use for the pragmc:1 STORAGE_UNIT, but it is
hardly possible to give general advice here. Its function is to
initialise the constant STORAGE UNIT in package SYSTEM, and the
meaning of this constant is the number of bits per storage unit. If
the installation value would cause many gaps in storage for
composite-type objects, then perhaps better values for
SYSTEM.STORAGE UNIT might be found, but we expect this situation to
be very exceptional. We note that the use of this pragma does not
influence the hardware representation of standard types.

For the effects of

pragma OPTIMIZE(SPACE);

one should consult the implementation reference manuals. The effects
will certainly not be portable.

e) Running system (storage overheads for Ada style declarations)

For the claiming of large storage areas one can choose array
types, record types containing array components or dynamic data
structures like lists, trees, etc., created using access types. (Not
much can be said about the use of files except that there will likely
be some implementation-dependent working-space for file buffers.)

Array objects will require extra space for their dope vectors (or
other descriptors) so that an array of one-dimensional array-type
components will probably require more space than an equivalent
two-dimensional array.

If record types are used, with the aim of forcing the use of lower
bound 1 for all array-type components, as in:

- 58 -

type ANON VECT is array (INTEGER range<>) of REAL;
type VECTOR(SIZE: NATURAL) is

record
ELEM : ANON VECT(1 SIZE);

end record;

then discriminants may again require some space. Moreover, if a
discriminant controlling the size of an array-type component has a
default (the effect being that values of different sizes can be
assigned to such objects), it can be imagined that these objects
always occupy some minimal space. The same applies to discriminants
selecting some record variant.

The overhead for access types for dynamic .;, +-,a structures is
obvious (see section (f) below).

Additional (range)
objects of anonymous
declaration like

constraints for
subtype) will

individual objects (i.e.
also use extra space. A

X1 : array (A

or better:

B) of RESTRICTED_REAL;

type VECTOR is array (INTEGER range<>) of RESTRICTED_REAL;
X1 : VECTOR(A .. B);

(assuming: subtype RESTRICTED REAL is REAL range C .. D;) should be
preferred to:

X1 : array (A .. B) of REAL range C .. D;.

Whether types are private (or not) should not influence the
working-space during execution, al though access to objects of such
types will be more laborious.

f) Use of the heap

We consider here two topics:

- dynamic storage allocation and
- storage management in real-time programming.

i. Dynamic storage allocation.

Dynamic storage allocation is obtained by allocators for objects
of some: access type (LRM 4. 8). The effect of an allocator is that
sufficient working-space is claimed for storing values of the base
type. This space remains "claimed" by the program as long as objects
of the access type give access to it. So the preservation of such
storage places need not be related to the block structure of the
executing program. The storage becomes "free" or "garbage" when no
objects have access to it any more, and this occurs when:

I. other access values or null are assigned to all objects
that formerly had access to the storage,

II. the appropriate instance of UNCHECKED DEALLOCATION
(LRM 13.10.1) is called for one object, and other objects
that had the same access value no longer use this access,

- 59 -

III. values of the access type are no longer accessible
because the unit containing the access-type declaration
is left.

The danger of dynamic storage allocation is that either garbage
storage is not reclaimed, when new storage claims are made, or it is
expensive to find out which storage can be reclaimed. Deallocating
storage by method I. is expensive - either in working-space, because
the storage is not reused, or in time, because it is not easy to
discern that such storage can no longer be accessed. The explicit
returning of storage by method II. is unsafe, as it does not
guarantiee that deallocated storage will not be used via other access
objects. Finally, recycling of storage is difficult if later storage
claims require storage units of a different size +"rom those of the
deallocated storage.

Sinc,e the use of dynamic storage allocation may cause a very
inefficient use of the whole working-space, it should be used with
much care in scientific libraries. Al though a garbage collector is
not necessarily available in Ada (LRM 4.8(7)), we prefer its presence
to simplify the use of allocators (see section (b) of Appendix A).
Dynamic storage allocation can be used in library subprograms if the
claims by a subprogram are not (i.e. cannot be) intermingled with
claims by the user and all storage can be reclaimed afterwards (see
method III. above). Otherwise, if dynamic storage must be given to
the calling user program, then the access type should be
limited private to the user (thus preventing the user from copying
accesses) and the package containing the type declaration should also
provide an instance of UNCHECKED DEALLOCATION for explicitly
returning storage by the user. Further, implicit declamation of
storage (i.e. removing all accesses to it) can be avoided by using
the pragma CONTROLLED (see below). This virtually prevents
inefficient garbage collection for the attentive user, especially if
the package itself does some bookkeeping of freed storage.

According to the LRM 13. 10, 13. 10. 1, a storage declaiming
procedure can be made for every access type by instantiating the
predefined generic library procedure:

generic
type OBJECT is limited private;
type NAME is access OBJECT;

procedure UNCHECKED_DEALLOCATION(X

For any type declaration such as

in out NAME) ;

type LINK is access CELL; -- for some type CELL

a generic instantiation can be given, thus:

procedure FREE is new UNCHECKED_DEALLOCATION(CELL, LINK);

Then a call:

FREE(LINK_VARIABLE);

will deallocate the storage for the object designated by
LINK VARIABLE.

One can prevent the automatic storage reclamation for all objects
of a type designated by one access type, by giving the pragma

- 60 -

CONTROLLED (LRM 4. 8) immediately after the access type declaration.
Then thE3 storage will only become free when the unit containing the
access type declaration is left (method III. above). If this is
always correctly used, a garbage collector is no longer needed.

ii. Storage management in real-time programming.

In real-time situations, the interrupts which can be caused by
sudden garbage collections may be undesirable for the running
process13s. In the first place, use of the heap should be avoided. (We
will never know when some particular implementation might want to use
the heap, but in general the programmer should abstain from the use
of acc13ss types, and also of record types with defaults for
discriminants that are used for constraint.c- of array-type
components.) If, how.ever, the programmer must use access types, then
he can produce as little garbage as possible by keeping superfluous
storage cells in a "free list" and reissuing them to access type
objects whenever requested. This might require that all free storage
cells have the same type and subtype (the same discriminant values)
or that several free lists are kept. Of course, a free list cannot be
kept beyond the scope of the variable containing the head of the list
but, if this unit is to be left, then UNCHECKED DEALLOCATION can be
used.

g) Machine architecture

Spec:lal architecture of machines can greatly influence the choice
between different algorithms and may also affect implementation
decisions (again influencing choice of algorithms). Such
architectural properties might be those of

paging machines,
vector processors or
distributed systems.

With respect to working-space, a choice could be the storage of
matrix <3omponents by rows or by columns, whereupon the processing of
the complete matrix would be performed with different efficiencies on
the various machines. In Ada, it seems highly probable that the
storage of two-dimensional arrays will be implemented row-wise but a
programmer might still think it wise to store matrices transposed in
two-dimensional arrays. We would like to encourage implementations
that allow the user to choose the way of storing two-dimensional
arrays. Users of interfaces to FORTRAN subroutines would be greatly
helped by this feature (see section (b) of Appendix A).

