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Linear multistep methods with minimized truncation error for periodic initial value 
problems* 

by 

P.J. van der Houwen and B.P. Sommeijer 

ABSTRACT 

A common feature of most methods for numerically solving ordinary differential equations is that 
they consider the problem as a standard one without exploiting specific properties the solution may 
have. 

Here we consider initial value problems the solution of which is a priori known to possess an oscil­
latory behaviour. The methods are of linear multistep type and special attention is paid to minimiza­
tion of those terms in the local truncation error which correspond to the oscillatory solution com­
ponents. Numerical results obtained by these methods are reported and compared with those obtained 
by the corresponding conventional linear multistep methods and by the methods developed by 
Gautschi. 
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1. Introduction 

We will be concerned with linear k -step methods 

p(_E)yn -ha(E)jn = 0 

for integrating the equation 

j(t)= J(t i}'(t)) 

in cases where the exact, local solution is known to be approximately of the form 

m ;,.,., 
y(t) ~ c0+ ~cje 1 , 

j=l 

1 

(1.1) 

(l.2) 

(l.3) 

where the frequencies wj are in the interval [~w] with ~ and w given numbers. Assuming (l.3), the 
values of~ and w can often be derived from the eigenvalue spectrum of the Jacobian matrix 'd/ / 'dy 
(see e.g. Section 4). 

In the special case where the frequencies wj in (l.3) are such that the solution is periodic or 
"almost" periodic, that is y(t)~y(t +2'11' / wa) for some a priori given frequency Wo, Gautschi (2) has 
developed special linear multistep methods. However, these methods are rather sensitive to a correct 
prediction of the frequence Wo ( cf. Sections 4.2 and 4.3) This unfavourable property of the Gautschi 
methods (which are of Adams type, i.e. p(_r)=r' -r'-1) motivated Neta and Ford (7) to propose 
methods of Nystrom and Milne-Simpson type (p(_r)=fk __ rk-2). These methods, however, although 
demonstrating a less sensitive behaviour if the value of wa is perturbed, are rather sensitive to non­
imaginary noise (cf. Section 4.3). 
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In this paper we will try to construct methods which do not suffer the above mentioned disadvan­
tages. 

2. Minimization of the truncation error for a given interval of frequencies 

Let 

cp(_z) := p(ez)-z<1(ez), 

then the local truncation error at tn +k is given by (cf. e.g. Lambert [4, p. 27)) 

d 
Tn+k := cp(_h dt}y(t)l1=1n, 

(2.1) 

(2.2) 

wherey(t) denotes the exact solution satisfyingy(tn)=Yn· We assume cp(_O)=O; in the case (1.3) we 
then have approximately 

m 

ITn+k I ,,;;;; ~ lcj I lcp(_ivj)I, vj:=wjh. (2.3) 
j=I 

In the case where y(t) is a periodic or "almost" periodic function with frequency w0, we may replace 
y (t) by the approximating Fourier series 

y(t) = f c,/1"'ot +i(t), Iii <<l (2.4) 
/=O 

to obtain the approximate inequality 
00 

ITn+k I ,,;;;; ~ le, I lcp(_ilvo)I, Jlo:=woh. (2.5) 
/=O 

The inequalities (2.3) and (2.5) suggest essentially three approaches for adapting the linear multistep 
method to the additional information available on the exact, local solution y (t ). Let us start with a 
family of linear k-step methods containing 2q not yet specified coefficients, and let the remaining 
coefficients be such that cp(_z) = 0 (z r ), r ;;;;. I. Then one may proceed as indicated in Table 2.1. 

The first approach is that of Gautschi. The resulting method is said to be of trigonometric order q. 
Its order in the conventional sense (the algebraic order) is given by p =2q. The Gautschi method may 
be interpreted as a method which is exponentially fitted at the points ilw0 ,l = l, ... ,q (cf. Liniger and 
Willoughby [5]). 