For paging machines, it is important to process contiguous
elementB of vectors and matrices and this influences the internal
implementation of algorithms. For example, an LU-decomposition
(producing rows of the upper-triangular matrix U and columns of the
lower-triangular matrix L, or perhaps also rows of the latter but
with a different order of storage for intermediate results) might be
preferred to a Gaussian elimination (if the number of matrix
coefficients exceeds the size of a page); deciding what is best can
be complicated. Similarly, computing A * x or A(transpose) * x might
require different storage methods or different algorithms, while, on
a vector processor, the latter case would impose completely different
requirements on the implementation (see section (f) of Chapter 9 for
further discussion). Obviously the efficiency will be affected but we
have no practical example yet where the amount of working-space will

- 61 -

vary considerably.

Another example concerning storage is connected with a vector of
complex numbers. The question arises as to whether this should be a
veqtor of complex-type components:

type CCMPLEX_VECTOR is array (INDEX_RANGE) of COMPLEX;

or whether it should consist of a vector of real parts and a vector
of imaginary parts:

type COMPLEX_VECTOR (SIZE: INTEGER) is
record

REAL PARTS, IMAG PARTS: VECTOR(1 •• SIZ~'
end record;

In conclusion, our advice here need not be too detailed since our aim
is to provide (rules for writing) specifications of packages and
their constituents. These declarations should appear as natural as
possible to the user. The implementors can make different bodies for
machines with different architectures, and we can provide hints for
their labours, but it is not possible to imagine all bodies, e.g.
bodies for which a type MATRIX may even be a task type.

h) Use of generics and subunits

In this section we discuss topics which deal with the size of the
working-space occupied by a loaded and executing program. These
topics are:

- the use of shared code for different instances of the
same generic package and

- the possibilities of partial loading.

i. The use of shared code.

It is clear that if an implementation duplicates the code for each
instantiation of a generic package, this might easily lead to a waste
of space. Take for example a zero-finding subprogram that requires a
function parameter. In Ada we are forced to make the zero-finder a
generic subprogram (see section (a) of Chapter 6). Now if more than
one instance of that subprogram is made, we find ourselves with
multiple copies of one and the same subprogram, only differing in the
calls of the actual supplied function. In the case of a zero-finder
this might not lead to trouble, as in general such a subprogram is
quite short. However, the problem will become serious if the
subprogram concerned is not a simple one but perhaps a package for
solving differential equations or some yet more complex problem. One
way to overcome this difficulty is through the concept of reverse
communication (see section (d) of Chapter 6), in which case the
subprogram provided by the library performs one step only, and the
caller is required to call the subprogram often enough to obtain a
fair answer to his problem (then calls of the subprogram defining the
problem are made by the user, hence the problem-solving subprogram
need not be generic). However, it is not certain that this is the
solution we want.

On the other hand, in some cases it might be preferable that
multiple copies of the code are used for multiple instances of the
generic. This is especially true if the generic parameter is, for

- 62 -

example, a floating-point type, where using the same piece of code
will lead to a huge overhead in time on the basic operations (these
operations are then in most cases not performed by the basic machine
instructions, but by calls to routines that have to be provided as
generic parameters along with the type).

As up to now it is not clear what the different implementations of
Ada will do with instances of generics, further discussion of this
might w1:ill prove to be premature.

ii. Partial loading.

The ooncept of partial loading also has a forceful impact on the
space requirements for a program. Suppose a pacv~r~ is defined with
many subprograms, some of which are always needed, while others are
needed only in special cases. If, in this case, all modules are
always loaded into memory, this leads to waste of space (except
perhaps on some machines using virtual memory, where library routines
are stoired in shared instruction space I) •

Now, very sophisticated systems might be able to load only those
parts of a program that are actually needed, but we believe that most
systems require help when selecting the loadable parts. The major
feature of Ada which might help in this matter is the concept of
separat1:i compilation. It might be expected that if all modules within
a package are compiled separately, using a body stub in the package
body, most systems will be able to detect the loadable parts.

Mark that it is not allowed that designators of subunits are
operator symbols (see section (d) of Appendix A). This might be
circumv1:inted by the following construct (unfortunately introducing a
new identifier):

In the package declaration:

function ADD(A,B A TYPE) return A_TYPE;
function "+"(A,B A-TYPE) return A TYPE renames ADD;

in the package body:

function ADD(A,B A_TYPE) return A TYPE is separate;

and as a subunit:

s1aparate (A PACKAGE)
function ADD(A,B : A_TYPE) return A TYPE is
biagin

-- sequence of statements
end ADD;

In oonclusion, we cannot be sure that Ada programs will be
processE~d in this way. Hence, as a general recommendation, we advise
that packages should be made fairly small and should combine only
closely related subprograms which are all needed in most cases.
Moreover, the bodies should be compiled separately (i.e. with body
stubs and subunits) to give aid to those systems which are more
sophisticated than normal.

- 63 -

i) Implicit copying

As has already been indicated in section (b) above, copying of
values can be invoked by implementations, possibly together with the
claiming of extra working-space. The main situations are:

i. Type conversion:

For numeric types the effect on working-space is negligible. For
array types no implicit type conversion of the components is allowed
(LRM 4. 6). If the components have different subtypes, extra checks
can be made if the subtypes differ in range constraint (for numeric
type components), otherwise they should be com, o;:, tible (for array
type components). Hence, we do not expect copying to occur here.

ii. Ass:Lgnment statement:

Again only composite-type objects and values are considered. An
assignment might be implemented by copying to guarantee the
correctness of, for example,

X1(5 .. 9) := X1(3 .. 7);

and also (assuming a vector-"+") of

X1 :=X2+X3;

Here the 11 +11 requires extra storage for delivering the result but,
hopefully, the assignment will not make an extra copy before copying
into the storage of X1.

iii. Parameter passing:

The LRM states clearly (LRM 6. 2(7)) that the language does not
define which of the two mechanisms (call-by-copying or
call-by-reference) should be adopted by implementations for the
passing of composite type values, nor whether an implementation
should be consistent (in the chosen mechanism).

If the mechanism is call-by-copying, then a subprogram will have
extra storage for each passed parameter. A copying-in is made upon
subprogram entry, and for out and in out parameters, at the return, a
copying-out is made (possibly not for an abnormal exit). See section
(a) of Appendix A.

We conclude with an example in which copying is highly probable,
even if the prevailing parameter-passing mechanism is
call-by-reference. Consider the declarations (cf. LRM 13,6):

type DESCRIPTOR is
record

-- components of a descriptor, e.g.
ELEM: DESCR_COMP;

e,nd record;

type PACKED DESCRIPTOR is new DESCRIPTOR;

for PACKED DESCRIPTOR use
r1ecord

- 64 -

-- component clauses for some or for all components
end record;

X: PACKED_DESCRIPTOR;

proc1edure USE _DESCRIPTOR (Y in out DESCRIPTOR);

proc1edure USE _DESCR _COMP (Z in out DESCR _COMP);

and the following calls:

USE DESCRIPTOR (DESCRIPTOR (X)) ;
USE DESCR_COMP(X.ELEM);

Contrary to Pascal, Ada does not prohibit this kind of parameter
passing but it cannot be performed without copying (-in and -out).