Table 2.1. Minimization of truncation errors 

I y ( t) is periodic with frequency w0: 

II y (t) has dominant solution components 
exp(iwjt) with given wj: 

III y (t) has dominant solution components 
exp(iwt) with wE[~w]: 

Solve the system (Gautschi [2]) 
cp(_il woh )=O, l = 1, ... ,q 

Solve the system 
cp(iwjh)=0, j=l, ... ,q 

minimize the function (cf. (2.7)) 
I cp(_i wh) I on ~o;;;;wo;;;;w 

Many anthors proposed integration methods following the second approach. For example, Stiefel 
and Bettis [9], Bettis [l] and Lyche [6] constructed schemes by which not only the harmonic oscillations 
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"'j are integrated exactly but by which also products of Fourier and ordinary polynomimals are 
integrated without truncation error. However, to apply this approach we should start whith a linear 
multistep method containing sufficiently many free parameters in order to achieve that cp(_i "'j h) = 0 for 
all "'j occuring in (1.3), i.e. q ;;;,m; Another disadvantage is that a rather detailed knowledge of the 
dominant solution components is required. And even if this information is available, the frequencies "'j 

may vary over one integration step (e.g. in non-linear problems) which will decrease the accuracy of 
these methods. Therefore, we are automatically led to the last approach of Table 2.1. 

This third approach seems to be applicable to a fairly large class of problems. However, we have first 
to solve the minimax problem in which the 2q parameters in q, are to be determined in such a way that 
maxlcp(_iv)I is minimal in the interval ~:,e;;;;,,:,e;;;;'v (with J!::=~h, v:=wh). Basically, this is the problem of 
assigning optimal zeros to cp(_iv) in the interval ~:,e;;;;,,:,e;;;;'v. We will approximately solve this problem for 
small values of v- ~ = (w-ci)h . Let the family of linear k-step methods containing the 2q free 
coefficients be such that cp(_z)=O(z'), r;;;,I. Then, for sufficiently small values ofv-~ we approximate 
lcp(_iv)I by 

I cp(_i v) I ~ v' P ,,.(v) ~ ( v;" )' P ,,.(v), v E[~P], (2.6) 

where P,,. is a polynomial of degreeµ, in v assuming nonnegative values in the interval [~P]. Evidently, 
any zero of cp(_iv) corresponds to a double zero of P ,,.(v). Since the 2q free coefficients allow only q 
zeros of cp(_iv) in the interval [~P] we choose µ,=2q and we look for a nonnegative polynomial P2q(v) 
with q double zeros and with a minimal maximum norm in the interval [~P]. If we can find a polyno­
mial satisfying the so-called "equal ripple property", we have found the optimal polynomial P2q(v). 
Now consider the shifted Chebyshev polynomial 

2v-v-v 
a[l+T2q( _ )], T2q(x):=cos[2q arccos x], 

p-p 

where a is an appropriate constant. It is easily verified that this polyn6mial satisfies the equal ripple 
property in [~P] so that the optimal polynomial P2q(v) is of this form. As a consequence, P2q(v) has the 
q zeros 

_J/) • _ .!_r,; .!.r.;_ ,.\ 2/ -1 1- 2 P' • - 2 \11+~+ 2 \P ~cos 2q 1r, -1, , ... ,q. 

The free coefficients in the function 4> are therefore determined by the (linear) system 

cp(_i v<1>) = 0, I = 1,2, ... ,q. 

(2.7a) 

(2.7b) 

· The assumption that we started with a method in which cp(_z) has a zero of order r at z =0, and the 
condition (2.7), together imply that cp(_z) has a zero of order r +2q at z =0. Thus, the method resulting 
from the third approach is of (algebraic) order p = r + 2q - I. 

In this paper we concentrate on methods satisfying the minimax conditions (2.7). These methods 
will be called minimax methods. In particular we will consider the minimax methods generated by 

{k =5, p(.f)=f5-r', r = 1, q =3, a(n determined by (2.7a) and (2.7b)}, 

{k =5, p(O=f5-f3, r = 1, q =3, a(n determined by (2.7a) and (2.7b)}, 

{k =6, 147a(O=60!'6, r = 1, q =3, p(O determined by (2.7a) and (2.7b)}. 

(2.8) 

These methods will be denoted by AM6(~P), MS6(~P) and BD6(~P), respectively. For h • O they succes­
sively converge to the well-known 6-th order Adams-Moulton (AM 6), Milne-Simpson (MS 6) and 
Backward Differentiation (BD 6) method. These conventional methods are characterized by 
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AM 6:p(_n=t5-f; 1440o(n=475f5 + 1427f-798f3 +482f2 - 173f +27, 

MS6:p(_t)=f5-f3; 90o(t)=28f5 + 129f+ 14f3 + 14f2 -6f+ I, (2.9) 

BD6:147p(t)= 147r6-360f5+450f-400f3+225f2-72f+ 10; 147o(n=60r6, 

respectively. 

Crucial for the accuracy behaviour of the minimax methods and of the conventional methods as 
well, is the maximum norm of the corresponding function q,(z ), where z E[i ~iP], i.e. 