- 65 -

9. REAL-TIME ENVIRONMENT

In a real-time processing environment, new problems arise in the
design of large scientific libraries. These concern:

- the need for scientific calculations by running processes
which cannot themselves be interrupted for these
computations, and which cannot be kept waiting
deliberately, and

- the possibility of designing and implementing new
algorithms for use on multi-processor systems.

For the first class of problem, several ~~estions must be
considered, such as:

- Will the calling task (i.e. the process that requests a
calculation) be suspended during the calculation?

- Can the calling task enquire about the computation time
needed beforehand?

- Can the computation be performed without interrupting the
calling task (assuming that a se~irate processor is
available for the required computation), and if so, will
the result become available to the calling task in the
allowed time?

- In the latter case (for which we assume a "mailbox"
construct to be most useful) will one result (possibly
not very accurate, but a result) become available, or
will the task performing the calculation continue to put
improved results in the mail box as long as the calling
task does not destroy the mailbox?

For the second class of problem, new algorithms will be highly
dependent upon the machine architecture, and it is questionable
whether every method will be expressible smoothly in Ada.

An overall problem is the action to be taken in the event of an
exception (already addressed in general in Chapter 7) when the
exception is a hardware failure (graceful degradation) or a raised
NUMERIC ERROR.

The above subjects are discussed in the following sections.

a) Libraries for real-time use

Requirements for libraries to be used in a real-time processing
environment must have precedence over those for libraries used in
batch-processing. These requirements usually stem from the fact that
a running process (issuing a calculation request) cannot itself be
interrupted, or can be kept waiting for only a limited (and probably
very small) period ("duration"). Therefore, such a process should not
call a library subprogram at all, unless it (or, more precisely, its
programmer) knows in advance when the answer will become available
and that the response time is acceptably short. Aspects of particular
importance are:

- 66 -

i. duration of a calculation,

ii. documentation of the duration for calls of a library
subprogram,

. iii. reliability with respect to getting an answer and
gietting it within the promised period.

Considering the duration of (scientific) subprograms, we can
distinguish three classes of these:

A. Those for which the
(approximately). Standard
functions and most of the
belong to this class.

computation time is fixed
arithmetic, basic mathematical
special mathemat' .~ l functions

B. TI1ose where the computation time is dependent on only the
s:ize of the problem. We have in mind here most of the
viector and matrix manipulations, and methods for which
the computation time is a simple function of the accuracy
diemanded.

C. Those where the computation time depends on the data of
the problem (and possibly also O"' the size of the
piroblem).

Correct and clear information in the subprogram documentation is a
general requirement, not only for use by real-time processes, but it
is obvi.ous that this information is indispensable here. As for
reliability, documentation must be abundantly clear about the
exceptional answers that are possible for exceptional questions
(NUMERIC ERROR raised, singular matrix, required accuracy not met,
etc.). -

We foresee that different scientific libraries (containing
different subprogram bodies) will be made for use in a real-time
environment and for use in batch-processing. Probably the only
packages that can be shared by both libraries are the standard
instant:Lations of the MATH FUNCTIONS package (Chapter 4). The
execution time for all mathematical functions is fixed and negligibly
small (at least we expect this time to be short enough for calls by
on-line· processes). It is unlikely that other packages of related
scientific subprograms will contain only entities that belong to
class A, since the above subdivisi6n into 3 classes does not coincide
with any usual structuring of scientific libraries. For many
algorithms belonging to the classes Band C the computation time may
turn out to exceed the allowed response time. Hence, most algorithms
made for use in batch-processing will have to be adapted to satisfy
the requirements of on-line use.

Espeeially in real-time processing there may be some demand for
mathematical functions for fixed-point types, but a separate package
is not needed if floating-point arithmetic is available, since type
conversion is allowed here (LRM 4.6(7)).

One important reason for designing separate packages for most
other scientific problems is that the relationship of a calculation
with the calling task (which expects a possibly less accurate answer
at a ce,rtain moment, or allows for updating of previous inaccurate
answers) will lead to the selection of different methods. Examples
are given in section (e) below.

- 67 -

b) Use of language features regarding tasks

An executing process, described by a "task" (LRM 9) , can call a
library subprogram when it needs some scientific calculation. In the
present context such a subprogram might well be replaced by another
task whose "entry" can be called (this task is sometimes called a
"server task"). This allows greater freedom in the use of such an
auxiliary unit, e.g. the calling process may continue its own
execution if it is known that the required answer will come back at a
specified moment. Later, in section (e), we present some examples for
several practical situations. Here, we summarise the language tools.

"Entries" (LRM 9.5) are the principal means of communication
between tasks. An entry (perhaps from a family of entries) can be
called in the same way as a procedure is called. ...ds may cause the
calling process to be suspended, viz. if the entry call is not
immediately accepted by the task whose entry it is. However, the
caller may decide to cancel the call if it waits too long: "timed
entry call" (LRM 9. 7. 3) or to issue the call only if the task with
the entry is ready for accepting the call: "conditional entry call"
(LRM 9.7.2).

On the other hand, a task can wait (at an "accept statement"
(LRM 9.5)), till it receives an entry call for its entry, or it can
cycle along a series of accept statements 1...1til one of its entries is
called ("selective wait"), and it can decide to do something else if
none of its entries is called, or it can cancel its waiting for entry
calls if it waits too long ("delay alternative") (LRM 9.7.1).

If an entry call is accepted, then the caller and the called task
are synchronized (they have a "rendezvous" till the end of the accept
statement). They can communicate by means of the parameters passed by
the entry call, which can be used in the sequence of statements of
the accept statement. Even if this communication is empty, there has
still been an instant of.synchronization.

In the example in section (f) below, every SORTER waits at a
WAKE UP accept statement, until this entry receives a call. In the
rendezvous it obtains the index of the start position in the array X.
Next it calls the SEIZE entry of the GUARD of an array-component. The
GUARD will only accept this entry call if the GUARD has not already
been SEIZEd by another SORTER. Otherwise, it can only accept a
RELEASE, and care has been taken that this RELEASE will only be
called by the SORTER that SEIZ Ed (this should have been ensured by
issuing and checking secret permissions).

Tasks start executing when their declaration is elaborated and
they terminate (approximately, see LRM 9.4(6)) when their sequence of
statements is performed. Alternatively, they may terminate at a
"terminate alternative" in a cycle of accept statements, if their
entries can no longer be called. Tasks can also be aborted but, as
stated in the LRM 9.10(10), this should only be used in extremely
severe situations.

Attributes T'CALLABLE and T'TERMINATED (for any visible task T)
can be used to inquire after the status of a task. The attribute
E'COUNT (for an entry E of a task T) can be used inside the body of T
to obtain the number of E entry calls that are waiting for an accept.
If more entry calls are waiting, they are always accepted in the
order of arrival (LRM 9.5(15)), notwithstanding the possible
different priorities of the calling tasks.

- 68 -

Tasks can (but need not) have a priority, which is implementation
dependent (LRM 9.8). This can have an effect on the order of
allocating processing resources to parallel tasks. In scientific
programs the results of a computation (obtained from server tasks)
should not depend upon the scheduling of tasks that may execute in
parallel, or the program will be erroneous. Therefore, priorities are
of little use here, though it can be expected that running processes
which ask for on-line calculations will invariably have higher
priority than these server tasks.

c) Variables shared by tasks

A variable is "shared" by two tasks if it is accessible by both
(LRM 9.11(2)). If the two tasks read or write sue~~ shared variable,
then nothing is known about the order in which they perform their
operations, unless the two tasks are synchronized by a rendezvous. If
the result of a computation depends upon an unknown order of
performed operations, the program is erroneous. Therefore, this
uncertainty is not allowed in scientific computations, and proper
synchronizations must be used.

Synchronization of two tasks is needed if the tasks want to meet
each other, viz. for communicating some information to each other,
but also if the tasks have to avoid one another, because they want to
use the same accessible variable.

The first case is simply solved by direct communication, i.e. one
task calls an entry of the other to receive its latest information.

The other case, two tasks avoiding one another, is more intricate.
In the elaborate SORT example in section (f) below, a SORTER (task)
may only read an array-component if its right SORTER neighbour is
finished. with it, but it must also be ensured that an update issued
by the right neighbour has effectively been performed on the shared
variable, not only in a local copy (see LRM 9,11(8)). This is
accomplished by performing all accesses to the array through a
special UPDATES task and by locking array-components for use by one
SORTER a.t a time. The guaranteed order of accesses and updates is as
follows:

step 1 :
step 2:
step 3:
step 4:

Here, the
guarantees
3 - 4, amd
value that
guaranteied

UPDATES.PUT into X(I); by right Sorter,
RELEASE; to GUARD(I) by right Sorter,
SEIZE; to GUARD(I) by left Sorter,
UPDATES.GET from X(I); by left Sorter.

right Sorter guarantees the order 1 - 2, GUARD(I)
the order 2 - 3, the left Sorter guarantees the order
the access via UPDATES guarantees that step 4 delivers the
was passed to X(I) in step 1. This would not have been
if these four steps had been:

step 1: X(I) := ITEM; by right Sorter,
by right Sorter,
by left Sorter,
by left Sorter.

step 2: RELEASE; to GUARD(I)
step 3: SEIZE; to GUARD(I)
step 4: ITEM :: X(I);

In this example, the problem is that the assignment statement
X(I) := ITEM; in step 1 need not be effected in the shared variable
itself before step 4 takes place. The Ada language offers the means
of enforcing this updating synchronous with the assignment statement,

- 69 -

by:

pragma SHARED (variable_:_simple_name); -- (LRM 9.11(9)).

Its effect is that every use of such a variable is a synchronization
point. The applicability of the pragma, however, is restricted to
certain variables of scalar or access type (LRM 9.11(10,11)).

Our advice is that tasks should never use shared variables if the
program will become erroneous. The correct order of reading and
updating can always be defined in Ada source code by use of
intermediate tasks for all accesses to shared variables and for
locking/unlocking for single use.

d) Exceptions

Exceptions can be raised during the activation of a task or they
can be raised in or propagated to activated tasks.

If an exception is raised during the activation of a task (i.e.
the elaboration of the declarative part of the task body), the task
becomes "completed" and the exception TASKING ERROR is raised (in the
surrounding frame) (LRM 9-3(3,7)).

If an exception is raised in or propagated to a task body, and the
task does not handle the exception, the task becomes completed and
TASKING_ERROR is raised at the point of activation of the task (i.e.
at the first begin of the body containing the task body in its
declarative part, or at the place where the allocator is evaluated
for an access variable accessing a task type). TASKING ERROR is also
raised if an entry of a completed task is called (or if the task
completes before the entry call is accepted).

If an exception is raised during a rendezvous (i.e. in an accept
statement) the exception propagates to the calling task and also to
the control point following the accept statement in the called task
(LRM 11.5). TASKING ERROR is raised in the calling task if the called
task is aborted during the rendezvous. Termination of a calling task
during a rendezvous (by an abort statement) is not perceived by the
called task: it completes its rendezvous with a "ghost" (to quote
Barnes. (1982, p .228): "If the customer dies, too bad - but we must
avoid upsetting the server").

For the use of exceptions, our general recommendations of
Chapter 7 apply. However, in real-time processing one has to be
especially careful. Exception handlers should always be provided,
unless the exception (usually TASKING ERROR) concerns a design error,
such as caused by a call of an entry of a completed (or abnormal)
task.

The possibility of TASKING ERROR being raised is diminished if
exception handlers are provided for all critical situations.
Therefore, if computations can fail, an exception handler should be
given, especially inside every accept statement (for correctly ending
the rendezvous) and in every eternal loop of a server task as long as
its entries can be called. As a side remark, we note that answering
the calling task by raising an exception during a rendezvous
(provided that the calling task expects this reaction) still has the
disadvantage that the exception is also raised in the server task,
which would require a trivial exception handler in a block statement

- 70 -

surrounding every accept statement. We do not like this, it is one
more reason for advising against this way of communicating.

Not only all expected exceptions (like NUMERIC _ERROR) should be
handled 1, but also unexpected errors such as STORAGE ERROR. Even if
this exception should appear chronically, it should still be
recognised, because the calling program itself is usually expected to
continuE~ anyhow. (The latter should stop requesting the service that
caused the raising of STORAGE ERROR but should be allowed to
accomplish its own service in some truncated form: "graceful
degradation" of a real-time system.) Of course, the calling task
should be informed that it need not request further services.

Finally, here, we indicate one means of A·•oiding (but not
completE~ly) the calling of an entry of a completed task. One may
first enquire whether the task is callable, like (see section (b)
above):

if SERVER'CALLABLE then using attribute CALLABLE
SERVER. START COMPUTATION (X);

end :lf;

Unfortunately, SERVER may terminate between the enquiry and the entry
call. This cannot be solved by a conditional entry call, while for a
timed entry call the above mismatch is even more likely (the server
task may be completed before the waiting task is timed out). We do
not like the solution of an exception handler following each entry
call. In most cases it is a matter of algorithm design: server tasks
should be eternal (see examples in sections (e) and (f) below).
Another solution might be synchronization of the completing of tasks,
as for shared variable updates (see section (c) above).

e) Calculations by server tasks

In the present section, we present several examples of the use of
tasks where:

the task requesting some service can wait for some time,

the task requesting some service is not suspended,

the task requesting some service is not suspended and the
server task will provide a series of answers with
increasing accuracy,

as a detail, we will assume that a server task can give
information about the computation time needed to finish
its execution successfully.

i. The oalling task can be suspended.

In this case, the language tool is direct communication, i.e. the
calling task has a rendezvous with the server task. It should be
possible to inform the server task of the allowed time and this might
save time if the server task replies at once that it cannot make it.
Example::

In the calling task:

- 71 -

SERVER. JOB(IN_VALUE, RESULT, TIME_ALLOTTED, CANNOT_BE_DONE);
if CANNOT BE DONE then

ALTERNATIVE COMPUTATION;
end if; -

In the task body of SERVER:

lc,op
select -- to allow several calls of JOB

or

accept JOB(X: in REAL; ANSWER : out REAL;
ALLOWED: in DURATION;
I CANNOT: out BOOLEAN) do

if ALLOWED> WHAT I NEED then
I CANNOT ·- TRUE;

else
I CANNOT ·- FALSE;
ANSWER := LOCAL_FUNCTION(X);

end if;
end JOB; -- end of rendezvous

terminate;
end select;

end loop;

The caller cannot abort the server task L. it does not deliver the
answer in the allowed interval, since it does not execute statements
before the rendezvous is completed (but see ii.) . The caller should
have an alternative of its own, if a server cannot do the
computation.