M (~ii;q) : = max I q,(i v) I. 
~..;;v..;;, 

(2.10) 

For several (~P)-intervals we calculated the M(~ii;3)-values for the minimax methods (2.8) and com­
pared them with M(0,ii;0), which determines the local truncation error of the corresponding conven­
tional method. In Table 2.2 we give these M(0,ii;0)-values for the methods (2.9), while Table 2.3 con­
tains the gain factors 

Table 2.2. M (0,ii;0)-values for the 
conventional methods (2.9) 

p AM6 MS6 BD 6 

.05 .11 10- 10 .76 10- 11 .46 10- 10 

.10 .14 10-8 .98 10-9 .58 10-8 

.15 .24 10-7 .17 10-7 .99 10-7 

Table 2.3. M(0,ii;0) / M(~i;3) factor for 
the minimax methods (2.8) 

p v=0 v=.05 v=.10 

.05 10 00 

.10 10 48 00 

.15 10 24 140 

M(0,ii;0) / M(~i~;3) for the minimax methods (2.8). These factors turned out to be constant for the 
several types of methods. 

3. Stability 

Concerning the stability of the linear multistep methods we followed the usual approach as can be 
found in e.g. [4]. In Figure 3.1 we plotted (parts of) the stability regions of the AM6, MS6 and BD 6 
method (we mention that the regions are symmetric about the real axis). 
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Figure 3.1. Stability regions of the AM 6, 

MS 6 and BD 6 method. 
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The stability regions of the corresponding minimax methods for realistic (~P)-values (say ~,s;;;'p:s;;;_ I) are 
very similar to the ones given in Figure 3.1. It turned out that there are no points on the imaginary 
axis for which the 6-th order Milne-Simpson method is absolutely stable. 

In connection with stability we mention a paper by Skelboe and Christensen [8] in which the stabil­
ity regions of the BD methods are enlarged by appending two exponential terms to the polynomial 
basis of the classical formulas. 

4. Numerical comparisons 

In this section the minimax methods generated by (2.9) are compared with the corresponding con­
ventional linear multistep methods and with the methods based on the approach of Gautschi, that is, if 
w0 is an estimate of the frequency of the exact local solution (cf. (2.4)) and 110=woh then these methods 
are also based on (2.10) in which the condition (2.7a) is replaced by ,P>=/110, I= 1, ... ,q. These methods 
will be indicated by AM6(110), MS6(110) and BD6(110), respectively. In both cases the linear system (2.7b) 
(to obtain the coefficients for the linear multistep methods) was solved numerically. However, if the 
,,(l>-values are nearly equal this system in very ill-conditioned and we ran into numerical problems. In 
that case we changed to the system 

di . 
dzi q,(_z )lz =½i(~+P) = 0, J =0,1, ... ,q -1. 

In all experiments the starting values were taken from the exact solution or from a sufficiently accu­
rate reference solution. The implicit relations were solved using Newton iteration. All problems were 
converted to their first-order equivalents and for measuring the obtained accuracy we used the number 
of correct significant digits in the end point lend of the integration, i.e. 

sd : = log1o(L2-norm of the error at lend). (4.1) 

The calculations were performed an a CDC CYB ER 175-750 which has a 48-bit mantissa yielding a 
machine precision of about 14 decimal digits. 

Finally, we deliberately tried to select problems which are illustrative for the various kinds of 
difficulties we wanted to test for. The particular difficulty is mentioned in each subsection. 

4.1. Periodic solutions 

Consider the _6-th order model differential equation 

with the exact solution 

{ _IT. ( d: +wj)}.y(I) = 0, 0.s;;;1.s;;;12'1T=lend; "'i;;;;.o 
1=1 di 

3 . . 
y(I) = ~(C/e'.,/ +ci-e -,.,1\ 

j=I 

where the constants C/ are determined by the initial conditions. 

Choosing 

we have the solution 
3 

y(I) = ~(sin(wil)+cos(wil)) 
j=I 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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which is periodic with frequency 

Wo = ·; = .2333 .... (4.6) 

Applying the several methods we obtained the results as listed in Table 4.1. For this linear model prob­
lem, the theory of section 2 is confirmed rather well. 