It is assumed that a physical processor is immediately available
for the server task and that the server task is not interrupted by
the tasl<: scheduler; otherwise it would be difficult to estimate the
time neieded. A timed entry call may be used if resources for the
server task are not guaranteed. Example:

In the calling task:

SE~lect

or

SERVER.JOB(IN VALUE, RESULT, TIME_ALLOTTED,
CANNOT _BE _DONE) ;

if CANNOT BE DONE then
ALTERNATIVE_COMPUTATION;

end if;

delay SOME_TIME;
ALTERNATIVE COMPUTATION;

end select; -

The above example applies also to the situation where the server task
is engaged in another rendezvous. If this occurs frequently and if
enough physical processors are available, it may be avoided by
creating several copies of the server task (using a task type).

We rE~fer to section (f) of Chapter 8 for the case where interrupts
are caused by the activation of a Garbage Collector. Actually, we do
not expect a Garbage Collector to be allowed to overrule a vital
process:, hence many installations may decide not to offer such a
service.. To avoid STORAGE ERROR being raised too soon, the user
should tidy up his own garbage storage space.

- 72 -

We note that an unconditional entry call and a procedure call look
alike and that one might decide to call a subprogram instead of an
entry of a server task. The difference, however, is (cf. Barnes,
1982, p .. 204) that in the case of a procedure the caller is executing
the proeedure body, whereas in the case of an entry the server task
must exiecute the statements (the body is now an accept statement),
presumably using its own processor. We can even imagine that the
processor executing the calling task is completely dedicated to this
task and is not able to perform a scientific calculation. We conclude
that a task is the most appropriate tool for handling a request for
auxiliary computations.

ii. The calling task is continuing its execution.

If the server task is ready for an accept (otherwise see i.) , the
calling task might execute the statements:

SERVER. START COMPUTATION (IN _VALUE);
OTHER_ACTIONS; by the calling task, finished after a

-- certain time, or using a delay statement
-- if more time is permitted to the server task.

seleet a conditional entry call:
SERVER. DELIVER (RESULT);

else
SERVER. CANCEL;
ALTERNATIVE_COMPUTATION;

end i~elect;

The server task might read:

task SERVER is
entry START COMPUTATION (X : in REAL);
entry DELIVER(RESULT : out REAL);
entry CANCEL;

end SERVER; -- specification

task body SERVER is
X READ, LOC RESULT REAL;

begi.i1
lc>op

select -- for every service request
accept START_COMPUTATION(X: in REAL) do

X_READ : = X;
end START_COMPUTATION; -- end of first rendezvous

declare
READY: BOOLEAN:: FALSE;

task LOCAL_SERVER; -- specification

task body LOCAL SERVER is
begin -

LOC RESULT:: LOCAL FUNCTION(X READ);
READY : = TRUE; - -
-- What about shared variable update?

end LOCAL_SERVER; -- body

begin
loop

select
when READY=>

or

- 73 -

accept DELIVER(RESULT: out REAL) do
RESULT:= LOC_RESULT;

end DELIVER;
exit;

accept CANCEL;
-- Stop the Local Server (omitted)
exit;

else
null;

end select; -
end loop;

end; -- of block statement
or

terminate;
end select;

end loop;
end :SERVER; -- body

Here we have introduced a local task for doing the calculation,
finally delivering the result in a variable of the server task
(assuming that this (shared) variable would be updated in time).
After a1Jcepting a START COMPUTATION call the SERVER waits selectively
for entry calls of DELIVER or CANCEL. We have omitted an elegant
termination of the local task if a CACEL is received and the
synchronization of the updates of READY and LOC RESULT. Note also,
that the SERVER task cannot serve another task ~before . th~ ·ca:lling
task has collected the answer (if it might never do so, \hen the
inner loop of SERVER should contain a terminate alternative).

iii. Th,e calling task is continuin~ its ex.ecution and the server task
delivers a series of answers.

In the previous example we used a loc'a1 task _for the calculation
that would be performed concurrently with the calling t'a.sk. Another
solution may be obtained by first calling the START COMPUTATION entry
of the server task and by allowing the server task ~o call a RECEIVE
entry of the calling task for sending the answer. As correctness with
respect to "deadlocks" is more difficult to prove if there is· no
clear hierarchy of tasks concerning "caller" and "called", we prefer
to avoid this way of programming.

A better solution is by the creation of an "agent" task, usually
called a "mailbox", which can receive a result (or in the following
example a succession of results) from the server task and which can
be inspected by the calling task whenever necessary. Use of a task
type for this agent permits the creation of a distinct mailbox for
every request of a computation. For more details we refer to Barnes
(1982, pp.225-227). When properly used, this construct solves several
minor problems that were touched upon in the previous discu·ssion,
such as:

- shared variable update of the result (see also section
(c) above),

- no task can collect an answer requested by another task,

- other tasks can be served before the requesting task
e:ollects its (final) answer:-.

In the following example the calling task asks for a result with a

- 74 -

certain precision, and it can send a signal that no further (more
accuratie) answers are needed. The server task receives the identity
of a mailbox, and it puts successive results with known accuracy into
it, until it cannot improve the result further, or until a closing
signal is received.

-- The task type might be given in a package that has ITEM
-- as its generic parameter (type ITEM is private;).
-- H,ere we assume:

type ITEM is
record

FX, ACCURACY REAL;
end record;

-- The following order of declarations and bodies is not
in agreement with the Ada syntax, but for clarity we give

-- every task body immediately after its specification.

task type MAILBOX is
entry DEPOSIT(X: in ITEM; READY: in BOOLEAN;

REQUEST ENDED: out BOOLEAN);
entry COLLECT(X: out ITEM; READY: out BOOLEAN);
entry CANCEL;

end MAILBOX; -- specification

task body MAILBOX is
LOCAL: ITEM;
DEPOSED: BOOLEAN:= FALSE;
SERVER READY, CUSTOMER GONE BOOLEAN·- FALSE;

begin -
loop

select

or

accept DEPOSIT(X: in ITEM; READY: in BOOLEAN;
REQUEST ENDED: out BOOLEAN) do

LOCAL : = X;
SERVER_READY :: READY;
REQUEST ENDED·- CUSTOMER_GONE;

end DEPOSIT;
DEPOSED : = TRUE;

when DEPOSED=>
accept COLLECT(X: out ITEM; READY out BOOLEAN) do

X :: LOCAL;
READY:: SERVER READY;

end COLLECT; -
DEPOSED:: FALSE; -- can be deleted

or
accept CANCEL;
CUSTOMER GONE := TRUE;

else
if CUSTOMER GONE and SERVER READY then

exit;
end if;

end select;
end loop;

end MAILBOX;

If the Customer dies without signalling to the mailbox,
this might cause the raising of TASKING ERROR.

- 75

type ADDRESS is access MAILBOX;

task SERVER is
entry REQUEST(A: in ADDRESS; X in ITEM);

end SERVER; -- specification

task body SERVER is
REPLY: ADDRESS;
JOB X, JOB FX: ITEM;
ACC REQUEST: REAL;
ENDED: BOOLEAN:: FALSE;

begin
loop -- for every request

select
accept REQUEST(A: in ADDRESS; X in . EM) do

REPLY := A;
JOB X : = X;

end REQUEST;
ACC_REQUEST :: JOB_X.ACCURACY;
-- Work on job:
loop

LOCAL ITERATION(JOB X, JOB FX);
exit when JOB FX.ACCURACY <= ACC REQUEST;
select - -

REPLY.DEPOSIT(JOB_FX, FAT 1E, ENDED);
exit when ENDED;

else
null;

end select;
end loop;
REPLY.DEPOSIT(JOB_FX, TRUE, ENDED);

or
terminate;

end select;
end loop;

end SERVER; -- body

task USER; -- specification

task body USER is
MY BOX: ADDRESS;
MY-ITEM: ITEM;
GO ON: BOOLEAN:= TRUE;
SERVER READY, SATISFIED: BOOLEAN:: FALSE;

begin -

MY BOX:: new MAILBOX;
SERVER.REQUEST(MY BOX, MY ITEM);
-- Follow series of collects:
while GO_ON loop

select
MY BOX.COLLECT(MY ITEM, SERVER READY);
---Use MY ITEM, including known accuracy

else -
null; -- or other activities

end select;
if SATISFIED or SERVER READY then

MY_BOX.CANCEL;
GO ON:: FALSE;

end if;
end loop;

- 76 -

The user might wish to keep the mailbox for
further services, but the contained task terminates,
so a new allocation will be needed.

end USER; -- body

iv. The server task can be interrogated about the time it still needs
for its execution.

In the examples given in this section, it is usually assumed that
a calling task decides to cancel a request if the answer does not
become available in time. This would be a waste of time if a server
task wa:s executing for some time. We want to enco11r'3.ge the design of
algorithms for which the time needed to finish the computations is
known dlynamically (always assuming that a physical processor is
available for the server task).

With the mailbox construct of the above example, the server task
may continue to put new values into a variable SECONDS NEEDED of the
mailbox, and these values can be read by the calling task, e.g. in
the following way:

MY BOX. NEEDED(N SECONDS);
if-N SECONDS> WHAT I ALLOW

MY BOX.CANCEL;
ALTERNATIVE_COMPUTATION;

else
d49lay N SECONDS;
MY_BOX. COLLECT (RESULT);

end :lf;

-- obtains value in mailbox
then

f) Use of special architecture of machines

SincE~ the present chapter is particularly related to the new Ada
feature of "tasking", one might expect here also a discussion of the
use of this feature in the design of algorithms for special machines
(e.g. vector processors). Obviously, however, there is little
connection with the subject mentioned in the title of this chapter.

If the possibilities of a machine allow for speeding-up
computations in a deterministic way, e.g. by means of "pipe-lining",
this will not require an alternative Ada source code (usually it will
not even be possible to write Ada source code for it), and it should
be left to the compiler to deliver the most efficient code for the
target machine. A pleasant consequence of this is that the Ada source
code will stay portable (if it was portable when written for the
general method) .

Howey er, if a multi-processor system is available, then new
algorithms may well emerge (and in fact some have already been
designed, see Hibbard et al., 1981), with the characteristic that
parts of the computation can be executed concurrently, e.g. for
sorting data as in the example below. These new methods may well be
expresseid in Ada using tasks, and they will compete with
deterministic algorithms.

An example for vector operations is given by E.K. Blum (in:
J. K. Held, ed., 1982). This example does not show the advantage,
because the effect might also be obtained by a deterministic source

- 77 -

code presented to an optimising (here: vectorising) compiler.

At the end of this section we present an example for sorting data
stored in a one-dimensional array. Special care has been taken that
parallel Sorters do not use the array directly, but only via a
special UPDATES task, thus ensuring correct order of execution by
synchronization (see section (c) above). We note that the
specification of the (generic) procedure SORT is completely
independent of the method used.

One conclusion is that if parts of a problem can be solved in a
non-deterministic manner, then these subproblems should be solved by
separate subprograms, thus allowing for easy replacement of one
method by an alternative one for use on a multi-processor system.

-- Example of generic procedure SORT.

-- Sort (to ascending order) with as many processors as possible.
-- Method: from right to left, for each pair of elements a SORTER

is created who walks to the right and interchanges any two
-- elements that are out of order.

generic
type EL TYPE is private;
type EL AR_TYPE is array (INTEGER rar.6e <>) of EL_TYPE;
with function "<"(A,B: EL TYPE) return BOOLEAN is<>;

procedure SORT(X: in out EL_AR_TYPE); -- specification

-- Body of SORT (the implementation is highly academic):

procedure SORT(X: in out EL_AR_TYPE) is

LX constant INTEGER:= X'FIRST;
UX constant INTEGER :: X'LAST;
UX 1 : constant INTEGER:: UX - 1;
subtype INDEX is INTEGER range LX .. UX;

task UPDATES is -- for comments, see task bodies
entry PUT(N: in INDEX; ITEM in EL TYPE);
entry GET(N: in INDEX; ITEM out EL_TYPE);

end UPDATES; -- specification

task type GUARDS is· -- cf. LRM 9.1(8)
entry SEIZE;
entry RELEASE;

end GUARDS; -- specification

task type SORTER TYPE is
entry WAKE_UP(N: in INDEX);

end SORTER_TYPE; -- specification

GUARD: array (INDEX) of GUARDS;
SORTER : array (LX .. UX_1) of SORTER_TYPE;

-- Task bodies

task body UPDATES is

-- All updates of array X are done using this task,
-- instead of by unreliable shared variable updates.
-- Hence, any reading of X gives most recent values

- 78 -

-- if successive PUTs and GETs are synchronized.

begin
loop

select

or

or

accept PUT(N : in INDEX; ITEM in EL_TYPE) do
X(N) : = ITEM;

end PUT;

accept GET(N: in INDEX; ITEM out EL_TYPE) do
ITEM : = X (N);

end GET;

terminate;
end select;

end loop;
e1nd UPDATES ; -- body

task body GUARDS is cf. LRM 9,7,1(13)
BUSY: BOOLEAN:= FALSE;

Every GUARD locks the use of the corresponding place for
single use by SEIZE caller, until the SORTER who locked
the place calls RELEASE.

b1egin
loop

select
when not BUSY=>

accept SEIZE;
BUSY : = TRUE;

or
accept RELEASE;
BUSY : = FALSE;

or
terminate;

end select;
end loop;

end GUARDS; -- body

task body SORTER_TYPE is
NR: INDEX;
ITEM, ITEM_1 : EL_TYPE;
CHANGED: BOOLEAN;

b1egin
accept WAKE_UP(N : in INDEX) do

NR := N; -- this SORTER is informed of its own number
end WAKE_UP;

-- First SEIZE before waking up next SORTER, because
-- the new one may not overtake this one.