Table 4.1. sd-values obtained for problem {(4.2), (4.3), (4.4)} 

7T / 10 1.44 1.97 0.41 
7T / 25 3.86 4.32 2.85 
7T / 50 5.66 6.12 4.66 

1.62 
4.05 
5.85 

2.13 
4.51 
6.31 

0.59 
3.04 
4.85 

3.12 
5.54 
7.34 

3.56 
6.00 
7.80 

2.09 
4.35 
6.34 

We repeated the experiment but now the frequency w2 was changed to 0.9. The solution in no 
longer periodic in the interval of integration, but we can regard it as "almost" periodic with frequency 
w0~0.23. The results obtained differ only slightly from the results of Table 4.1 (there was no difference 
in sd-values found, greater than 0.03). 

Conclutions: 

- The change from a periodic solution to an "almost" periodic solution has no significant influence on 
the accuracy oJf the results 

- The methods have some benefit from the Gautschi-approach; howe\'.er, a substantial gain in accu­
racy is obtained by minimizing the local truncation error on thew-interval (.7, 1.4] 

- Making a mutual comparison between the methods, the Milne-Simpson method seems to be the 
most accurate one for this problem ( cf. Table 2.2). 

4.2. Uncertainty in the periodicity 

Next, we test the problem (cf. [2] and [7]) 

ji(t)+(lOO+ -\-)y(t) = 0, l:,;;;;;t ,;.:;;IO, 
4t 

with the initial values according to the "almost" periodic particular solution 

y(t) = v'tJo(IOt), 

(4.7) 

(4.8) 

where J O is a Bessel function of the first kind. Clearly, the frequency of this "almost" periodic solution 
is close to 10 and therefore we applied the Gautschi-methods with w0= 10. However, this problem is an 
example for which the spectrum of the Jacobian matrix gives detailed information about the local 
behaviour of the solution. A straightforward calculation reveals that the eigenvalues w are approxi-

mately given by "'±(t)~+lOi(l + 8~ 12 ). Hence, we applied our minimax methods with ~=9.9 and 

w= 10.1. 

Table 4.2 shows the results of the various methods. Compared with the conventional methods there 
is a gain in accuracy of about two decimal digits in favour of the Gautschi-approach. 
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Table 4.2. sd-values for problem { ( 4. 7), ( 4.8)} 

h AM6 MS6 BD6 AM6(10h) MS6(10h) BD6(10h) AM 6(9.9h ,10.lh) MS6(9.9h,10.lh) BD6(9.9h,10.lh) 

1/25 2.27 2.02 1.05 4.50 4.51 3.32 7.20 5.66 
1/50 4.57 5.14 3.24 6.89 6.80 5.56 8.60 8.73 
1/100 6.38 6.73 5.49 8.46 8.88 7.66 10.30 10.77 

The minimax methods, however, have a further increase in accuracy of about two decimal digits. 

Finally, we anticipate that the accuracy can be still more increased by exploiting the special struc­
ture of the second order differential equation, i.e. the absence of the first order derivative. For, the ideas 
of minimizing the function q, on a suitable interval can analogously be applied to linear multistep 
methods which are designed for this type of equations, e.g. Stromer type methods. 

4.3. Non-imaginary noise 

In this subsection we want to test, apart from over- or underestimating the frequency of the solu­
tion, the influence of non-imaginary noise. By this, we mean that the local solution contains not only 
oscillatory components but also some "noise", caused by non-imaginary eigenvalues of the Jacobian 
matrix, i.e. 

y(t) = ~cj/"'/ +8z(t). 
j 

For that purpose we selected the orbit equation (cf. Hull et. al. [3], Problem Class D) 

u(t)+u(t) / r3=0, u(0)= 1-t:, u(0)=0, 

ii(t)+v(t)/r3=0, v(0)=0, v(0)=((l+t:}/(1-t:}}\ 

r2=u2(t)+v 2(t), o.;;;;1 .;;;;12w 

with solution 

u(t)=cosT-t:, u(t)= -sin'T / (1-t:COS'T), 

v(t)=(I -t:2)½Sin'T, v(t)=(I -t:2)½COS'T / (1-t:COS'T), 

where T-t:sinT='t (t: is the eccentricity of the orbit). 

The initial conditions correspond to a local solution of the form (4.9) in which 8 is small. 

(4.9) 

(4.10) 

(4.11) 

First, we concentrate on an adequate treatment of the oscillatory part of the solution. For t:=0, the 
complex eigenvalues of the Jacobian matrix are +;. However, for a non-zero eccentricity t: they are 
time-dependent and hard to determine in advance. For t:=.01 we integrated this problem twice: 

(i) the estimate of the frequency of the solution is 1, that is the Gautschi-approach was applied 
with c.,0= 1 and the minimax methods employed the c.,-interval [.9, 1.1]. The results are given in 
Table 4.3 

(ii) secondly, c.,0 =.9 in the Gautschi-approach and the c.,-interval [.8, 1] for the minimax methods 
was used. Table 4.4 shows the results of this experiment. · 

From these tables we see a dramatic drop in accuracy-for the Gautschi-methods when the frequency 
is wrongly estimated by only a small percentage. 