GUARD (NR) . SEIZE;
UPDATES.GET(NR, ITEM);
if NR > LX then -- wake up next-left Sorter

SORTER(NR - 1).WAKE UP(NR - 1);
end if; -

-- At each step of the next iteration the SORTER
reads place X(I), the value at X(I-1) is known

-- from the previous iteration. Both elements are

- 79 -

-- locked for use by this SORTER only. If necessary,
-- two values are interchanged and the SORTER moves to
-- the right, releasing place X(I-1)
-- for use by the next SORTER.

for I in NR + 1 •• UX loop
CHANGED:: FALSE;
GUARD(I).SEIZE;
UPDATES.GET(!, ITEM 1);
if ITEM 1 < ITEM then

UPDATES.PUT(! - 1, ITEM 1);
CHANGED:: TRUE; -
if I = UX then

UPDATES.PUT(!, ITEM);
GUARD(I).RELEASE;

end if;
else

UPDATES.PUT(! - 1, ITEM);
GUARD(I).RELEASE;

end if;
GUARD(! - 1).RELEASE;
exit when not CHANGED;

end loop;
end SORTER_TYPE; -- body

begin -- of procedure SORT: start by waking up first SORTER
if X'LENGTH > 1 then

SORTER(UX_1) .WAKE_UP(UX_1);
end if;

end SORT; -- body

• - 80 -

10. SUMMARY OF RECOMMENDATIONS - *** To appear in final report***

- 81 -

APPENDIX A - TARGET IMPLEMENTATION AND LANGUAGE DEFICIENCIES

Here we summarise the features of a target implementation under three
headings according to the importance which we attach to them. We also
list, in a fourth section, what we consider to be deficiencies in the
Ada language, as far as scientific computing is concerned, hoping
that some of these may be corrected in later versions of the
language.

a) Necessary requirements

These requirements are assumed to hold on any target
implementation to which the preceding guidelines a~~ly:

- At least 10 digits of precision for floating-point computation,
Le. SYSTEM.MAX DIGITS not less than 10. See section (a) of
Chapter 4.

- The exception NUMERIC ERROR raised in overflow situations (cf.
LRM 4.5.7(7)). See section (a) of Chapter 7.

- No copying of unconstrained array parameters of mode out or in out
(apart from entry calls). See sections (J) and (i) of Chapter 8.

- Facilities for pre-compilation. See section (d) of Chapter 3.

- Facilities for partial loading. See section (h) of Chapter 8.

b) Highly desirable features

These features, though not mandatory, are recommended for any
target implementation:

- Choice of storing arrays by rows or by columns (for compatibility
with FORTRAN). See section (g) of Chapter 8.

- Multi-precision floating-point types. See section
Chapter 3.

- Garbage collector. See section (f) of Chapter 8.

- No copying of unconstrained function results.

c) Useful features

(b) of

These features are ideals which are not expected but which would
be very welcome:

- No restriction on the number of digits in a floating-point type,
i.e. SYSTEM.MAX_DIGITS essentially unbounded.

- The attribute BASE 'DIGITS to give all values from 5 to 100, or
thereabouts, for the investigation of algorithms using different
(software) floating-point precisions.

- 82 -

d) Languagi~ deficiencies

ThesE~ restrict the use of Ada for scientific computation:

- Subprograms not permitted as subprogram parameters. See section
(a) of Chapter 6.

Record types not permitted as generic parameters. See section (d)
of Chapter 5.

Type declarations in generic packages cannot depend on attributes
of actual generic parameters, since these are not static. See
section (d) of Chapter 4.

- Designators of subunits must be identifiers (.LRM 10.1(3)). See
sectiLon (h) of Chapter 8.

- Limitations of the Ada model for floating-point arithmetic. See
section (c) of Chapter 3 and Appendix F.

- Inadequacy of definition of MACHINE OVERFLOWS. See section (a) of
Chapter 7.

- 83 -

APPENDIX B - SUMMARY OF BASIC PACKAGES FOR SCIENTIFIC COMPUTATION

Here we summarise the contents of the basic packages which we have
introduced in this report. Since library units must have distinct
identifiers (LRM 10.1(3)), the names of these packages should not be
duplicated by users. The names of packages which have both generic
and non-generic versions begin with (GENERIC), the brackets
indicating that the word they enclose is optional.-

REAL TYPES
REAL
VECTOR
MATRIX

(GENERIC_)MATH_FUNCTIONS
PI
EXP 1
SQRT
LOG
EXP
SIN
cos
TAN
COT
ARCSIN
ARCCOS
ARCTAN
ARCCOT
SINH
COSH
TANH
COTH
ARCSINH
ARCCOSH
ARCTANH
ARCCOTH
ARGUMENT ERROR
SIGNIFICANCE ERROR

(GENERIC)COMPLEX OPERATORS or (GENERIC_)POLAR_OPERATORS
COMPLEX. -
"+"
"-"
"abs"
ARG
"+"
"-"
"*"
"I"
"**"

-- unary
-- unary

-- binary
-- binary

REAL PART
IMAG PART
COMPLEX FORM

(GENERIC_)COMPLEX_FUNCTIONS
SQRT
LOG
EXP
SIN
cos

- 84 -

APPENDIX C - PRIMITIVE AND BASIC FUNCTIONS - ***Tobe added***

APPENDIX D - COMPLEX POLAR OPERATORS - ***Tobe added***

APPENDIX E - A LEAST-SQUARES PACKAGE - ***Tobe added***

- 85 -

APPENDIX F - THE IEC FLOATING-POINT STANDARD AND ADA

The IEC Standard (CEI, 1982) arose out of the necessity for Intel to
produce a floating-point chip (8087) for the 8086. In the logical
design of this chip the opportunity was taken to rectify some of the
inadequacies of existing floating-point hardware which had previously
frustrated many numerical analysts. This design was published as an
IEEE proposal (IEEE, 1981) and the IEC Standard is a direct copy of
this proposal.

a) Comments on the Standard

The :Standard can be approximately described :i , a conventional
32/64 bit floating-point system with frills. All the interest,
difficulties and problems rest upon the frills. Both the 32 and 64
bit formats use the "hidden bit" representation whereby the most
significant bit of the mantissa is not stored. This gives an extra
bit of precision without any loss of information. The hidden bit has
been useid by DEC on the PDP11 for some years but is comparatively
rare for hardware systems. The ZX81 and BBC micros use the hidden bit
format for their software systems.

Let us consider the various aspects of the frills in turn:

1. Overflow. Overflow itself is conventional except that
the largest exponent value is reserved for special values
(s:ee NaN and infinities below).

2. Underflow. The Standard implements "gradual underflow"
whereby the accuracy loss of underflow is gradual rather
than sudden. It is a nice technique for reducing the
number of significant figures lost due to underflow. One
exponent value (the smallest) is reserved for underflowed
values (and zero)~ This implies that there are more
neigative powers of two, which can be handled, than
pc,sitive ones (so that reciprocation must be treated with
care). Numerical software will perform more "gracefully"
on a system with gradual underflow than on one with an
abrupt cut-off to floating-point zero.

3. Rounding. This is logically very nice but quite complex.
One can require computations to be performed exactly (for
integer values, say) , or rounded down, rounded up or
truncated. The complexity of this Standard arises not
only from the variety of rounding methods supported but
also from the need to provide a method of set ting the
current rounding mode. A conforming implementation is
re~quired to provide this mode-setting mechanism to the
end user. The advantage of the rounding modes is that it
be~comes practical to explore the rounding characteristics
of an algorithm by repeating computations in different
modes and comparing the results. Such comparisons are
barely practicable with existing hardware.

- 86 -

4. Not a Number (NaN). The Standard introduces special
values called NaNs to allow delayed detection of overflow
and underflow in a controlled manner. Ordinarily with
overflow, one must halt a computation and provide a
r,ecovery routine. However, with this Standard, all values
calculated from an overflow condition will be
distinguished so that recovery can be handled at a more
convenient point. Since this mechanism is quite new, it
is not clear just how useful it will be. NaNs must be
r,egarded as an experimental frill. On the other hand,
there is a considerable potential for NaNs. If an
algorithm is inherently stable but has problems in
k1eeping values within range, then NaNs could be used as a
m,ethod of detection of the need to rescAl ,,._, at points
where this is convenient. Of course, use of such methods
implies a reliance upon the IEC Standard which makes the
software non-portable.

5, Infinities. The floating-point values are extended with
one or two infinite values (according to the rounding
mode). This allows one to do interval arithmetic without
making overflow a special case.

6. Extended precisions. In addition to the 32/64 bit
formats, an extension can be provided to one or both of
these. It appears to be the intention that these formats
are used for computations within registers (as on the
8087 chip). The extended formats are not precisely
defined so that their use could give more accuracy (or
exponent range) for calculations performed entirely
within registers.

To summarise, the IEC Standard is quite complex. It has features
which numerical analysts can exploit with advantage; however, this
would make such software non-portable to conventional floating-point
units. The opinion has been expressed that the system is over
complex. The IEC Standard is too complex in its entirety for ordinary
programmers who are not numerical analysts. Hence it will be
important to provide a system with defaults which give a conventional
system. Numerical analysts could then provide additional facilities
in such a manner that ordinary computations were unaffected.

b) Relationship with Ada

Ther,e is a broad agreement between the IEC Standard and Ada as can
be seen as follows:

1. The IEC Standard is a binary, conventional floating-point
system in line with the Ada model.

2. Ada allows computations to be performed with more
precision than requested, which with an IEC system would
allow the use of extended precision.

3. Ada permits gradual underflow.

4. The NaNs can be regarded as machine numbers (though not
the only ones) which are not model numbers in the Ada
sense.

- 87 -

However, there are some incompatibilities between the full IEC
Standard and Ada. In particular, problems arise from the requirement
of the Standard that it specifies "the actual environment which the
programmer or user of the system sees". Hence it is not sufficient
merely to use an IEC system to implement the Ada floating-point
model. One must make the full facilities of the Standard available to
the programmer. This clearly conflicts with every language standard
which attempts to provide an implementation-independent definition.
The specific problems are:

1. How should a Standard Ada system provide:
a) extended precision,
b) control over rounding,
c) unsigned and signed infinities and
d) literals representing NaNs?

2. The IEC trap handling concept requires that a value is
rieturned for an operation in lieu of the exception. This
conflicts with the Ada mechanism where values are always
lost.

3. The IEC trap handler must be able to access information
that is lost in Ada such as the kind of operation that
was being performed, the operand values, etc.

- 88 -

APPENDIX G - TOPICS REQUIRING FURTHER STUDY

Here we: list a number of topics which are related to the present
project but for which, for one reason or another, no guidelines are
given in this report.

a) Topics outside the scope of this project

Little attention has been given to these topics:

- Interfaces with existing libraries in other languages (except for
considerations of the array storage problem).

- Libraries for vector and parallel-processing machines (except for
a little discussion in Chapter 9).

- Libraries using abstract floating-point types.

- Arithmetic using model numbers (see Wallis, 1983).

- Testing of library software.

- Documentation of library software.

b) Topics iomitted due to lack of resources

No attention has been given to these topics:

- Fixed-point arithmetic.

The contractors have little expertise in fixed-point
computation and; al though fixed-point arithmetic is
relevant to some specialised real-time computations,
no feedback on the issues which should be addressed
has been forthcoming. Fortunately, with the advent of
the IEC Standard with silicon implementations such as
the Intel 8087, the importance of fixed-point
arithmetic may be diminished in future.

- Task:s as parameters.

- 89 -

REFERENCES

Abramowitz, M. and Stegun, I.A., eds.
functions, Dover, New York, 1965.

Handbook of mathematical

ANSI/MIL-STD 1815 A Reference manual for the Ada programming language,
January 19B3.

Barnes, J.G.P. Programming in Ada, Addison-Wesley, London, 1982.

Cox, M.G. and Hammarling, S.J. Evaluation of the language Ada for use
in numerical computations. NPL Report DNACS 30/80, July 1980.

Firth, R. Draft specification of a basic mathemati~a~ library for the
high order programming language Ada, Royal Military College of Science,
Shrivenham, 1982.

Ford, B., Bentley, J., Du Croz, J.J. and Hague, S.J. The NAG Library
"machine". Software Pract. Exper., 1979, 2_, 56-72.

Hammarling, S.J. and Wichmann, B.A. Numerical packages in Ada. On the
relationship between numerical computation and programming languages,
edited by J.K. Reid, North Holland, Amsterdam, 1982.

Harrison, M.P. Notes on changes in the syntax of Ada. Ada UK News,
1982, 1, 34-37.

Hemker, P.W., ed. NUMAL, a library of numerical procedures in Algol 60,
Mathematisch Centrum, Amsterdam, 1981.

Hibbard, P., Hisgen, A., Rosenberg, J., Shaw, M. and Sherman, M. Studies
in Ada style, Springer-Verlag, New York, 1981.

IEEE. A proposed standard for binary floating-point arithmetic.
Computer, 1981, .}!!_(3), 51-62.

NAG. The NAG Algol 68 Mark 3 Library - Contents summary, Numerical
Algorithms Group, Oxford, 1983,

Nissen, J.C.D., Wallis, P., Wichmann, B.A. and others. Ada-Europe
guidelines for the portability of Ada programs. NPL Report DNACS 52/81,
November 1981. ***Tobe removed when the next reference is complete***

Nissen, J.C.D., Wallis, P., Wichmann, B.A. and others. Ada-Europe
guidelines for the portability of Ada programs. Second edition.
NPL Report DITC xx/83, xxxxxxxx 1983.

Reid, J. K. , ed. On the relationship between numerical computation and
programming languages, North Holland, Amsterdam, 1982.

Wallis, P. J. L. Ada floating-point arithmetic as a basis for portable
numerical software. Proceedings of the 6th Symposium on Computer
Arithmetie, Aarhus, Denmark, June 20-22, 1983.

Wichmann, B.A. Tutorial material on the real data-types in Ada. Final
Technical Report, NTIS No. AD-A103482/6, NPL, January, 1981.

Wichmann, B. A. and Hill, I. D. A pseudo-random number generator. NPL
Report DITC 6/82, June 1982.

- 90 -

Whitaker, W.A. and Eicholtz, T.C. An Ada implementation of the
Cody-Waite: "Software manual for the elementary functions", US Air Force,
1982.