6.42 
7.74 
9.30 



Table 4.3. Results for problem {(4.10), (4.11), t:=.01} with 
w0= 1.0, ~=.9 and w= 1.1 

'1T I IO 1.46 0.56 0.27 
'1T / 25 4.34 3.09 3.08 
'1T / 50 6.81 5.08 5.33 

6.32 
7.68 
9.42 

3.56 
5.69 
7.66 

4.59 
6.73 
8.85 

2.76 
5.01 
6.79 

1.21 
3.69 
5.68 

Table 4.4. Results for problem { ( 4. IO), ( 4.11 ), t: = .01} with 
w0 =.9, ~=.8 and ~=1.0 

'1T I 10 1.46 o.56 0.21 
'1T / 25 4.34 3.09 3.08 
'1T / 50 6.81 5.08 5.33 

0.94 
3.73 
5.84 

0.74 
3.06 
5.01 

-.24 
2.55 
4.65 

2.70 
4.94 
6.71 

1.13 
3.62 
5.61 

1.86 
4.04 
5.80 

1.80 
3.97 
5.73 
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Again, the minimax methods show that they perform equally well in both cases and do not need an 
accurate foreknowledge of the frequency of the solution. 

Let us return 1lo the real subject of this subsection. The first part of the right-hand side of (4.9) is 
properly treated by the minimax methods (cf. (1.3)), the second part is not. If h decreases, the influence 
of this term on the accuracy increases, hence the minimax methods gradually lose their superiority, as 
can be seen in Table 4.4. This effect is pronounced in the experiment ,with an eccentricity t:=.l, the 
results of which can be found in Table 4.5. 

Table 4.5. Results for problem { ( 4.10), ( 4.11 ), t: = .1} with 
wo=.9, ~=.8 and w= 1.0 

'1T / IO 1.10 -.64 0.09 
'1T / 25 3.63 I.61 3.28 
'1T / 50 5.14 3.61 4.25 

4.4. Stiff oompo111ents 

0.90 
3.81 
6.34 

0.31 
2.11 
4.09 

-.25 
2.58 
4.87 

1.71 
3.62 
5.25 

-.47 
1.73 
3.73 

0.78 
2.83 
4.31 

So far, the BD 6 methods turned out to be inferior to the AM 6 and MS 6 methods as far as accuracy 
was concerned. In this subsection we will illustrate the use of BD 6 methods when the exact local solu­
tion is of the form (cf. (1.3)) 

ml . m2 • 

y(t) ~ c0+ ~cje'"'/ + ~dje -"'l, (4.12) 
j=I j=I 

where the wj are positive and large (the so-called stiff components). 
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Apart from the initial phase, these components hardly influence the oscillatory behaviour of the 
solution but they demand for a highly stable method. For example, we see from figure 3.1 that the step 
size in the AM6 method should satisfy h oe;;;l.18 / w, w=m~ wj, and that the MS6 method is absolutely 

. J 
ustable for every h. However, in case of the BD 6 method, the value of w does not impose a restriction 
on the step size (see also [4]). 

Let us consider the problem 

y"(t)+(2€y(t)->.)Y(t)+(l +t:2y 2(t)-2E>.y(t))j(t)->-(l +t:2y 2(t))y(t)=cos t, (4.13) 

0=e;;;toe.;20 

with initial conditions 

y(0)= 1, j(0)= 1, j(0)= -1. (4.14) 

For small values oft:, the eigenvalues of the Jacobian matrix are approximately given by +i and by 

Table 4.6. Results of the BD 6 methods 
for problem {(4.13), (4.14)} with 

w0= I, ~=.9 and c;;= 1.1 

1/10 5.40 6.08 7.34 
1/25 7.76 8.44 9.51 

A. In our experiment we choose t:= 10-2, >.= -100 and determined a reference solution with an explicit 
Runge-Kutta method using a very small step size. The results of the BD 6 methods are given in Table 
4.6. For the step sizes of this table the AM 6 and MS 6 methods behaved unstable. Again, the minimax 
method is superior to the Gautschi-approach and to the conventional method. 
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